首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
Food-chain length, the number of feeding links from the basal species to the top predator, is a key characteristic of biological communities. However, the determinants of food-chain length still remain controversial. While classical theory predicts that food-chain length should increase with increasing resource availability, empirical supports of this prediction are limited to those from simple, artificial microcosms. A positive resource availability–chain length relationship has seldom been observed in natural ecosystems. Here, using a theoretical model, we show that those correlations, or no relationships, may be explained by considering the dynamic food-web reconstruction induced by predator''s adaptive foraging. More specifically, with foraging adaptation, the food-chain length becomes relatively invariant, or even decreases with increasing resource availability, in contrast to a non-adaptive counterpart where chain length increases with increasing resource availability; and that maximum chain length more sharply decreases with resource availability either when species richness is higher or potential link number is larger. The interactive effects of resource availability, adaptability and community complexity may explain the contradictory effects of resource availability in simple microcosms and larger ecosystems. The model also explains the recently reported positive effect of habitat size on food-chain length as a result of increased species richness and/or decreased connectance owing to interspecific spatial segregation.  相似文献   

3.
Dispersal among local communities can have a variety of effects on species composition and diversity at local and regional scales. Local conditions (e.g., resource and predator densities) can have independent effects, as well as interact with dispersal, to alter these patterns. Based on metacommunity models, we predicted that local diversity would show a unimodal relationship with dispersal frequency. We manipulated dispersal frequencies, resource levels, and the presence of predators (mosquito larvae) among communities found in the water-filled leaves of the pitcher plant Sarracenia purpurea. Diversity and abundance of species of the middle trophic level, protozoa and rotifers, were measured. Increased dispersal frequencies significantly increased regional species richness and protozoan abundance while decreasing the variance among local communities. Dispersal frequency interacted with predation at the local community scale to produce patterns of diversity consistent with the model. When predators were absent, we found a unimodal relationship between dispersal frequency and diversity, and when predators were present, there was a flat relationship. Intermediate dispersal frequencies maintained some species in the inquiline communities by offsetting extinction rates. Local community composition and the degree of connectivity between communities are both important for understanding species diversity patterns at local and regional scales.  相似文献   

4.
The availability of different resources in the environment can affect the outcomes of evolutionary diversification. A unimodal distribution of diversity with resource supply has been widely observed and explained previously in the context of selection acting in a spatially heterogeneous environment. Here, we propose an alternative mechanism to explain the relationship between resource supply and diversification that is based on selection for exploitation of different resources. To test this mechanism, we conducted a selection experiment using the bacterium Pseudomonas fluorescens in spatially homogeneous environments over a wide range of resource supply rates. Our results show that niche diversification peaks at intermediate levels of resource availability. We suggest that this unimodal relationship is due to evolutionary diversification that is driven by competition for resources but constrained by the ecological opportunity represented by different resource types. These processes may underlie some general patterns of diversity, including latitudinal gradients in species richness and the effects of anthropogenic enrichment of the environment.  相似文献   

5.
Spatial scales are known to influence the form of the productivity–diversity relationship, but less attention has been given to the influence of temporal scales. Interannual climatic variation in semi-arid ponderosa pine–bunchgrass ecosystems causes significant year-to-year differences in herbaceous production. We hypothesized that unimodal (or 'hump-backed') relationships would be detected between herbaceous production and species richness in wet years, whereas positive logarithmic relationships would be detected in dry years. We analyzed nine years of herbaceous production and species richness data and used Akaike's information criterion (AICc) to determine the weight of evidence for each model in each year. As predicted, species richness exhibited a unimodal relationship to herbaceous production in wet years; however, richness exhibited a logarithmic relationship with herbaceous production in dry years. These results suggest that competitive exclusion occurred within this semi-arid plant community in years of high production when enough moisture was available to drive abundant plant growth. Thus, just as it is important to sample broad spatial variation in production to detect the full unimodal productivity–diversity relationship, it is also important to recognize that the full unimodal curve may be undetectable in less productive dry years in semi-arid ecosystems.  相似文献   

6.
Aim In terrestrial plant communities, the relationship between native species diversity and exotic success is typically scale‐dependent. It is often proposed that within local neighbourhoods, high native diversity limits resources, thereby inhibiting exotic success. However, environmental variation that manifests over space or time can create positive correlations between native diversity and exotic success at larger scales. In marine habitats, there have been few multi‐scale surveys of this pattern, so it is unclear how diversity, resource limitation and the environment influence the success of exotic species in these systems. Location Washington, USA. Methods I analysed nested spatial and temporal surveys of fouling communities, which are assemblages of sessile marine invertebrates, to test whether the relationships between native richness, resource availability and exotic cover supported the diversity‐stability and diversity‐resistance theories, to test whether these relationships changed with spatio‐temporal scale, and to explore the temperature preferences of native and exotic fouling species. Results Survey data failed to support diversity‐stability theory: space availability actually increased with native richness at the local neighbourhood scale, and neither space availability nor variability decreased with native richness across larger spatio‐temporal scales. I did find support for diversity‐resistance theory, as richness negatively correlated with exotic cover in local neighbourhoods. Unexpectedly, this negative correlation disappeared at intermediate scales, but emerged again at the regional scale. This scale‐dependent pattern could be partially explained by contrasting water temperature preferences of native and exotic species. Main conclusions Within local neighbourhoods, native diversity may inhibit exotic abundance, but the mechanism is unlikely related to resource limitation. At the largest scale, correlations suggest that native richness is higher in cooler environments, whereas exotic richness is higher in warmer environments. This large‐scale pattern contrasts with the typical plant community pattern, and has important implications for coastal management in the face of global climate change.  相似文献   

7.
Animal movement and habitat selection are in part a response to landscape heterogeneity. Many studies of movement and habitat selection necessarily use environmental covariates that are readily available over large‐scales, which are assumed representative of functional habitat features such as resource availability. For widely distributed species, response to such covariates may not be consistent across ecosystems, as response to any specific covariate is driven by its biological relevance within the context of each ecosystem. Thus, the study of any widely distributed species within a limited geographic region may provide inferences that are not widely generalizable. Our goal was to evaluate the response of a marine predator to a suite of environmental covariates across a wide ecological gradient. We identified two behavioral states (resident and transient) in the movements of shortfin mako sharks Isurus oxyrinchus tracked via satellite telemetry in two regions of the western North Atlantic Ocean: the tropical Caribbean/Gulf of Mexico marginal sea (CGM), and the temperate waters of the open western Atlantic Ocean (OWA). We compared patterns of resident behavior between regions, and modeled relationships between oceanographic variables and resident behavior. We tracked 39 sharks during 2013–2015. Resident behavior was associated with shallow, continental shelf and slope waters in both regions. In the OWA resident behavior was associated with low sea surface temperature and high primary productivity, however, sharks exhibited no response to either variable in the CGM. There was a negative relationship between sea‐surface height gradient (a proxy for oceanic fronts) and resident behavior in the OWA, and a positive relationship in the CGM. Our observations likely reflect shark responses to regional variability in factors responsible for the distribution and availability of prey. Our study illustrates the importance of studying widely distributed species in a consistent manner over large spatial scales.  相似文献   

8.
We first give an experimental and theoretical introduction to spin glasses, and then discuss the nature of the phase transition in spin glasses with vector spins. Results of Monte Carlo simulations of the Heisenberg spin glass model in three dimensions are presented. A finite size scaling analysis of the correlation length of the spins and chiralities shows that there is a single, finite-temperature transition at which both spins and chiralities order.  相似文献   

9.
Although diversity–stability relationships have been extensively studied in local ecosystems, the global biodiversity crisis calls for an improved understanding of these relationships in a spatial context. Here, we use a dynamical model of competitive metacommunities to study the relationships between species diversity and ecosystem variability across scales. We derive analytic relationships under a limiting case; these results are extended to more general cases with numerical simulations. Our model shows that, while alpha diversity decreases local ecosystem variability, beta diversity generally contributes to increasing spatial asynchrony among local ecosystems. Consequently, both alpha and beta diversity provide stabilising effects for regional ecosystems, through local and spatial insurance effects respectively. We further show that at the regional scale, the stabilising effect of biodiversity increases as spatial environmental correlation increases. Our findings have important implications for understanding the interactive effects of global environmental changes (e.g. environmental homogenisation) and biodiversity loss on ecosystem sustainability at large scales.  相似文献   

10.
Animal social behaviour is not static with regard to environmental change. Flexibility in cooperative resource use may be an important response to resource decline, mediating the impacts of resource availability on fitness and demography. In forest ecosystems, hollow trees are key den resources for many species, but are declining worldwide owing to forestry. Altered patterns of den sharing may mediate the effects of the decline of this resource. We studied den-sharing interactions among hollow-dependent Australian mountain brushtail possums to investigate how spatial variation in hollow tree availability affects resource sharing and kin selection. Under reduced den availability, individuals used fewer dens and shared them less often. This suggests increased territoriality in the presence of resource competition. Further, there was a switch from kin avoidance to kin preference with decreasing hollow tree availability. This was driven primarily by a change in den sharing among siblings. The inclusive fitness benefits of den sharing with kin are likely to increase under resource-limiting conditions, but are potentially outweighed by the benefits of associating with non-relatives (avoidance of inbreeding or pathogen transmission) where dens are abundant. We discuss how predictions from social evolutionary theory can contribute to understanding animal responses to landscape change.  相似文献   

11.
The swimming behavior of Pseudomonas putida was analyzed with a tracking microscope to quantify its run time and turn angle distributions. Monte Carlo computer simulations illustrated that the bimodal turn angle distribution of P. putida reduced collisions with obstacles in porous media in comparison to the unimodal distribution of Escherichia coli.  相似文献   

12.
Coexistence in bumblebee communities has largely been investigated at local spatial scales. However, local resource partitioning does not fully explain the species diversity of bumblebee communities. Theoretical studies provide new evidence that partitioning of space can promote species coexistence, when species interact with their environment at different spatial scales. If bumblebee species possess specific foraging ranges, different spatial resource utilisation patterns might operate as an additional mechanism of coexistence in bumblebee communities. We investigated the effects of the landscape-wide availability of different resources (mass flowering crops and semi-natural habitats) on the local densities of four bumblebee species at 12 spatial scales (landscape sectors with 250–3,000 m radius) to indirectly identify the spatial scales at which the bumblebees perceive their environment. The densities of all bumblebee species were enhanced in landscapes with high proportions of mass flowering crops (mainly oilseed rape). We found the strongest effects for Bombus terrestris agg. and Bombus lapidarius at large spatial scales, implying foraging distances of 3,000 and 2,750 m, respectively. The densities of Bombus pascuorum were most strongly influenced at a medium spatial scale (1,000 m), and of Bombus pratorum (with marginal significance) at a small spatial scale (250 m). The estimated foraging ranges tended to be related to body and colony sizes, indicating that larger species travel over larger distances than smaller species, presumably enabling them to build up larger colonies through a better exploitation of food resources. We conclude that coexistence in bumblebee communities could potentially be mediated by species-specific differences in the spatial resource utilisation patterns, which should be considered in conservation schemes.  相似文献   

13.
A key problem faced by foragers is how to forage when resources are distributed heterogeneously in space. This heterogeneity and associated trade‐offs may change with spatial scale. Furthermore, foragers may also have to optimize acquiring multiple resources. Such complexity of decision‐making while foraging is poorly understood. We studied the butterfly Ypthima huebneri to examine how foraging decisions of adults are influenced by spatial scale and multiple resources. We predicted that, at a small‐spatial scale, the time spent foraging in a patch should be proportional to resources in the patch, but at large‐spatial scales, due to limitations arising from large travel costs, this relationship should turn negative. We also predicted that both adult and larval resources should jointly affect foraging butterflies. To test these predictions, we laid eleven plots and sub‐divided them into patches. We mapped nectar and larval resources and measured butterfly behavior in these patches and plots. We found that adult foraging behavior showed contrasting relationships with adult resource density at small versus large‐spatial scales. At the smaller‐spatial scale, butterflies spent more time feeding in resource‐rich patches, whereas at the large‐scale, butterflies spent more time feeding in resource‐poor plots. Furthermore, both adult and larval resources appeared to affect foraging decisions, suggesting that individuals may optimize search costs for different resources. Overall, our findings suggest that the variation in foraging behavior seen in foragers might result from animals responding to complex ecological conditions, such as resource heterogeneity at multiple spatial scales and the challenges of tracking multiple resources.  相似文献   

14.
We tested the prediction that forest habitat types with relatively high productivity are not only relatively low in species richness but are also regionally uncommon. This relationship was supported by an analysis of data from 146 forest communities in southern Ontario, Canada. Potential forest habitat productivity was determined based on a classification scheme developed for the Canadian Land Inventory (CLI) project. Vascular plant species richness approximated a unimodal distribution across forest productivity classes with the lowest mean species richness recorded for the two most productive classes. The contemporary regional commonness of forest habitat productivity classes were also displayed as a unimodal frequency distribution. Hence, mean species richness per CLI class was positively correlated with the regional area of land encompassing each of these productivity classes and this relationship was increasingly significant at increasingly larger spatial scales of regional CLI class land areas. These results are consistent with the species pool hypothesis, which postulates that species richness is relatively low in highly productive habitats because such habitats have been relatively uncommon in both space and time and hence, have had relatively little historical opportunity for the origination of adapted species.  相似文献   

15.
A rich body of knowledge links biodiversity to ecosystem functioning (BEF), but it is primarily focused on small scales. We review the current theory and identify six expectations for scale dependence in the BEF relationship: (1) a nonlinear change in the slope of the BEF relationship with spatial scale; (2) a scale‐dependent relationship between ecosystem stability and spatial extent; (3) coexistence within and among sites will result in a positive BEF relationship at larger scales; (4) temporal autocorrelation in environmental variability affects species turnover and thus the change in BEF slope with scale; (5) connectivity in metacommunities generates nonlinear BEF and stability relationships by affecting population  synchrony at local and regional scales; (6) spatial scaling in food web structure and diversity will generate scale dependence in ecosystem functioning. We suggest directions for synthesis that combine approaches in metaecosystem and metacommunity ecology and integrate cross‐scale feedbacks. Tests of this theory may combine remote sensing with a generation of networked experiments that assess effects at multiple scales. We also show how anthropogenic land cover change may alter the scaling of the BEF relationship. New research on the role of scale in BEF will guide policy linking the goals of managing biodiversity and ecosystems.  相似文献   

16.
Water plays a crucial role in the structure and function of proteins and other biological macromolecules; thus, theories of aqueous solvation for these molecules are of great importance. However, water is a complex solvent whose properties are still not completely understood. Statistical mechanical integral equation theories predict the density distribution of water molecules around a solute so that all particles are fully represented and thus potentially both molecular and macroscopic properties are included. Here we discuss how several theoretical tools we have developed have been integrated into an integral equation theory designed for globular macromolecular solutes such as proteins. Our approach predicts the three-dimensional spatial and orientational distribution of water molecules around a solute. Beginning with a three-dimensional Ornstein-Zernike equation, a separation is made between a reference part dependent only on the spatial distribution of solvent and a perturbation part dependent also on the orientational distribution of solvent. The spatial part is treated at a molecular level by a modified hypernetted chain closure whereas the orientational part is treated as a Boltzmann prefactor using a quasi-continuum theory we developed for solvation of simple ions. A potential energy function for water molecules is also needed and the sticky dipole models of water, such as our recently developed soft-sticky dipole (SSD) model, are ideal for the proposed separation. Moreover, SSD water is as good as or better than three point models typically used for simulations of biological macromolecules in structural, dielectric and dynamics properties and yet is seven times faster in Monte Carlo and four times faster in molecular dynamics simulations. Since our integral equation theory accurately predicts results from Monte Carlo simulations for solvation of a variety of test cases from a single water or ion to ice-like clusters and ion pairs, the application of this theory to biological macromolecules is promising.  相似文献   

17.
One of the most intriguing environmental gradients connected with variation in diversity is ecosystem productivity. The role of diversity in ecosystems is pivotal, because species richness can be both a cause and a consequence of primary production. However, the mechanisms behind the varying productivity-diversity relationships (PDR) remain poorly understood. Moreover, large-scale studies on PDR across taxa are urgently needed. Here, we examined the relationships between resource supply and phyto-, bacterio-, and zooplankton richness in 100 small boreal lakes. We studied the PDR locally within the drainage systems and regionally across the systems. Second, we studied the relationships between resource availability, species richness, biomass and resource ratio (N:P) in phytoplankton communities using Structural Equation Modeling (SEM) for testing the multivariate hypothesis of PDR. At the local scale, the PDR showed variable patterns ranging from positive linear and unimodal to negative linear relationships for all planktonic groups. At the regional scale, PDRs were significantly linear and positive for phyto- and zooplankton. Phytoplankton richness and the amount of chlorophyll a showed a positive linear relationship indicating that communities consisting of higher number of species were able to produce higher levels of biomass. According to the SEM, phytoplankton biomass was largely related to resource availability, yet there was a pathway via community richness. Finally, we found that species richness at all trophic levels was correlated with several environmental factors, and was also related to richness at the other trophic levels. This study showed that the PDRs in freshwaters show scale-dependency. We also documented that the PDR complies with the multivariate model showing that plant biomass is not mirroring merely the resource availability, but is also influenced by richness. This highlights the need for conserving diversity in order to maintain ecosystem processes in freshwaters.  相似文献   

18.
The interactive effect of grazing and soil resources on plant species richness and coexistence has been predicted to vary across spatial scales. When resources are not limiting, grazing should reduce competitive effects and increase colonisation and richness at fine scales. However, at broad scales richness is predicted to decline due to loss of grazing intolerant species. We examined these hypotheses in grasslands of southern Australia that varied in resources and ungulate grazing intensity since farming commenced 170 years ago. Fine-scale species richness was slightly greater in more intensively grazed upper slope sites with high nutrients but low water supply compared to those that were moderately grazed, largely due to a greater abundance of exotic species. At broader scales, exotic species richness declined with increasing grazing intensity whether nutrients or water supply were low or high. Native species richness declined at all scales in response to increasing grazing intensity and greater resource supply. Grazing also reduced fine-scale heterogeneity in native species richness and although exotics were also characterised by greater heterogeneity at fine scales, grazing effects varied across scales. In these grasslands patterns of plant species richness did not match predictions at all scales and this is likely to be due to differing responses of native and exotic species and their relative abundance in the regional species pool. Over the past 170 years intolerant native species have been eliminated from areas that are continually and heavily grazed, whereas transient, light grazing increases richness of both exotics and natives. The results support the observation that the processes and scales at which they operate differ between coevolved ungulate—grassland systems and those in transition due to recent invasion of herbivores and associated plant species.  相似文献   

19.
J. B. Hughes 《Oecologia》2000,123(3):375-383
Numerous hypotheses have been proposed for the commonly observed, positive relationship between local abundance and geographic distribution in groups of closely related species. Here I consider how hostplant specialization and abundance affect the relative abundance and distribution of lycaenid butterflies (Lepidoptera: Lycaenidae). I first discuss three components of specialization: local specialization, turnover of specialization across a species’ range, and the minimum number of resources (or habitats) required by a species. Within this framework, I then consider one dimension of a lycaenid species’ niche, larval hostplant specialization. In a subalpine region of Colorado, I surveyed 11 lycaenid species and their hostplants at 17 sites. I compare this local information to continental hostplant use and large-scale distributions of the lycaenids and their hostplants. Local abundance of a lycaenid species is positively correlated with its local distribution (the number of sites occupied), but not with its regional or continental distribution. Neither local specialization (the number of hostplants used within one habitat) nor continental specialization (the number of hostplants used across many habitats) is correlated with local lycaenid abundance. Continental specialization is positively correlated with a species’ continental distribution, however. Finally, while generalist butterflies tend to have more hostplant available to them, differences in resource availability do not explain the differences in butterfly abundance. Although local abundance is correlated only with local distribution, I suggest that abundance-distribution relationships might emerge at regional and continental scales if local abundance were averaged across many habitat types. Consideration of the scale of a species’ resource specialization (within or among habitats) appears to be key to understanding the relationships between resource specialization, resource availability, and a species’ abundance and distribution. Received: 1 September 1999 / Accepted: 12 December 1999  相似文献   

20.
Spatial patterns are a subfield of spatial ecology, and these patterns modify the temporal dynamics and stability properties of population densities at a range of spatial scales. Localized ecological interactions can generate striking large-scale spatial patterns in ecosystems through spatial self-organization. Possible mechanisms include oscillating consumer–resource interactions, localized disturbance–recovery processes, and scale-dependent feedback. However, in this paper, our main aim is to study the effect of tide on the pattern formation of a spatial plant-wrack model. We discuss the changes of the wavelength, wave speed, and the conditions of the spatial pattern formation, according to the dispersion relation formula. Both the mathematical analysis and numerical simulations reveal that the tide has great influence on the spatial pattern. More specifically, typical traveling spatial patterns can be obtained. Our obtained results are consistent with the previous observation that wracks exhibit traveling patterns, which is useful to help us better understand the dynamics of the real ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号