首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The induction of mutation by certain nitrosamidines and nitrosamides has been quantitated utilizing the hypoxanthine--guanine phosphoribosyl transferase (HGPRT) locus in Chinese hamster ovary cells. Dose--response relationships for cytotoxicity and mutagenicity are presented for N-methyl-N-nitrosourea (MNU), N-ethyl-N-nitrosourea (ENU), N-butyl-N-nitrosourea (BNU), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), and N-ethyl-N'-nitro-N-nitrosoguanidine (ENNG). Based on the concentration of each agent required to kill 90% of the cells, the following order of cytotoxicity was observed: MNNG greater than ENNG greater than MNU greater than ENU greater than BNU. This is the same order of potency as observed for mutation induction per unit concentration of mutagen.  相似文献   

2.
The lag in phenotype expression of methylnitrosourea(MNU)-induced mutation to 6-thioguanine (6TG) resistance has been studied in a diploid human lymphoblastoid cell line. We find that a considerable period (8–12 days) elapses before new mutants appear in treated cultures; after 2 weeks, however, a stable maximum fraction is attained, as would be expected for a genetic mutation. We present preliminary data linking this phenotypic lag to the slow degradation rate of hypoxanthine-guanine phosphoribosyl transferase (HGPRT) and to an apparent requirement for very low (<0.2% normal) cellular HGPRT content in order for cells to be resistant to 10 μg 6TG/ml. A series of reconstruction experiments are presented, the results of which support the conclusion that selective pressures in the assay procedure do not bias the quantitative estimates of induced mutant fraction.  相似文献   

3.
A novel technique for the growth of Chinese hamster ovary (CHO) cells as unattached cells on nontissue culture plates was applied to the CHO/HGPRT mutation assay, using EMS and MNNG as mutagens. The subculturing procedures for the unattached cultures involved less time and effort than those for the conventional attached cultures since trypsinization was not required for cell detachment. No significant difference in the maximum mutation frequency was observed for cells grown as unattached or attached cultures during the expression period. The optimum expression time was, however, shorter for the unattached cells (6 days) than for the attached cells (9 days). No selection for or against the mutant population was observed when mutant and wild-type cells were co-cultivated as unattached cultures, indicating that the procedure does not affect the quantitativeness of the mutation assay. The growth of CHO cells as unattached cells during the expression period thus could decrease the cost and effort involved in the use of the CHO/HGPRT mutation assay in the screening of potential mutagens/carcinogens.  相似文献   

4.
Hypoxanthine (Hx), thymidine (TdR) and deoxycytidine (CdR), at concentrations of 10(-5) M increased the yield of 8-azaguanine-resistant (AzGr) mutants induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) in cultured Chinese hamster V79 cells. The cytotoxicity of MNNG was increased 2-fold in the presence of Hx, and more than 10-fold in the presence of TdR. This cytotoxic effect of TdR was abolished by equal concentrations of CdR, which by itself did not increase the cytotoxicity of MNNG. However, the yield of MNNG-induced AzGr colonies was increased 2--10-fold in the presence of both CdR and TdR. The AzGr colonies displayed phenotypes characteristic of hypoxanthine: guaninephosphoribosyltransferase-deficient (HGPRT-) mutants, or indicative of mutant HGPRT with altered substrate affinities. The nucleosides did not affect the growth or expression time of the HGPRT- mutants; the same extent of alkali-labile DNA damage occurred in cells treated with alkylating agents in the presence and absence of TdR and CdR; and the increase in mutation frequency in the presence of these nucleosides occurred not only with MNNG, but also with ethylating agents. Nucleosides treated with MNNG were not mutagenic, and treatment of the cells with TdR and CdR only prior to treatment with MNNG or only during selection with AzG did not increase the induced mutation frequency. Therefore, the interpretation is proposed that CdR, TdR and Hx produce nucleotide-pool imbalances that increase lethal and mutagenic errors of replication of alkylated DNA.  相似文献   

5.
Mutants of a diploid human lymphoblast line resistant to 6-thioguanine (6TG) appear 6--16 generations after treatment with any of a diverse group of mutagents: methylnitrosourea (MNU), methylnitrosoguanidine (MNNG), ICR-191, 5-bromodeoxyuridine (BUdR). A hypothesis is advanced that expression of the 6-thioguanine-resistant state may require the removal of essentially all pre-existing hypoxanthine--guanine phosphoribosyl transferase (HGPRT) molecules via division, dilution, and protein turnover. Design of protocols for quantitative mutation assays requires attention to this phenomenon.  相似文献   

6.
Cultured mouse clonal cells, H-5, were treated with two different mutagens, ethyl methanesulfonate (EMS) and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG). Then two selective procedures using 8-azaguanine (8-AZ) or 6-thioguanine (6-TG) were compared in an effort to isolate hypoxanthine-guanine phosphoribosyl-transferase (HGPRT)-deficient cells containing different gene alterations. While many 8-AZ resistant cells were induced by EMS treatment, considerably more 6-TG resistant cells were induced by the same treatment. MNNG treatment induced many 8-AZ resistant mutants but induced hardly any 6-TG resistant mutants. After a fusion experiment of 91 sets involving 13 HGPRT-deficient mouse clones, 7 of which were resistant to 8 AZ and 6 of which were resistant to 6TG with subsequent selection on HAT medium, complementation occurred only in those hybrid mixtures formed between 8-AZ- and 6-TG-resistant clones, while it did not occur at all in hybrid mixtures formed between different 8-AZ-resistant clones and mixtures formed between different 6-TG-resistant clones. The clonally isolated HGPRT-positive cells, characterized by tetraploid karyology, had an apparent activity of HGPRT ranging from 25 to 30% of that of the wild-type parental cells. Heat-inactivation of HGPRT at 65 °C revealed that HGPRT from wild-type cells was heat stable and HGPRT from some 8-AZ-resistant clones were heat labile, while HGPRT from hybrid cells had intermediate stability. These results indicate that there would be alterations in the structural gene of HGPRT in the 8-AZ- or 6-TG-resistant mutants, and also that two selective procedures with 8-AZ or 6-TG alone can isolate different alterations in the structural gene of HGPRT. Moreover, this indicates that some of these gene alterations were mutually complementary. It is most likely that there would be at least 3 cistrons in the locus responsible for HGPRT activity in the mouse cells.  相似文献   

7.
From cultures of V79 Chinese hamster cells, 10 independent clones of 8-azaguanine resistant cells were isolated and subcultured. Cells from all ten clones were resistant to 1 mg/ml levels of 8-azaguanine (8-AzG), contained less than 3% of the wild type levels of the enzyme, hypoxanthine guanine phosphoribosyl transferase (HGPRT), and were unable to grow in HAT medium. The ten clones were classified according to the conditions under which they reverted to the wild type phenotype. Clones in classes I and II reverted spontaneously with frequencies of 40-10(-5) and about 3-10(-5) respectively, and the reversion frequency was independent of the density of cells of all but one of the clones in the culture medium used. Class II clones evinced increased reversion frequencies with ethyl methanesulfonate (EMS) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), and to a lesser extent with 5-bromo-2'-deoxyuridine (budR), suggesting that these clones contained point mutations in a locus which controls HGPRT activity. The processes of reversion and toxicity appeared to be associated. Class III clones did not revert spontaneously or with BUdR and MNNG, but did revert with EMS. The reversion frequency of class I clones was not increased after treatment with EMS, MNNG or BUdR.  相似文献   

8.
We previously isolated N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-resistant cells, MR from HeLa S3 Mer- cells. In the present study, we have isolated 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-(2-chloroethyl)-3-nitrosourea (ACNU)-resistant cells, ACr. The MR cells had only a little O6-methylguanine-DNA methyltransferase (MT) activity, while the ACr cells had increased MT activity and also became resistant to the cytotoxic effect of MNNG. We compared the induction of sister-chromatid exchanges (SCEs), cell survival and mutation in these HeLa S3 cells with different sensitivity to MNNG. The ACr cells were much more resistant than the parental HeLa S3 Mer- cells to cytotoxicity, mutagenicity and SCE induction by MNNG, showing a positive correlation between SCE induction and cell killing or mutation. In contrast, this positive relationship was not observed between HeLa S3 Mer- and MR cells. These results suggest that O6-methylguanine (O6-MeG) is involved in the induction of the biological effects of MNNG such as cytotoxicity, mutagenicity and SCEs, and also indicate that SCE induction does not always correlate with cell killing and mutation.  相似文献   

9.
A selected strain of rat hepatoma cells was evaluated for its utility in the assay of mutation. We demonstrate that these cells have practical and theoretical advantages over most other mammalian cells utilized for the mutation assay at the HGPRT locus. Characteristics of the H4IIE cell line which enhance the ability of the HGPRT assay to detect mutation include: intrinsic metabolic capabilities; small cell size, and lack of mobility; colony-forming efficiency of 85–95%; a background mutation level between 0.9 and 3 mutants per 105 viable cells; and the ability to proliferate in medium containing 5% fetal bovine serum and 5% horse serum. The optimal expression period for the maximum frequency of mutants was investigated using UVC as the mutagenic agent, and found to plateau after 8–10 days. The metabolic capacity of this cell line was demonstrated using 2-aminoanthracene and cyclophosphamide, two types of mutagens requiring biotransformation for activity. We conclude that the use of the H4/HGPRT system could prove valuable in the mutagenic screening of suspect environmental agents.  相似文献   

10.
Cytotoxicity and mutation induction at the hypoxanthine-guanine phosphoribosyl transferase locus in Chinese hamster ovary cells (CHO/HGPRT system) were measured for a range of concentrations of 6 alkylating agents [methyl and ethyl methanesulfonate (MMS, EMS), N-methyl- and N-ethyl-N'-nitro-N-nitrosoguanidine (MNNG, ENNG), and methyl- and ethyl-nitrosourea (MNU, ENU)] to determine the effect of the presence or absence of serum during the time of mutagen treatment. Cultures were treated with the mutagens for 5 h, a time period which results in no growth inhibition in the absence of serum, to estimate the potential decrease in effective mutagen dose to the cells which might result from reactivity with the serum proteins. With all 6 agents, identical results were found for cytotoxicity and for mutagenicity regardless of the presence or absence of serum during treatment. This finding demonstrates that the use of serum in cell-culture medium does not present any problems in apparent dosimetry studies, at least with these alkylating agents.  相似文献   

11.
The genotoxicity of alpha particles in human embryonic skin fibroblasts   总被引:1,自引:0,他引:1  
Cell inactivation and induced mutation frequencies at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus have been measured in cultured human fibroblasts (GM10) exposed to alpha particles from 238Pu (LET at the cell surface was 100 keV/microns) and 250 kVp X rays. The survival curves resulting from exposure to alpha particles are exponential. The mean lethal dose, D0, is approximately 1.3 Gy for X rays and 0.25 Gy for alpha particles. As a function of radiation dose, mutation induction at the HGPRT locus was linear for alpha particles whereas the X-ray-induced mutation data were better fitted by a quadratic function. When mutation frequencies were plotted against the log of survival, mutation frequency at a given survival level was greater in cells exposed to alpha particles than to X rays.  相似文献   

12.
Cells of the mutant Chinese hamster strain RJK10 do not contain either hypoxanthine-guanine phosphoribosyl transferase activity (HGPRT) or protein that cross-reacts immunologically with HGPRT. HGPRT+ revertants have been isolated from RJK10 and those strains produce HGPRT with altered antigenic properties. HGPRT from the revertant cells is less reactive with anti-HGPRT serum than enzyme from the wild-type cells, and enzymes from the two sources are immunoprecipitated independently from mixtures of cell extracts. Thus one or more of the antigenic determinants present on Chinese hamster HGPRT are either missing or present in an altered form on HGPRT from revertants of RJK10. This indicates that RJK10 carries a mutation in the structural gene for HGPRT and that secondary mutations in the gene give rise to the revertants that produce the antigenically altered enzymes.  相似文献   

13.
Killing and mutation by UV in the MNNG-exposed population of V79 cells, as well as by MNNG in the UV-irradiated population of these cells have been studied. It was observed that pretreatment with MNNG increased the killing and mutation by UV, whereas, pretreatment with UV had no effect upon killing and mutation by MNNG. The increase in sensitivity to UV due to pretreatment with MNNG was lost if UV exposure was delayed for 24 h after MNNG treatment.  相似文献   

14.
The pro-mutagenicity of chemically-induced methylation of DNA at the O6 position of dexoyguanosine was studied in cultured adult rat liver epithelial cells. To modify the level of O6-methyldeoxyguanosine (O6-medGuo) resulting from exposure to an alkylating agent, partial depletion of the O6-alkylguanine-DNA alkyltransferase (AGT) repair system was produced by pretreatment of ARL 18 cells with a non-toxic dose of exogenous O6-methylguanine (O6-meG). Exposure of cells to 0.6 mM O6-meG for 4 h depleted AGT activity by about 40%. Intact and pretreated cells were exposed to a range of doses of N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), and mutagenesis at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus was quantified by measurement of 6-thioguanine-resistant mutants. The mutagenicity of MNNG was dose dependent and was greater in O6-meG pretreated cultures than in intact cultures. Immunoslot blot measurement of O6-medGuo employing a mouse monoclonal antibody demonstrated that MNNG produced O[su6-medGuo and that the intact liver cells were efficient in eliminating this lesion from their DNA. Since depletion of AGT would be expected to affect the rate of elimination of only O6-medGuo, it is concluded that this lesion is highly pro-mutagenic.  相似文献   

15.
The striking mutational specificity of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) exhibited in the lacI gene in Escherichia coli allows comment on the phenotypic consequences of mutation at specific sequences that are not recovered after MNNG mutagenesis. We predict that the I+ phenotype is maintained when such silent positions are substituted by amino acids whose codons are generated by the MNNG-directed G:C----A:T transition. We chose the mutationally silent Gly200 codon (an MNNG hotspot motif sequence) to test this prediction. Through MNNG mutagenesis we have generated, identified and isolated a G:C----A:T transition at position 627 (5'-G-G-C-3') under non-selective conditions which creates the Gly200----Asp substitution. The I+ phenotype is retained for this altered repressor.  相似文献   

16.
V-79 cells when exposed to thymidine (5 micrograms/ml) in growth medium after treatment with X-rays, UV light and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), responded differently depending upon the agent. For treatment with X-rays and UV light, only induction of mutation was potentiated, but for MNNG treatment, both killing and mutation induction were potentiated. The increase in killing of MNNG exposed cells could be reversed by simultaneous addition of deoxycytidine with thymidine, but, for all the three mutagenic treatments, enhancement in mutation induction could not be suppressed by deoxycytidine.  相似文献   

17.
The role of DNA gyrase in handling DNA damages induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) was examined with two Escherichia coli strains, KL161 and KL166. The two strains are isogenic except that KL166 harbors a mutation at the nalA (gyrA) locus which specifies one of the two subunits of DNA gyrase. We treated the two strains with several different types of mutagenic agents and found the nalA strain to be highly resistant to MNNG-induced killing and mutagenic effects as compared with the parental strain. The MNNG resistance was specific, since the two strains were about equally sensitive to methyl methane sulfonate, ethyl methane sulfonate, and UV and gamma radiations. We pulse-labeled the two strains with [(3)H]uridine and (14)C-amino acids after MNNG treatment to analyze RNA and protein synthetic rates. The pulse-labeled proteins were also separated on polyacrylamide gels. The results show that pulse-labeled RNA and proteins persisted in the nalA strain but declined rapidly in the parental strain after MNNG treatment. We compared membrane-free nucleoid preparations from the two strains by sucrose density gradient centrifugation and found a difference in nucleoid organization between the two strains. The nucleoid of the nalA strain, unlike that of the parental strain, may have a highly ordered structure, as indicated by its resistance to ethidium bromide-induced relaxation. The ability of the two strains to express an adaptive response to MNNG was determined. We found that the resistance to MNNG killing and mutagenesis by the nalA strain cannot be further increased by adaptive treatment. These results suggest that an alteration in DNA gyrase may have profound effects on E. coli chromosome organization and base methylation by MNNG.  相似文献   

18.
Summary For three patients with the Lesch-Nyhan syndrome the existence of normal amounts of catalytically inactive hypoxanthine-guanine phosphoribosyltransferase (HGPRT) protein was demonstrated by using antibodies against the normal enzyme subunits. The lack of enzyme activity is reverted in virus transformed cells. Individual revertant cell clones contain different HGPRT enzymes as demonstrated here by isoelectric focusing. The data strongly support the idea of a structural gene mutation as the cause of enzyme deficiency in the Lesch-Nyhan syndrome.  相似文献   

19.
20.
Inducible DNA-repair systems in yeast: competition for lesions   总被引:1,自引:0,他引:1  
DNA lesions may be recognized and repaired by more than one DNA-repair process. If two repair systems with different error frequencies have overlapping lesion specificity and one or both is inducible, the resulting variable competition for the lesions can change the biological consequences of these lesions. This concept was demonstrated by observing mutation in yeast cells (Saccharomyces cerevisiae) exposed to combinations of mutagens under conditions which influenced the induction of error-free recombinational repair or error-prone repair. Total mutation frequency was reduced in a manner proportional to the dose of 60Co-gamma- or 254 nm UV radiation delivered prior to or subsequent to an MNNG exposure. Suppression was greater per unit radiation dose in cells gamma-irradiated in O2 as compared to N2. A rad3 (excision-repair) mutant gave results similar to wild-type but mutation in a rad52 (rec-) mutant exposed to MNNG was not suppressed by radiation. Protein-synthesis inhibition with heat shock or cycloheximide indicated that it was the mutation due to MNNG and not that due to radiation which had changed. These results indicate that MNNG lesions are recognized by both the recombinational repair system and the inducible error-prone system, but that gamma-radiation induction of error-free recombinational repair resulted in increased competition for the lesions, thereby reducing mutation. Similarly, gamma-radiation exposure resulted in a radiation dose-dependent reduction in mutation due to MNU, EMS, ENU and 8-MOP + UVA, but no reduction in mutation due to MMS. These results suggest that the number of mutational MMS lesions recognizable by the recombinational repair system must be very small relative to those produced by the other agents. MNNG induction of the inducible error-prone systems however, did not alter mutation frequencies due to ENU or MMS exposure but, in contrast to radiation, increased the mutagenic effectiveness of EMS. These experiments demonstrate that in this lower eukaryote, mutagen exposure does not necessarily result in a fixed risk of mutation, but that the risk can be markedly influenced by a variety of external stimuli including heat shock or exposure to other mutagens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号