首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extremely low frequency magnetic fields interact with an animal by inducing internal electric fields, which are in addition to the normal endogenous fields present in living animals. Male rats weighing about 560 g each were anesthetized with ketamine and xylazine. Small incisions were made in the ventral body wall at the chest and upper abdomen to position a miniature probe for measuring internal electric fields. The calibration constant for the probe size was 5.7 mm, with a flat response from at least 12 Hz to 20 kHz. A cardiac signal, similar to the normal electrocardiogram with a heart rate of about 250 bpm, was readily obtained at the chest. Upon analysis of its spectrum, the cardiac field detected by the probe had a broad maximum at 32–95 Hz. When the rats were exposed to a 1 mT, 60 Hz magnetic field, a spike appeared in the spectrum at 60 Hz. The peak-to-peak magnitudes of electric fields associated with normal heart function were comparable to fields induced by a 1 mT magnetic field at 60 Hz for those positions measured on the body surface (where induced fields were maximal). Within the body, or in different directions relative to the applied field, the induced fields were reduced (reaching zero at the center of the animal). The cardiac field increased near the heart, becoming much larger than the induced field. Thus, the cardiac electric field, together with the other endogenous fields, combine with induced electric fields and help to provide reference levels for the induced-field dosimetry of ELF magnetic field exposures of living animals. Bioelectromagnetics 18:317–323, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

2.
We have used the quasi-static impedance method to calculate the currents induced in the nominal 2 x 2 x 3 and 6 mm resolution anatomically based models of the human body for exposure to magnetic fields at 60 Hz. Uniform magnetic fields of various orientations and magnitudes 1 or 0.417 mT suggested in the ACGIH and ICNIRP safety guidelines are used to calculate induced electric fields or current densities for the various glands and organs of the body including the pineal gland. The maximum 1 cm(2) area-averaged induced current densities for the central nervous system tissues, such as the brain and the spinal cord, were within the reference level of 10 mA/m(2) as suggested in the ICNIRP guidelines for magnetic fields (0.417 mT at 60 Hz). Tissue conductivities were found to play an important role and higher assumed tissue conductivities gave higher induced current densities. We have also determined the induced current density distributions for nonuniform magnetic fields associated with two commonly used electrical appliances, namely a hair dryer and a hair clipper. Because of considerably higher magnetic fields for the latter device, higher induced electric fields and current densities were calculated.  相似文献   

3.
Extremely-low-frequency (ELF) magnetic fields interact with an animal by inducing internal electric fields, which represent the internal dose from an external exposure. In this study, an electric field probe of approximately 2 mm resolution was used to measure fields induced in rat carcasses by a 60 Hz magnetic field at 1 mT. With the rat lying on its side, the probe was inserted through a small hole in the body wall, and scanned at 5 mm increments from the side with frontal and axial exposure (field horizontal) and from the front with lateral exposure (field vertical). The induced electric field declined from a maximum at the entrance to the abdomen and crossed zero to negative (180° phase shift) values within the body as expected. In general, the magnitudes of the measurements inside the abdomen were less than expected from whole-body calculations that used homogeneous-ellipsoidal models of a rat in the three orientations. The low measurements did not appear to be explained by perpendicular field components, by conductivity differences between the tissue and the probe path, or by air in the lungs. The low measurements probably result from inhomogeneities in actual rats that include conductivity differences between tissues and biological membranes. For example, an alternative model considered the abdominal cavity to be electrically isolated from the body by the diaphragm and the peritoneum and calculations from this model were in better agreement with the measurements inside the abdomen (than were the whole-body calculations). Therefore, inhomogeneities in conductivity and biomembranes such as the peritoneum should be considered in order to fully understand ELF-induced field dosimetry. © 1996 Wiley-Liss, Inc.  相似文献   

4.
The effects of extremely low frequency (ELF) magnetic fields on membrane F0F1‐ATPase activity have been studied. When the F0F1‐ATPase was exposed to 60 Hz magnetic fields of different magnetic intensities, 0.3 and 0.5 mT magnetic fields enhanced the hydrolysis activity, whereas 0.1 mT exposure caused no significant changes. Even if the F0F1‐ATPase was inhibited by N,N‐dicyclohexylcarbodiimide, its hydrolysis activity was enhanced by a 0.5 mT 60 Hz magnetic field. Moreover, when the chromatophores which were labeled with F‐DHPE were exposed to a 0.5 mT, 60 Hz magnetic field, it was found that the pH of the outer membrane of the chromatophore was unchanged, which suggested that the magnetic fields used in this work did not affect the activity of F0. Taken together, our results show that the effects of magnetic fields on the hydrolysis activity of the membrane F0F1‐ATPases were dependent on magnetic intensity and the threshold intensity is between 0.1 and 0.3 mT, and suggested that the F1 part of F0F1‐ATPase may be an end‐point affected by magnetic fields. Bioelectromagnetics 30:663–668, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
An animal model for large granular lymphocytic (LGL) leukemia in male Fischer 344 rats was utilized to determine whether magnetic field exposure can be shown to influence the progression of leukemia. We previously reported that exposure to continuous 60 Hz, 1 mT magnetic fields did not significantly alter the clinical progression of LGL leukemia in young male rats following injection of spleen cells from donor leukemic rats. Results presented here extend those studies with the following objectives: (a) to replicate the previous study of continuous 60 Hz magnetic field exposures, but using fewer LGL cells in the inoculum, and (b) to determine if intermittent 60 Hz magnetic fields can alter the clinical progression of leukemia. Rats were randomly assigned to four treatment groups (18/group) as follows: (1) 1 mT (10 G) continuous field, (2) 1 mT intermittent field (off/on at 3 min intervals), (3) ambient controls ( < 0.1 microT), and (4) positive control (5 Gy whole body irradiation from cobalt-60 four days prior to initiation of exposure). All rats were injected intraperitoneally with 2.2 x 10(6) fresh, viable LGL leukemic spleen cells at the beginning of the study. The fields were activated for 20 h per day, 7 days per week, and all exposure conditions were superimposed over the natural ambient magnetic field. The rats were weighed and palpated for splenomegaly weekly. Splenomegaly developed 9-11 weeks after transplantation of the leukemia cells. Hematological evaluations were performed at 6, 8, 10, 12, 14, and 16 weeks of exposure. Peripheral blood hemoglobin concentration, red blood cells, and packed cell volume declined, and total white blood cells and LGL cells increased dramatically in all treatment groups after onset of leukemia. Although the positive control group showed different body weight curves and developed signs of leukemia earlier than other groups, differences were not detected between exposure groups and ambient controls. Furthermore, there were no overall effects of magnetic fields on splenomegaly or survival in exposed animals. In addition, no significant and/or consistent differences were detected in hematological parameters between the magnetic field exposed and the ambient control groups.  相似文献   

6.
Chinese hamster ovary (CHO) cells were exposed for 1 h to 60-Hz magnetic fields (0.1 or 2 mT), electric fields (1 or 38 V/m), or to combined magnetic and electric fields (2 mT and 38 V/m, respectively). Following exposure, the cells were lysed, and the DNA was analyzed for the presence of single-strand breaks (SSB), using the alkaline elution technique. No significant differences in numbers of DNA SSB were detected between exposed and sham-exposed cells. A positive control exposed to X-irradiation sustained SSB with a dose-related frequency. Cells exposed to nitrogen mustard (a known cross-linking agent) and X-irradiation demonstrated that the assay could detect cross-linked DNA under our conditions of electric and magnetic field exposures.  相似文献   

7.
Escherichia coli JM83 {F? ara Δ(lac-proAB) rpsL [?80dΔ(lacZ)M15]} in midlog growth phase at 30 °C were exposed to 60 Hz sinusoidal magnetic field of 3 mT of nonuniform diverging flux, inducing a nonuniform electric field with a maximum intensity of 32 μV/cm using an inductor coil. Exposed and unexposed control cells were maintained at 30.8 ± 0.1 °C and 30.5 ± 0.1 °C, respectively. Quadruplicate samples of exposed and unexposed E. coli cells were simultaneously radiolabeled with 35S-L-methionine at 10 min intervals over 2 hr. Radiochemical incorporation into proteins was analyzed via liquid scintillation counting and by denaturing 12.5% polyacrylamide gel electrophoresis. The results showed that E. coli exposed to a 60 Hz magnetic field of 3 mT exhibited no qualitative or quantitative changes in protein synthesis compared to unexposed cells. Thus small prokaryotic cells (less than 2 μm × 0.5 μm) under constant-temperature conditions do not alter their protein synthesis following exposure to 60 Hz magnetic fields at levels at 3 mT. © 1994 Wiley-Liss, Inc.  相似文献   

8.
DNA damage was induced in isolated human peripheral lymphocytes by exposure at 5 Gy to 60Co radiation. Cells were permitted to repair the DNA damage while exposed to 60-Hz fields or while sham-exposed. Exposed cells were subjected to magnetic (B) or electric (E) fields, alone or in combination, throughout their allotted repair time. Repair was stopped at specific times, and the cells were immediately lysed and then analyzed for the presence of DNA single-strand breaks (SSB) by the alkaline-elution technique. Fifty to 75 percent of the induced SSB were repaired 20 min after exposure, and most of the remaining damage was repaired after 180 min. Cells were exposed to a 60-Hz ac B field of 1 mT; an E field of 1 or 20 V/m; or combined E and B fields of 0.2 V/m and 0.05 mT, 6 V/m and 0.6 mT, or 20 V/m and 1 mT. None of the exposures was observed to affect significantly the repair of DNA SSB.  相似文献   

9.
It is widely accepted that moderate levels of nonionizing electric or magnetic fields, for example 50/60 Hz magnetic fields of about 1 mT, are not mutagenic. However, it is not known whether such fields can enhance the action of known mutagens. To explore this question, a stringent experimental protocol, which included blinding and systematic negative controls, was implemented, minimizing the possibility of observer bias or experimental artifacts. As a model system, we chose to measure mutation frequencies induced by 2 Gy gamma rays in the redox-sensitive hypoxanthine-guanine phosphoribosyl transferase (HPRT) gene in Chinese hamster ovary cells. We tested whether a 12-h exposure to a 60 Hz sinusoidally oscillating magnetic-flux density (Brms = 0.7 mT) could affect the mutagenic effects of ionizing radiation on the HPRT gene locus. We determined that the magnetic-field exposure induced an approximate 1.8-fold increase in HPRT mutation frequency. Additional experiments at Brms = 0.23 and 0.47 mT revealed that the effect was reduced at lower flux densities. The field exposure did not enhance radiation-induced cytotoxicity or mutation frequencies in cells not exposed to ionizing radiation. These results suggest that moderate-strength, oscillating magnetic fields may act as an enhancer of mutagenesis in mammalian cells.  相似文献   

10.
The effect of sinusoidally varying magnetic fields (SVMF) on chick embryo fibroblasts (CEF) was examined by two independent methods: 1) measurement of cell proliferation at 0.06–0.7 mT (100, 60 and 50 Hz) using a colorimetric assay (MTT); 2) monitoring of specific activity of adenosine deaminase (ADA) at 0.3 and 0.7 mT, 60 Hz. Both increased cell proliferation and reduced ADA specific activity are associated with cell transformation. The MTT test showed an increase in cell proliferation of up to 64% after a 24 h exposure to SVMF at 100 Hz, 0.7 mT. Cell proliferation at constant frequency (100 Hz) depended on SVMF intensity. Cell proliferation at constant intensity (0.7 mT) increased with increasing field frequency. At 0.7 mT, 60 Hz cell proliferation increased by 31%, 28%, and 26% when measured by hemocytometry, 3H-thymidine incorporation, and the MTT assay, respectively. ADA specific activity in CEF decreased by circa 48% on exposure to SVMF at 60 Hz, 0.3 mT for 24 h; only a statistically insignificant trend was seen at 0.7 mT, 60 Hz. Our findings showed that CEF cell proliferation and ADA specific activity were modified by SVMF. Both methods, independently, qualitatively detect a magnetic field effect. Bioelectromagnetics 19:46–52, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

11.
Experiments using the dwarf Siberian hamster Phodopus sungorus were carried out to determine possible neuroendocrine consequences of one-time and repeated exposures to 60 Hz magnetic fields (MF). Animals were maintained in either a short-light (SL, 8 h light:16 h dark) or long-light (LL, 16 h light:8 h dark) photoperiod. Acute (one-time, 15 min) exposure of male SL animals to a linearly polarized, horizontally oriented, 60 Hz MF (0.1 mT) gave rise to a statistically significant (P < .005) reduction in pineal melatonin content as determined 3 and 5 h after onset of darkness. In LL animals, acute exposure to 0.10 mT resulted in a significant decrease in pineal melatonin as measured 4 h after onset of darkness, whereas acute exposure to 50 microT showed no effect compared with sham exposure. In SL animals, an increase in norepinephrine was observed in the medial basal hypothalamus (including the suprachiasmatic nucleus) after acute exposure (P < .01). Daily MF exposure of SL animals to a combination of steady-state and on/off 60 Hz magnetic fields (intermittent exposure) at 0.1 mT for 1 h per day for 16 days was associated with a reduction in melatonin concentrations at 4 h after onset of darkness and an increase in blood prolactin concentrations (P < .05). Exposure of SL animals to a steady state 60 Hz MF for 3 h/day for 42 days resulted in a statistically significant reduction in body weight (ANOVA: P > .05), compared with sham-exposed SL animals. At 42 days, however, no significant changes in overnight melatonin or prolactin levels were detected. In both repeated exposure experiments, gonadal weights were lowest in the MF-exposed groups. This difference was statistically significant (P < .05) after 42 days of exposure. These data indicate that both one-time and repeated exposure to a 0.1 mT, 60 Hz MF can give rise to neuroendocrine responses in Phodopus.  相似文献   

12.
13.
On the basis of previous experience with biological effects of electromagnetic fields a potential effect of homogeneous sinusoidal magnetic field (50Hz, 10mT) on energy state of rat skeletal muscle was investigated. Two different total body exposures to magnetic field were selected: (1) repeated 1 hour exposure, 2 times a week for 3 months, and (2) acute 1.5 hour exposure (and the appropriate control groups). Important energy metabolites (adenosine triphosphate – ATP, creatine phosphate, creatine, lactate, pyruvate and inorganic phosphate) were analysed by enzymatic and spectroscopic methods in musculus gracilis cranialis.On the basis of the concentration of important energy metabolites the apparent Gibbs free energy of ATP hydrolysis and creatine charge was calculated. Our results demonstrate no influence of this low frequency magnetic field on the level of important energy metabolites in rat skeletal muscle. The conclusion of this study is that neither repeated exposure nor the acute exposure of rats to the sinusoidal magnetic field of given parameters has any important influence on the energy state of the skeletal muscle.  相似文献   

14.
In this study, human median nerve was exposed to power frequency magnetic fields in order to provide clarification for possibly changeable nerve conduction mechanism. The nerve was exposed to 50 Hz magnetic field by utilizing a special Helmholtz applicator. The experiments were carried out with six healthy human-volunteers. Median motor distal amplitude/proximal amplitude ratios were recorded from adult human median nerve pre-exposure, during, and post-exposure to a 50 Hz, 1 mT magnetic field. The result of 18 measurements shows that median motor distal amplitude/proximal amplitude ratio significantly decreases in pre-exposure state as compare to post exposure of which. The results of this study may be useful for some nerve rehabilitation, excitation, and stimulation in more effective/safe physical therapy. Additionally, 50 Hz, 1 mT sinusoidal magnetic field should not be recognizing as safe for conduction mechanism on a nerve. These mechanisms would be cleared by new advanced engineering models in other future works.  相似文献   

15.
Proliferation of SV40-3T3 mouse fibroblasts and human HL-60 promyelocytes was studied after treatment with a sinusoidal 2 mTrms 50 Hz magnetic field. A single exposure of 60 minutes caused quasicyclic changes in the cell number of SV40-3T3 cultures as function of time after treatment, which was interpreted to be due to the induction of chronobiological mechanisms by the field. Moreover, small variations in cell cycle distribution were measured during postexposure incubation for both cell lines. To discriminate between the effect of the magnetic vector and the induced electric field, HL-60 cell exposure was also performed on organ culture dishes. These dishes consist of two coaxially centered, isolated compartments in which different electric field levels are induced in the medium during treatment. Cell growth was affected in the outer compartment only where the induced electric field ranged from 8 to 12 mVpeak/meter at 2 mT, but it was not affected in the inner compartment (field range 0–4 mVpeak/meter). This suggests that the effects on cell growth are due to the induced electric field and are expressed only above a threshold of between 4 and 8 mVpeak/meter. Bioelectromagnetics 18:177–183, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

16.
We have recently reported that exposure of pregnant rats to 60 Hz at field strengths up to 0.5 mT during the entire period of pregnancy did not induce any biologically significant effects on both pregnant dams and embryo-fetal development. The present study was carried out to investigate the potential effects of gestational and lactational MF exposure on pregnancy, delivery, and lactation of dams and growth, behavior, and mating performance of their offspring in rats. Timed-pregnant female Sprague-Dawley (SD) rats (24/group) received continuous exposure to 60 Hz magnetic field (MF) at field strengths of 0 (sham control), 5 microT, 83.3 microT, or 0.5 mT. Dams received MF or sham exposures for 21 h/day from gestational day 6 through lactational day 21. Experimentally generated MF was monitored continuously throughout the study. No exposure-related changes in clinical signs, body weight, food consumption, pregnancy length, and necropsy findings were observed in dams. Parameters of growth, behavior, and reproductive performance of offspring showed no changes related to MF exposure. There were no adverse effects on embryo-fetal development of F2 offspring from dams exposed to MF. In conclusion, exposure of pregnant SD rats to 60 Hz at field strengths up to 0.5 mT from gestational day 6 to lactational day 21 did not produce biologically significant effects in dams, F1 offspring, or F2 fetuses.  相似文献   

17.
The aim of this study was to investigate the influence of pulsed electromagnetic fields with various flux densities and frequencies on neurite outgrowth in PC12 rat pheochromocytoma cells. We have studied the percentage of neurite-bearing cells, average length of neurites and directivity of neurite outgrowth in PC12 cells cultured for 96 hours in the presence of nerve growth factor (NGF). PC12 cells were exposed to 50 Hz pulsed electromagnetic fields with a flux density of 1.37 mT, 0.19 mT and 0.016 mT respectively. The field was generated through a Helmholtz coil pair housed in one incubator and the control samples were placed in another identical incubator. It was found that exposure to both a relatively high flux density (1.37 mT) and a medium flux density (0.19 mT) inhibited the percentage of neurite-bearing cells and promoted neurite length significantly. Exposure to high flux density (1.37 mT) also resulted in nearly 20% enhancement of neurite directivity along the field direction. However, exposure to low flux density field (0.016 mT) had no detectable effect on neurite outgrowth. We also studied the effect of frequency at the constant flux density of 1.37 mT. In the range from 1 ∼ 100 Hz, only 50 and 70 Hz pulse frequencies had significant effects on neurite outgrowth. Our study has shown that neurite outgrowth in PC12 cells is sensitive to flux density and frequency of pulsed electromagnetic field.  相似文献   

18.
This investigation was undertaken because biological studies to evaluate the effects of intermediate frequency magnetic fields are insufficient. White Leghorn fertile eggs (60/group) were either exposed to a 20 kHz, 1.1 mT(rms) sinusoidal magnetic field or sham‐exposed during the first 2, 7, or 11 days of embryogenesis. Lower dose exposures at 0.011 and 0.11 mT(rms) for 2 days were also conducted to elucidate possible dose–response relationships. Additional eggs given all‐trans‐retinoic acid, a teratogen, were exposed to the 1.1 mT(rms) magnetic field for the same periods to investigate the modification of embryotoxicity. After exposure, embryos were examined for mortality and developmental abnormalities. Developmental stage, number of somite pairs, and other developmental endpoints were also evaluated. Experiments were triplicated and conducted in a blind fashion. No exposure‐related changes were found in any of the endpoints in intact embryos exposed to1.1 mT(rms) or to the lower doses of 0.11 and 0.011 mT(rms) magnetic fields. Retinoic acid administration produced embryotoxic responses, which were embryonic death and developmental abnormalities, in 40–60% of embryos in the sham‐exposed groups. The magnitude of these responses was not changed significantly by the magnetic field exposures. Under the present experimental conditions, exposure to 20 kHz magnetic field up to 1.1 mT(rms) was not embryotoxic in the chick and did not potentiate the embryotoxic action of retinoic acid. Bioelectromagnetics 30:573–582, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
Primary-culture bone cells were exposed to ion-resonance (IR) magnetic fields tuned to Ca2+. Cytosolic calcium concentration, [Ca2+]c, was measured by using fura-2 during field exposure. The fields investigated were 20 μT static + 40 μT p-p at either 15.3 or 76.6 Hz, and 0.13 mT static + either 0.5 or 1.0 mT p-p at 100 Hz. Other parameters included field orientation, culture age (2 or 5 days after plating), and the presence of serum (0 or 2%) during exposure. Total experiment time was 29.5 min: The field was applied after 2 min, and bradykinin was added as an agonist control after 22 min. The data were quantified on a single-cell basis during the 2–22 min exposure period in terms of the magnitude of the largest occurring [Ca2+]c spike normalized to local baseline. Field-exposed and control groups were characterized in terms of the percent of cells exhibiting spike magnitudes above thresholds of 100 or 66% over baseline and were compared by using Fisher's exact test. Without serum, there was little evidence that IR magnetic fields altered [Ca2+]c. However, in the presence of 2% serum, 3 of the 16 experiments exhibited significant effects at the 100% threshold. Reducing this threshold to 66% resulted in five experiments exhibiting significant effects. Most strikingly, in all of these cases, the field acted to enhance [Ca2+]c activity as opposed to suppressing [Ca2+]c activity. These findings suggest a role for serum or for constituents within serum in mediating the effects of IR magnetic fields on cells and may provide a resolution pathway to the dilemma imposed by theoretical arguments regarding the possibility of such phenomena. Possible roles of serum and future studies are discussed. Bioelectromagnetics 18:203–214, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

20.
Acute (2 h) exposure of rats to a 60 Hz magnetic field (flux densities 0.1, 0.25, and 0.5 mT) caused a dose-dependent increase in DNA strand breaks in brain cells of the animals (assayed by a microgel electrophoresis method at 4 h postexposure). An increase in single-strand DNA breaks was observed after exposure to magnetic fields of 0.1, 0.25, and 0.5 mT, whereas an increase in double-strand DNA breaks was observed at 0.25 and 0.5 mT. Because DNA strand breaks may affect cellular functions, lead to carcinogenesis and cell death, and be related to onset of neurodegenerative diseases, our data may have important implications for the possible health effects of exposure to 60 Hz magnetic fields. Bioelectromagnetics 18:156–165, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号