首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lin J  Prahlad J  Wilson MA 《Biochemistry》2012,51(18):3799-3807
DJ-1 is a conserved, disease-associated protein that protects against oxidative stress and mitochondrial damage in multiple organisms. Human DJ-1 contains a functionally essential cysteine residue (Cys106) whose oxidation is important for regulating protein function by an unknown mechanism. This residue is well-conserved in other DJ-1 homologues, including two (DJ-1α and DJ-1β) in Drosophila melanogaster. Because D. melanogaster is a powerful model system for studying DJ-1 function, we have determined the crystal structure and impact of cysteine oxidation on Drosophila DJ-1β. The structure of D. melanogaster DJ-1β is similar to that of human DJ-1, although two important residues in the human protein, Met26 and His126, are not conserved in DJ-1β. His126 in human DJ-1 is substituted with a tyrosine in DJ-1β, and this residue is not able to compose a putative catalytic dyad with Cys106 that was proposed to be important in the human protein. The reactive cysteine in DJ-1 is oxidized readily to the cysteine-sulfinic acid in both flies and humans, and this may regulate the cytoprotective function of the protein. We show that the oxidation of this conserved cysteine residue to its sulfinate form (Cys-SO(2)(-)) results in considerable thermal stabilization of both Drosophila DJ-1β and human DJ-1. Therefore, protein stabilization is one potential mechanism by which cysteine oxidation may regulate DJ-1 function in vivo. More generally, most close DJ-1 homologues are likely stabilized by cysteine-sulfinic acid formation but destabilized by further oxidation, suggesting that they are biphasically regulated by oxidative modification.  相似文献   

2.
The physiological role of DJ-1, a protein involved in familial Parkinson disease is still controversial. One of the hypotheses proposed indicates a sensor role for oxidative stress, through oxidation of a conserved cysteine residue (Cys-106). The association of DJ-1 mutations with Parkinson disease suggests a loss of function, specific to dopaminergic neurons. Under oxidative conditions, highly reactive dopamine quinones (DAQs) can be produced, which can modify cysteine residues. In cellular models, DJ-1 was found covalently modified by dopamine. We analyzed the structural modifications induced on human DJ-1 by DAQs in vitro. We described the structural perturbations induced by DAQ adduct formation on each of the three cysteine residues of DJ-1 using specific mutants. Cys-53 is the most reactive residue and forms a covalent dimer also in SH-SY5Y DJ-1-transfected cells, but modification of Cys-106 induces the most severe structural perturbations; Cys-46 is not reactive. The relevance of these covalent modifications to the several functions ascribed to DJ-1 is discussed in the context of the cell response to a dopamine-derived oxidative insult.  相似文献   

3.
Although the precise biochemical function of DJ-1 remains unclear, it has been found to exert cytoprotective activity against oxidative stress. Cys106 is central to this function since it has a distinctly low pKa rendering it extremely susceptible for oxidation. This characteristic, however, also poses a severe hindrance to obtain reduced DJ-1 for in vitro investigation. We have developed an approach to produce recombinant human DJ-1 in its reduced form as a bona fide basis for exploring the redox capacities of the protein. We solved the crystal structure of this DJ-1 at 1.56 Å resolution, allowing us to capture Cys106 in the reduced state for the first time. The dimeric structure reveals one molecule of DJ-1 in its reduced state while the other exhibits the characteristics of a mono-oxygenated cysteine. Comparison with previous structures indicates the absence of redox dependent global conformational changes in DJ-1. The capture of reduced Cys106 is facilitated by stabilization within the putative active site achieved through a glutamate side chain. This side chain is provided by a crystallographic neighbor as part of a ‘Leu–Glu’ motif, which was added to the C-terminus of DJ-1. In the structure this motif binds DJ-1 in close proximity to Cys106 through extended hydrophilic and hydrophobic interactions depicting a distinct binding pocket, which can serve as a basis for compound development targeting DJ-1.  相似文献   

4.
Mutation in DJ-1 gene is the cause of autosomal recessive Parkinson's disease, however, its physiological function remains unclear. The isoelectric point of DJ-1 shows an acidic shift after cells are treated with hydrogen peroxide. This suggests that DJ-1 is modified in response to oxidative stress. Here we report the structural characterization of an acidic isoform of DJ-1 using a proteomic approach with nanospray interface liquid chromatography-electrospray ionization/linear ion trap mass spectrometer. When human umbilical vein endothelial cells were exposed to hydrogen peroxide, all three cysteines in DJ-1 were oxidized to cysteine sulphonic acid. Although a small part of the Cys-46 and Cys-53 were oxidized, Cys-106 was oxidized completely at any hydrogen peroxide concentration used here. These results suggest that Cys-106 is the most sensitive among three cysteine residues to oxidative stress, and that DJ-1 function is regulated, in terms of the intracellular redox state, by oxidation of Cys-106.  相似文献   

5.
Parkinson disease (PD)-associated genomic deletions and the destabilizing L166P point mutation lead to loss of the cytoprotective DJ-1 protein. The effects of other PD-associated point mutations are less clear. Here we demonstrate that the M26I mutation reduces DJ-1 expression, particularly in a null background (knockout mouse embryonic fibroblasts). Thus, homozygous M26I mutation causes loss of DJ-1 protein. To determine the cellular consequences, we measured suppression of apoptosis signal-regulating kinase 1 (ASK1) and cytotoxicity for [M26I]DJ-1, and systematically all other DJ-1 methionine and cysteine mutants. C106A mutation of the central redox site specifically abolished binding to ASK1 and the cytoprotective activity of DJ-1. DJ-1 was apparently recruited into the ASK1 signalosome via Cys-106-linked mixed disulfides. The designed higher order oxidation mimicking [C106DD]DJ-1 non-covalently bound to ASK1 even in the absence of hydrogen peroxide and conferred partial cytoprotection. Interestingly, mutations of peripheral redox sites (C46A and C53A) and M26I also led to constitutive ASK1 binding. Cytoprotective [wt]DJ-1 bound to the ASK1 N terminus (which is known to bind another negative regulator, thioredoxin 1), whereas [M26I]DJ-1 bound to aberrant C-terminal site(s). Consequently, the peripheral cysteine mutants retained cytoprotective activity, whereas the PD-associated mutant [M26I]DJ-1 failed to suppress ASK1 activity and nuclear export of the death domain-associated protein Daxx and did not promote cytoprotection. Thus, cytoprotective binding of DJ-1 to ASK1 depends on the central redox-sensitive Cys-106 and may be modulated by peripheral cysteine residues. We suggest that impairments in oxidative conformation changes of DJ-1 might contribute to PD neurodegeneration.Loss-of-function mutations in the DJ-1 gene (PARK7) cause autosomal-recessive hereditary Parkinson disease (PD)2 (1). The most dramatic PD-associated mutation L166P impairs DJ-1 dimer formation and dramatically destabilizes the protein (27). Other mutations such as M26I (8) and E64D (9) have more subtle defects with unclear cellular consequences (4, 7, 10, 11). In addition to this genetic association, DJ-1 is neuropathologically linked to PD. DJ-1 is up-regulated in reactive astrocytes, and it is oxidatively modified in brains of sporadic PD patients (1214).DJ-1 protects against oxidative stress and mitochondrial toxins in cell culture (1517) as well as in diverse animal models (1821). The cytoprotective effects of DJ-1 may be stimulated by oxidation and mediated by molecular chaperoning (22, 23), and/or facilitation of the pro-survival Akt and suppression of apoptosis signal-regulating kinase 1 (ASK1) pathways (6, 24, 25). The cytoprotective activity of DJ-1 against oxidative stress depends on its cysteine residues (15, 17, 26). Among the three cysteine residues of DJ-1, the most prominent one is the easiest oxidizable Cys-106 (27) that is in a constrained conformation (28), but the other cysteine residues Cys-46 and Cys-53 have been implicated with DJ-1 activity as well (22). However, the molecular basis of oxidation-mediated cytoprotective activity of DJ-1 is not clear. Moreover, the roles of PD-mutated and in vivo oxidized methionines are not known.Here we have mutagenized all oxidizable residues within DJ-1 and studied the effects on protein stability and function. The PD-associated mutation M26I within the DJ-1 dimer interface selectively reduced protein expression as well as ASK1 suppression and cytoprotective activity in oxidatively stressed cells. These cell culture results support a pathogenic effect of the clinical M26I mutation (8). Furthermore, oxidation-defective C106A mutation abolished binding to ASK1 and cytoprotective activity of DJ-1, whereas the designed higher order oxidation mimicking mutant [C106DD]DJ-1 bound to ASK1 even in the absence of H2O2 and conferred partial cytoprotection. The peripheral cysteine mutants [C46A]DJ-1 and [C53A]DJ-1 were also cytoprotective and were incorporated into the ASK1 signalosome even in the basal state. Thus, DJ-1 may be activated by a complex mechanism, which depends on the redox center Cys-106 and is modulated by the peripheral cysteine residues. Impairments of oxidative DJ-1 activation might contribute to the pathogenesis of PD.  相似文献   

6.
Human DJ-1, a disease-associated protein that protects cells from oxidative stress, contains an oxidation-sensitive cysteine (C106) that is essential for its cytoprotective activity. The origin of C106 reactivity is obscure, due in part to the absence of an experimentally determined p K a value for this residue. We have used atomic-resolution X-ray crystallography and UV spectroscopy to show that C106 has a depressed p K a of 5.4 +/- 0.1 and that the C106 thiolate accepts a hydrogen bond from a protonated glutamic acid side chain (E18). X-ray crystal structures and cysteine p K a analysis of several site-directed substitutions at residue 18 demonstrate that the protonated carboxylic acid side chain of E18 is required for the maximal stabilization of the C106 thiolate. A nearby arginine residue (R48) participates in a guanidinium stacking interaction with R28 from the other monomer in the DJ-1 dimer and elevates the p K a of C106 by binding an anion that electrostatically suppresses thiol ionization. Our results show that the ionizable residues (E18, R48, and R28) surrounding C106 affect its p K a in a way that is contrary to expectations based on the typical ionization behavior of glutamic acid and arginine. Lastly, a search of the Protein Data Bank (PDB) produces several candidate hydrogen-bonded aspartic/glutamic acid-cysteine interactions, which we propose are particularly common in the DJ-1 superfamily.  相似文献   

7.
Parkinson's disease (PD) is a neurodegenerative disorder characterized by oxidative stress and protein aggregation. Both toxic phenomena are mitigated by DJ-1, a homodimeric protein with proposed antioxidant and chaperone activities. The neuroprotective function of DJ-1 is modulated by oxidation of cysteine 106, a residue that may act as an oxidative stress sensor. Loss-of-function mutations in the DJ-1 gene have been linked to early onset PD, and age-dependent over-oxidation of DJ-1 is thought to contribute to sporadic PD. The familial mutant L166P fails to dimerize and is rapidly degraded, suggesting that protein destabilization accounts for the dysfunction of this mutant. In this study, we investigated how the structure and stability of DJ-1 are impacted by two other pathogenic substitutions (M26I and E64D) and by over-oxidation with H2O2. Whereas the recombinant wild-type protein and E64D both adopted a stable dimeric structure, M26I showed an increased propensity to aggregate and decreased secondary structure. Similar to M26I, over-oxidized wild-type DJ-1 exhibited reduced secondary structure, and this property correlated with destabilization of the dimer. The engineered mutant C106A had a greater thermodynamic stability and was more resistant to oxidation-induced destabilization than the wild-type protein. These results suggest that (i) the M26I substitution and over-oxidation destabilize dimeric DJ-1, and (ii) the oxidation of cysteine 106 contributes to DJ-1 destabilization. Our findings provide a structural basis for DJ-1 dysfunction in familial and sporadic PD, and they suggest that dimer stabilization is a reasonable therapeutic strategy to treat both forms of this disorder.  相似文献   

8.
DJ-1 is a homodimeric protein that is centrally involved in various human diseases including Parkinson disease (PD). DJ-1 protects against oxidative damage and mitochondrial dysfunction through a homeostatic control of reactive oxygen species (ROS). DJ-1 pathology results from a loss of function, where ROS readily oxidizes a highly conserved and functionally essential cysteine (C106). The over-oxidation of DJ-1 C106 leads to a dynamically destabilized and biologically inactivated protein. An analysis of the structural stability of DJ-1 as a function of oxidative state and temperature may provide further insights into the role the protein plays in PD progression. NMR spectroscopy, circular dichroism, analytical ultracentrifugation sedimentation equilibrium, and molecular dynamics simulations were utilized to investigate the structure and dynamics of the reduced, oxidized (C106-SO2), and over-oxidized (C106-SO3) forms of DJ-1 for temperatures ranging from 5°C to 37°C. The three oxidative states of DJ-1 exhibited distinct temperature-dependent structural changes. A cold-induced aggregation occurred for the three DJ-1 oxidative states by 5°C, where the over-oxidized state aggregated at significantly higher temperatures than both the oxidized and reduced forms. Only the oxidized and over-oxidized forms of DJ-1 exhibited a mix state containing both folded and partially denatured protein that likely preserved secondary structure content. The relative amount of this denatured form of DJ-1 increased as the temperature was lowered, consistent with a cold-denaturation. Notably, the cold-induced aggregation and denaturation for the DJ-1 oxidative states were completely reversible. The dramatic changes in the structural stability of DJ-1 as a function of oxidative state and temperature are relevant to its role in PD and its functional response to oxidative stress.  相似文献   

9.
10.
DJ-1 is secreted into the serum and plasma of patients with various diseases. In this study, DJ-1 was found to be secreted into culture media of various cells and the amount of wild-type DJ-1 secreted was two-fold greater than that of mutant DJ-1 of cysteine at 106 (C106). Furthermore, the oxidative status of more than 90% of the DJ-1 secreted from HeLa cells was SOH and SO2H forms of C106. A portion of DJ-1 in cells was localized in microdomains of the membrane. These findings suggest that DJ-1 is secreted through microdomains and that oxidation of DJ-1 at C106 facilitates the secretion.  相似文献   

11.
We report the crystal structure at 1.8-A resolution of human DJ-1, which has been linked to early onset Parkinson's disease. The monomer of DJ-1 contains the alpha/beta-fold that is conserved among members of the DJ-1/ThiJ/PfpI superfamily. However, the structure also contains an extra helix at the C terminus, which mediates a novel mode of dimerization for the DJ-1 proteins. A putative active site has been identified near the dimer interface, and the residues Cys-106, His-126, and Glu-18 may play important roles in the catalysis by this protein. Studies with the disease-causing L166P mutant suggest that the mutation has disrupted the C-terminal region and the dimerization of the protein. The DJ-1 proteins may function only as dimers. The Lys to Arg mutation at residue 130, the site of sumoylation of DJ-1, has minimal impact on the structure of the protein.  相似文献   

12.
13.
Loss-of-functional mutation in the DJ-1 gene causes a subset of familial Parkinson's disease. The mechanism underlying DJ-1-related selective vulnerability in the dopaminergic pathway is, however, not known. Dopamine is synthesized by two enzymes and then packed into synaptic vesicles by vesicular monoamine transporter 2 (VMAT2). In this study, we found that knockdown of DJ-1 expression reduced the levels of mRNA and protein of VMAT2, resulting in reduced VMAT2 activity. Co-immunoprecipitation and pull-down experiments revealed that DJ-1 directly bound to VMAT2, and DJ-1 was co-localized with VMAT2 in cells. Furthermore, ectopic expression of wild-type DJ-1, but not that of L166P, M26I and C106S mutants of DJ-1, increased mRNA and protein levels of VMAT2 and VMAT2 activity. Since VMAT2 and a portion of DJ-1 are localized in the synaptic membrane, these results suggest that DJ-1, but not pathogenically mutated DJ-1, stimulates VMAT2 activity in the synapse by transactivation of the VMAT gene and by direct binding to VMAT2 and that cysteine 106 is necessary for the stimulating activity of DJ-1 toward VMAT2.  相似文献   

14.
15.
DJ-1 has been reported to have chaperone activity by preventing the aggregation of some proteins, and by structural analogy to Hsp31. The L166P mutation has been linked to a familial early onset form of Parkinson's disease (PD). Since the aggregation of alpha-synuclein is believed to be a critical step in the etiology of PD, we have investigated the interaction of wild-type DJ-1 and its oxidized forms with alpha-synuclein. Native (unoxidized) DJ-1 did not inhibit alpha-synuclein fibrillation, and no evidence for stable interactions between alpha-synuclein and native DJ-1 was observed. However, DJ-1 is very susceptible to oxidation by the addition of two oxygen atoms to form the sulfinic acid of Cys106 (2O DJ-1) (no 1O oxidized state is detectable). 2O DJ-1 was readily prepared by the addition of H(2)O(2) at concentrations up to a 20-fold molar excess. The oxidation of Cys106 to the sulfinic acid had minimal effect on the structural properties of DJ-1. However, 2O DJ-1 was very effective in preventing the fibrillation of alpha-synuclein, and only this form of DJ-1 appears to have significant anti-aggregation properties against alpha-synuclein. Further oxidation of DJ-1 leads to loss of some secondary structure, and to loss of the ability to inhibit alpha-synuclein fibrillation. Our observations confirm the suggestion that DJ-1 may act as an oxidative-stress-induced chaperone to prevent alpha-synuclein fibrillation. Since oxidative stress has been associated with PD, this observation may explain why mutations of DJ-1 could be a contributing factor in PD, and also indicates that excess oxidative stress could also lead to enhanced alpha-synuclein aggregation and hence PD.  相似文献   

16.
The matrix (M) protein of Sendai virus (SeV) has five cysteine residues, at positions 83, 106, 158, 251, and 295. To determine the roles of the cysteine residues in viral assembly, we generated mutant M cDNA possessing a substitution to serine at one of the cysteine residues or at all of the cysteine residues. Some mutant M proteins were unstable when expressed in cultured cells, suggesting that cysteine residues affect protein stability, probably by disrupting the proper conformation. In an attempt to generate virus from cDNA, SeV M-C(83)S, SeV M-C(106)S, and SeV M-C(295)S were successfully recovered from cDNA, while recombinant SeVs possessing other mutations were not. SeV M-C(83)S and SeV M-C(106)S had smaller virus particles than did the wild-type SeV, whereas SeV M-C(295)S had larger and heterogeneously sized particles. Furthermore, SeV M-C(106)S had a significant amount of empty particles lacking nucleocapsids. These results indicate that a single-point mutation at a cysteine residue of the M protein affects virus morphology and nucleocapsid incorporation, showing direct involvement of the M protein in SeV assembly. Cysteine-dependent conformation of the M protein was not due to disulfide bond formation, since the cysteines were shown to be free throughout the viral life cycle.  相似文献   

17.
Mutations in DJ-1, a protein of unknown function, were recently identified as the cause for an autosomal recessive, early onset form of familial Parkinson's disease. Here we report that DJ-1 is a dimeric protein that exhibits protease activity but no chaperone activity. The protease activity was abolished by mutation of Cys-106 to Ala, suggesting that DJ-1 functions as a cysteine protease. Our studies revealed that the Parkinson's disease-linked L166P mutation impaired the intrinsic folding propensity of DJ-1 protein, resulting in a spontaneously unfolded structure that was incapable of forming a homodimer with itself or a heterodimer with wild-type DJ-1. Correlating with the disruption of DJ-1 structure, the L166P mutation abolished the catalytic function of DJ-1. Furthermore, as a result of protein misfolding, the L166P mutant DJ-1 was selectively polyubiquitinated and rapidly degraded by the proteasome. Together these findings provide insights into the molecular mechanism by which loss-of-function mutations in DJ-1 lead to Parkinson's disease.  相似文献   

18.
Mutations in the gene encoding DJ-1 have been identified in patients with familial Parkinson's disease (PD) and are thought to inactivate a neuroprotective function. Oxidation of the sulfhydryl group to a sulfinic acid on cysteine residue C106 of DJ-1 yields the "2O " form, a variant of the protein with enhanced neuroprotective function. We hypothesized that some familial mutations disrupt DJ-1 activity by interfering with conversion of the protein to the 2O form. To address this hypothesis, we developed a novel quantitative mass spectrometry approach to measure relative changes in oxidation at specific sites in mutant DJ-1 as compared with the wild-type protein. Treatment of recombinant wild-type DJ-1 with a 10-fold molar excess of H(2)O(2) resulted in a robust oxidation of C106 to the sulfinic acid, whereas this modification was not detected in a sample of the familial PD mutant M26I exposed to identical conditions. Methionine oxidized isoforms of wild-type DJ-1 were depleted, presumably as a result of misfolding and aggregation, under conditions that normally promote conversion of the protein to the 2O form. These data suggest that the M26I familial substitution and methionine oxidation characteristic of sporadic PD may disrupt DJ-1 function by disfavoring a site-specific modification required for optimal neuroprotective activity. Our findings indicate that a single amino acid substitution can markedly alter a protein's ability to undergo oxidative modification, and they imply that stimulating the conversion of DJ-1 to the 2O form may be therapeutically beneficial in familial or sporadic PD.  相似文献   

19.
Envelope glycoprotein 71 from Friend murine leukemia virus was purified to homogeneity by reversed-phase HPLC. It could be shown that all 20 cysteine residues of the molecule are linked by disulfide bonds. After complete tryptic digestion, peptides containing cystine were identified by comparison of the reversed-phase HPLC profile of the digest with that of a reduced aliquot which had been subjected to affinity chromatography on thiol-Sepharose. The locations of the 10 disulfide bonds were determined by isolation, further digestion and analysis of peptides containing cystine. The first cysteine residue of the sequence (Cys46) was shown to be coupled to the sixth (Cys98), leading to a large loop containing four additional cysteine residues. Computer model building and energy calculations led to the assignment of Cys72 to Cys87 and Cys73 to Cys83. The following four cysteine residues of the sequence also constitute a structural unit, with Cys121 bonded to Cys141 and Cys133 to Cys146, and the last two cysteine residues in the amino-terminal domain of glycoprotein 71 form a small loop (Cys178 to Cys184). The first two cysteine residues of the carboxy-terminal domain produce a very small hydrophobic loop (Cys312-Cys315). Cys361 is bound to Cys373, Cys342 to Cys396 and Cys403 to Cys416. A model for the folding pattern of the viral glycoprotein is proposed.  相似文献   

20.
Biosynthesis of mucin-type O-glycans is initiated by a family of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases, which contain several conserved cysteine residues among the isozymes. We found that a cysteine-specific reagent, p-chloromercuriphenylsulfonic acid (PCMPS), irreversibly inhibited one of the isozymes (GalNAc-T1). Presence of either UDP-GalNAc or UDP during PCMPS treatment protected GalNAc-T1 from inactivation, to the same extent. This suggests that GalNAc-T1 contains free cysteine residues interacting with the UDP moiety of the sugar donor. For the functional analysis of the cysteine residues, several conserved cysteine residues in GalNAc-T1 were mutated individually to alanine. All of the mutations except one resulted in complete inactivation or a drastic decrease in the activity, of the enzyme. We identified only Cys212 and Cys214, among the conserved cysteine residues in GalNAc-T1, as free cysteine residues, by cysteine-specific labeling of GalNAc-T1. To investigate the role of these two cysteine residues, we generated cysteine to serine mutants (C212S and C214S). The serine mutants were more active than the corresponding alanine mutants (C212A and C214A). Kinetic analysis demonstrated that the affinity of the serine-mutants for UDP-GalNAc was decreased, as compared to the wild type enzyme. The affinity for the acceptor apomucin, on the other hand, was essentially unaffected. The functional importance of the introduced serine residues was further demonstrated by the inhibition of all serine mutant enzymes with diisopropyl fluorophosphate. In addition, the serine mutants were more resistant to modification by PCMPS. Our results indicate that Cys212 and Cys214 are sites of PCMPS modification, and that these cysteine residues are involved in the interaction with the UDP moiety of UDP-GalNAc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号