首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
L M Mai  J T Pan 《Life sciences》1990,47(14):1243-1251
The roles of oxytocin (OT) and vasopressin (AVP) on both basal and estrogen-induced prolactin (PRL) secretion were examined. Adult female Sprague-Dawley rats that were ovariectomized for 3 weeks and received estrogen treatment for 1 week were used. Intravenous administration of hormones and serial blood sampling were accomplished through indwelling intraatrial catheters which were implanted two days before. Plasma PRL levels were measured by radioimmunoassay. Oxytocin at a dose of 20 micrograms/rat stimulated a moderate PRL release in the morning and lower doses (5 and 10 micrograms) were without effect. Vasopressin was most effective at a dose of 5 micrograms/rat in stimulating PRL release, while consecutive injections of higher doses (10 and 20 micrograms) were less effective. In contrast, TRH, ranging from 1 to 8 micrograms/rat, induced a dose-dependent increases in PRL secretion. Using the effective dosages determined from the morning studies, repeated injections of either OT, AVP or their specific antagonists MPOMeOVT [( 1-(beta-mercapto-beta, beta-cyclopentamethylene propanoic acid), 2-(O-methyl)tyrosine, 8-ornithine]-vasotocin) and d (CH2)5Tyr(Me)AVP ([1-(beta-mercapto-beta, beta-cyclo-pentamethylene propionic acid), 2-(O-methyl)tyrosine, 8-arginine]-vasopressin), were given hourly between 1300 to 1800 h and blood samples were obtained hourly from 1100 to 1900 h. It was found that either OT or AVP significantly reduced the afternoon PRL surge, while their antagonists were not as effective. When OT or AVP were administered together with their specific antagonists, the inhibitory effects of either hormone on PRL surge were reversed. Thus it is concluded that both OT and AVP assume a non-specific stress-like effect on PRL release, in which basal secretion is stimulated and surge secretion is inhibited.  相似文献   

2.
Intracerebroventricular (icv) injection of neurotensin (NT) (2 micrograms/rat) suppressed prolactin (PRL) release induced by L-5-hydroxytryptophan (1 mg/100 g body wt, iv), prostaglandin E2(1 microgram/rat, icv), and FK33-824 (10 micrograms/100 g body wt, iv), a Met5-enkephalin analog, in urethane-anesthetized or conscious rats. In contrast, NT did not suppress elevated plasma PRL levels sustained by a large dose of domperidone (10 micrograms/100 g body wt, iv), a peripheral dopamine antagonist. In in vitro experiments, NT (10(-5) M) stimulated dopamine release from perifused rat hypothalamic fragments. These results suggest that central NT inhibits PRL secretion by stimulating dopamine release from the hypothalamus into hypophysical portal blood in the rat.  相似文献   

3.
H Ohta  Y Kato  K Tojo  A Shimatsu  T Inoue  Y Kabayama  H Imura 《Peptides》1985,6(4):709-712
Intraventricular administration of peptide histidine isoleucine (PHI) (200 ng, 1, 5 and 10 micrograms/rat) resulted in a significant and dose-related increase in plasma prolactin (PRL) levels in urethane-anesthetized rats and in conscious rats with intraatrial and intraventricular catheters. Intravenous injection of PHI (10 micrograms/rat) also raised plasma PRL levels in these animals. In in vitro studies, PRL release from superfused rat anterior pituitary cells was stimulated by PHI (10(-9), 10(-8) and 10(-7) M) in a dose-related manner. The stimulating effect of PHI (10(-7)M) on PRL release in vitro was as potent as that of vasoactive intestinal polypeptide (VIP) (10(-7) M) and was observed even in the presence of dopamine (10(-7) M). These results suggest that PHI plays a stimulating role in regulating PRL secretion by acting, at least in part, directly on the pituitary in the rat.  相似文献   

4.
The time course effects of pargyline on hypothalamic biogenic amines and serum prolactin (PRL), LH and TSH were studied in adult male rats. The rats were killed at intervals of 1–6 hrs after pargyline injection. Hypothalamic dopamine (DA) rose 79% by 1 hr and was 41% above “0” time by 6 hrs. Norepinephrine (NE) increased 31% by 1 hr and remained at about this level through 6 hrs, whereas serotonin (5HT) increased from 42% by 1 hr and to 95% by 6 hrs. Serum PRL LH and TSH fell significantly during the first 2 hrs, but all had returned to pretreatment values by 4 hrs. Serum PRL was about 4-fold above pretreatment values by 6 hrs, but LH and TSH remained at pretreatment levels. Stimulation by pargyline of PRL release was potentiated by Lilly compound 110140, a serotonin reuptake inhibitor, and blocked by parachlorophenylalanine, a serotonin synthesis inhibitor. These results suggest that the inhibitory effects of pargyline on PRL, LH, and TSH release during the first 2 hrs were associated mainly with a rapid increase in DA, and subsequent elevation of PRL release was related to the increase in 5HT. Return of serum LH and TSH to pretreatment levels at 4 and 6 hrs appeared to be associated mainly with the decrease in DA and perhaps to elevated NE levels. These results suggest that changes in relative concentrations of hypothalamic amines are related to differential release of PRL, LH and TSH.  相似文献   

5.
Prolactin (PRL) release induced by TRH was examined on each day of the estrous cycle in female rats in which pituitary dopamine (DA) receptors were blocked pharmacologically. The objective was to determine if an interaction exists between hypothalamic inhibitory and releasing hormones with regard to prolactin (PRL) secretion. Domperidone (0.01 mg/rat i.v.) followed 5 minutes later by the administration of the DA agonist 2-Br-alpha-ergocryptine maleate (CB-154, 0.5 mg/rat i.v.) were used to produce a transient (less than 1 hr) dopamine blockade. One hour later, thyrotropin-releasing hormone (TRH, 1.0 microgram/rat i.v.) was given to stimulate PRL release. On the morning of proestrus, TRH released a significantly greater quantity of PRL into the plasma after DA antagonism compared to control animals which did not receive the dopamine antagonist. Dopamine antagonism also enhanced the effectiveness of TRH on the mornings of estrus and metestrus. The response on estrus was significantly greater than the response on proestrus. However by the morning of diestrus, TRH-"releasable" PRL was greatly diminished. Our results suggest that DA antagonism is able to shift differing quantities of PRL into a TRH "releasable" pool on several days of the estrous cycle and that the control of this mechanism is acute.  相似文献   

6.
Prolactin (PRL) release was studied in female rats during midlactation using pharmacologic manipulations designed to mimic the hypothalamic effects of suckling. In the first experiment pituitary dopamine (DA) receptors were blocked by sulpiride (10 micrograms/rat i.v.). One hour later, thyrotropin-releasing hormone (TRH, 1.0 micrograms/rat i.v.) was given to induce PRL release. TRH released significantly more PRL following DA antagonism than when no DA antagonism was produced, suggesting that DA receptor blockade increased the sensitivity of the AP to TRH. In a second experiment, VIP (25 micrograms/rat) increased plasma prolactin 3-4 fold but this effect was not enhanced significantly by prior dopamine antagonism with sulpiride. We conclude that dopamine antagonism enhances the PRL releasing effect of TRH but not VIP in lactating rats.  相似文献   

7.
The effects of chlorpromazine (CPZ) and estradiol benzoate (EB) on serum prolactin (PRL) levels were studied in gonadectomized male and female rats. In both sexes CPZ (25 mg/kg body weight) produced an elevation of PRL when measured 2 hr after the injection, but the elevated levels were higher in ovariectomized rats than in orchidectomized rats. These results reconfirm a sexual difference in the regulatory mechanism of PRL secretion in response to the dopamine receptor blocker. Pretreatment with 5 microgram EB 48 hr before CPZ injection abolished this sexual difference in serum PRL concentration.  相似文献   

8.
Timing of ovulation and changes in plasma progesterone, luteinizing hormone (LH), and prolactin (PRL) during periovulatory stages were determined in Holtzman rats exhibiting regular 4- or 5-day cycles under a daily artificial illumination from 0500 to 1900 h. The 5-day cycling rats ovulated between 0130 and 0930 h on estrus, whereas some of the 4-day cycling animals ovulated as early as about 0130 h and others as late as 1130 h on estrus. Onset time of preovulatory LH and progesterone surges was about 1500 h on proestrus in both the 4- and the 5-day cycling rats. Peak levels of plasma LH and progesterone were measured at 1700 to 1900 h on proestrus, while the first rises and peak values of plasma PRL were evident a few hours earlier than those of plasma LH in the rats with two cycle lengths. Plasma LH levels at 1900 h on proestrus as well as plasma progesterone levels at 1600 and 2300 h on proestrus and at 0130 and 0330 h on estrus were significantly lower in the 5-day cycling rats than in the 4-day cycling animals (p less than 0.05). In contrast, PRL levels from 1500 through 2300 h on proestrus remained consistently higher in 5-day cycling rats than in 4-day cycling rats, and significant differences in PRL levels between these rats were apparent at 1500, 1600, and 2100 h (p less than 0.05-0.01). Thus, these results demonstrate that the 5-day cycling rats exhibit the attenuated magnitude of LH surge accompanied by the augmented preovulatory PRL release, and that plasma progesterone levels reflect the magnitude of LH surge. A tentative working hypothesis concerning the etiology of the 5-day cycle has been proposed.  相似文献   

9.
Prolactin (PRL) and thyroid stimulating hormone (TSH) plasma concentrations were measured during the latter part of the dark period in early and mid-late pregnancy in the rat. On Days 4-5 and 7-8 of pregnancy, plasma PRL concentrations surged between 22:00 and 06:00 hr and TSH values increased between 22:00 and 02:00 hr. While the TSH pattern was maintained during the second-half of pregnancy, surges in PRL release ceased and PRL levels remained at less than 10 ng/ml. The effects of thyrotropin releasing hormone (TRH) administration on PRL and TSH secretion were then measured to determine whether the second-half of pregnancy is associated with a decrease in sensitivity to an agent that can stimulate PRL release. Injection (iv) of cannulated pregnant rats with a low dosage (20 ng) of TRH stimulated a twofold increase in plasma TSH during both early (Days 5-9) and later (Days 14-18) pregnancy but did not change plasma PRL levels. Treatment with a high dosage (2 micrograms) of TRH induced a sixfold rise in plasma TSH during both phases of gestation. The higher dose of TRH also stimulated elevations in plasma PRL during early and mid-late pregnancy; however, both the absolute increase in the amount of PRL in plasma and the percentage increase over baseline levels were greater from Days 5-9 than from Days 14-16 of gestation. These data indicate that the neuroendocrine sensitivity to factors that stimulate PRL secretion changes as pregnancy progresses, and suggest that nocturnal secretion of PRL and TSH during pregnancy may be regulated, in part, by a common trophic factor.  相似文献   

10.
Prolactin (PRL) stimulates the secretion of oxytocin (OXT) and arginine AVP as part of the maternal adaptations facilitating parturition and lactation. Both neurohormones are under the regulation of nitric oxide. Here, we investigate whether the activation of neuronal nitric oxide synthase (nNOS) in the hypothalamo-neurohypophyseal system mediates the effect of PRL on OXT and AVP release and whether these effects operate in males. Plasma levels of OXT and AVP were measured in male rats after the intracerebroventricular injection of PRL or after inducing hyperprolactinemia by placing two anterior pituitary glands under the kidney capsule. NOS activity was evaluated in the paraventricular (PVN) and supraoptic (SON) hypothalamic nuclei by NADPH-diaphorase histochemistry and in hypothalamic extracts by the phosphorylation/inactivation of nNOS at Ser(847). Elevated central and systemic PRL correlated with increased NOS activity in the PVN and SON and with higher OXT and AVP circulating levels. Notably, treatment with 7-nitroindazole, a selective inhibitor of nNOS, prevented PRL-induced stimulation of the release of both neurohormones. Also, phosphorylation of nNOS was reduced in hyperprolactinemic rats, and treatment with bromocriptine, an inhibitor of anterior pituitary PRL secretion, suppressed this effect. These findings suggest that PRL enhances nNOS activity in the PVN and SON, thereby contributing to the regulation of OXT and AVP release. This mechanism likely contributes to the regulation of processes beyond those of female reproduction.  相似文献   

11.
The effect on prolactin (PRL) secretion of acute administration of new octapeptide analogs of somatostatin (SS) with an enhanced and prolonged growth hormone inhibitory activity was investigated in rats under various pretreatment conditions with estrogen and antidopaminergic drugs. Analog D-Phe-Cys-Tyr-D-Trp-Lys-Val-Cys-Thr-NH2 (RC-121), at a dose of 5 micrograms/100 g body wt, did not decrease basal PRL levels in thiopental-anesthetized female rats, untreated or treated with estrogen benzoate (EB) (8 micrograms/rat) for 5 days. When haloperidol was used to elevate PRL level, a single injection of RC-121 inhibited PRL release in EB-pretreated female rats or untreated female and male rats. Analog D-Phe-Cys-Trp-D-Trp-Lys-Val-Cys-Trp-NH2 (RC-160), which has a potency similar to RC-121 in the tests on inhibition of GH, in a dose of 0.2 microgram/100 g body wt, did not lower the elevated PRL level induced by alpha-methyl-p-tyrosine and/or pretreatment with EB (100 micrograms/rat, 3 and 6 days before) in pentobarbital-anesthetized male rats. However, both analogs RC-121 and RC-160, in doses of 0.2 microgram/100 g body wt, decreased the PRL levels elevated by prolonged pretreatment with EB (100 micrograms/rat, twice a week for 3 weeks) in male rats. These results indicate that acute administration of these SS analogs can induce a prolonged inhibition of PRL release when PRL is acutely elevated by haloperidol or chronically elevated by 3 weeks of estrogen administration. Future additional studies are required to investigate the effects of chronic administration of these SS analogs on PRL levels.  相似文献   

12.
The effects of human recombinant interleukin-1 beta and -6 and tumor necrosis factor-alpha (TNF-alpha) on the releases of PRL and dopamine were examined using monolayer cultures of rat pituitary cells and hypothalamic cells. The release of PRL from rat pituitary cells in 30 min was increased about 2-fold (p less than 0.05) by 10(5) U/l interleukin-1 beta, 10(5) U/l interleukin-6 or 100 micrograms/l TNF-alpha. TNF-alpha at 100 micrograms/l significantly increased PRL release within 5 min incubation and this effect continued throughout the next 30 min of incubation. Incubation for 5 min with TNF-alpha caused dose-dependent stimulation of PRL release. These cytokines did not modulate [3H]-dopamine release from primary cultures of hypothalamic cells. These results suggest that these cytokines stimulate PRL release directly at the pituitary gland, without modifying the release of dopamine from the hypothalamus.  相似文献   

13.
The effect of cholecystokinin octapeptide (CCK-8) on the release of prolactin (PRL) in rats was studied in vivo and in vitro. Intravenous injection of 5 micrograms/100 g BW of CCK-8 resulted in significant increase in the plasma PRL level after 10 and 20 min. CCK-8 at concentrations of 10(-11) M to 10(-7) M also caused dose-dependent stimulation of PRL release from dispersed cells of rat anterior pituitary. On the other hand, dopamine inhibited PRL release from dispersed cells of rat anterior pituitary in a dose-related manner at concentrations of 10(-8) M to 10(-6) M. Release of PRL from the cells was increased by addition of K+ at high concentration (53 mM) in a Ca++-dependent manner. Addition of 10(-3) M verapamil to the incubation medium inhibited CCK-8-induced PRL release from the cells. Addition of dopamine (10(-7) M) to the incubation medium inhibited PRL release from the cells induced by CCK-8 or high K+ (53 mM). These results indicate that CCK-8 acts directly on the anterior pituitary cells to stimulate PRL release and that calcium ion is involved in the mechanism of this effect.  相似文献   

14.
Synthetic gastrin releasing peptide (GRP) injected intraventricularly (1 microgram/rat), but not intravenously, suppressed rat prolactin (PRL) release induced by a Met-enkephalin analog, FK33-824 (10 micrograms/100 g body wt., iv). GRP also blunted PRL release induced by a dopamine antagonist, domperidone (1 microgram/100 g body wt., iv). In contrast, GRP did not suppress elevated plasma PRL levels sustained by a large dose of domperidone (10 micrograms/100 g body wt., iv). GRP (10(-5) M) had no effect on PRL release from superfused pituitary cells in vitro. These results suggest that GRP inhibits PRL secretion in the rat by acting through the brain to stimulate the dopaminergic mechanism.  相似文献   

15.
Subcutaneous administration of arginine vasopressin (AVP) to conscious rats induced a dose-dependent increase of plasma ACTH and beta-endorphin levels and decrease of plasma prolactin (PRL) levels 30 min later. AVP similarly reduced PRL increase induced by exposure to a novel environment stress. Oxytocin (OT) was also active but 5-fold less potent than AVP. The study of several analogs with specific agonistic and antagonistic activity on the oxytocic, vasopressor and antidiuretic receptors of OT and AVP suggests that the receptor involved in this effect does not fit into this classification.  相似文献   

16.
Radioimmunoassayable (RIA) plasma growth hormone (GH) and prolactin (PRL) levels were determined at 3 hr intervals during a controlled 24-hr light-dark cycle in 10-day-old male and female rats; parallel measurements were made of brain monoamines (MA's), dopamine (DA), norepinephrine (NE) and serotonin (5-HT) concentration. Plasma GH and PRL and brain MA levels found in infant rats were compared to the same determinations made during the 24-hr cycle in 50-day-old male rats. GH levels were rather uniform and did not show circadian periodicity in the plasma of infant rats, while PRL levels showed a diurnal surge in the late afternoon hr (1800). In adult rats, GH levels exhibited wide fluctuations during the 24-hr cycle and no circadian periodicity, while PRL levels showed one diurnal (1500–1800) and one nocturnal (2400) surge. A pulsatile GH secretion was found in adult rats sampled at 15 min intervals over a period of 2 hr, which seemed to be lacking in infant rats. In the brain of infant rats, DA and NE levels exhibited circadian patterns which resembled the ones present in the brain of adult rats, whereas no circadian variations were present in 5-HT levels.  相似文献   

17.
An acute incubation procedure, using explanted normal rat hemipituitaries pretreated with fresh plasma obtained from pituitary donor animals, was employed to further investigate the in vitro stimulation of prolactin (PRL release by thyrotropin-releasing hormone (TRH). Pretreatment with dopamine (0.1 microgram/ml) caused a 30-50% decrease in the amount of PRL released into incubation media; the inhibitory effect of dopamine was not reversed by treatment with 0.5-6.0 ng. TRH, although these TRH concentrations consistently stimulated PRL release from pituitaries not exposed to dopamine. Treatment with thyroxine (10(-6) to 10(-5) M) showed a competitive inhibition of thyrotropin release by TRH (0.5 ng), but was without effect on TRH-stimulated PRL release. Cycloheximide (100 microgram/ml) blocked a net increase in PRL levels. TRH, nevertheless, significantly increased PRL release in the presence of cycloheximide. The results indicate that neither dopamine nor thyroxine compete with TRH in causing PRL release, and that the TRH stimulation of PRL release is unrelated to ongoing levels of hormone synthesis.  相似文献   

18.
D K Sarkar  N Miki  Q W Xie  J Meites 《Life sciences》1984,34(19):1819-1823
The effect of estradiol-17 beta (E2) on autofeedback regulation of prolactin (PRL) secretion was tested in ovariectomized rats after s.c. implantation of an (E2)-containing or empty silastic capsule, followed by i.v. injection of bovine PRL (b-PRL) or bovine serum albumin (BSA; 500 micrograms/100 g B.W.). Implantation of an E2 capsule (day 0), 2.5 mm or 5.0 mm in length, produced plasma E2 concentrations of 79 +/- 6 (9) and 140 +/- 8 pg/ml (8), respectively. Assay of PRL in plasma samples collected at 1 h intervals between 1100-1800 h on days 3, 4 and 5, after E2 capsule implantation showed a daily afternoon PRL surge. Empty capsule-treated rats did not show any afternoon PRL surge. Injection of b-PRL, but not BSA, at 1200 h on day 3 reduced basal PRL release both on days 3 and 4 in empty capsule-treated rats. In ovariectomized rats treated with a smaller E2 capsule (2.5 mm), b-PRL injection at 1200 h on day 3 reduced the amplitude of the afternoon surge of PRL and the total amount of PRL released on day 4. b-PRL, however, was ineffective in reducing PRL release in rats bearing the large E2 capsule (5.0 mm). These results suggest that high E2 levels in the blood can block the negative feedback action of PRL on PRL release.  相似文献   

19.
The colchicine-induced accumulation of vasopressin (AVP) and oxytocin (OXT) has recently been applied to estimate the synthesis and turnover rates for these neuropeptides in whole rat hypothalamus. In the present studies, this pharmacologic procedure has been examined as a potential method for estimating hypothalamic somatostatin (SRIF) synthesis rate, and evaluated further for its utility in estimating nonapeptide synthesis in individual hypothalamic nuclei. Adult male rats received a single injection of colchicine (8 micrograms) into the third ventricle under pentobarbital anesthesia. Twenty-four hr later, immunoreactive (IR) levels of AVP and OXT increased considerably, as previously noted. Hypothalamic IR-SRIF levels, however, were unaffected. The absolute increases in IR-AVP and IR-OXT were greatest in the supraoptic nucleus (SON), with smaller increments in the para/periventricular hypothalamus (PVH) and the median eminence (ME). IR-SRIF levels showed no changes in the PVH or the ME. As a test, the method was applied to the detection of changes in AVP synthesis in diabetic rats. The colchicine procedure reported increases in AVP synthesis in both the SON and PVH in diabetic animals, a result compatible with that obtained previously for whole hypothalamus using radiolabeled procedures. Together, the results indicate that the colchicine procedure is useful in detecting changes in the syntheses of some (AVP and OXT) but not all (SRIF) neuropeptides, and that when applicable, the method is sufficiently sensitive to detect changes in small hypothalamic regions. The method may prove useful in estimating changes in peptide synthesis analogous to that used for serotonin and dopamine; e.g., 5-hydroxytryptophan and dopa accumulation following inhibition of aromatic L-amino acid decarboxylase.  相似文献   

20.
Proestrus surges of serum LH, FSH and prolactin (PRL) were significantly reduced when morphine HCl (50 and 10 mg/kg) was administered to 4-day cycling rats just prior to the proestrous critical period. The inhibitory effect of morphine was reversed by naloxone, a morphine antagonist, at the dose which had no effect on the proestrus surges of serum LH, FSH or PRL. The hypothalamic LH-RF content of proestrous rats at 1800 hr (during the proestrus surge) was not significantly different from that at 1400 hr (before the surge) and was not affected by pretreatment with morphine or naloxone. Our results suggest that naloxone reverses the anti-ovulatory effect of morphine by antagonizing the inhibitory effect of morphine on preovulatory surges of gonadotropins or PRL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号