首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasmin not only functions as a key enzyme in the fibrinolytic system but also directly inactivates factor VIII and other clotting factors such as factor V. However, the mechanisms of plasmin-catalyzed factor VIII inactivation are poorly understood. In this study, levels of factor VIII activity increased approximately 2-fold within 3 min in the presence of plasmin, and subsequently decreased to undetectable levels within 45 min. This time-dependent reaction was not affected by von Willebrand factor and phospholipid. The rate constant of plasmin-catalyzed factor VIIIa inactivation was approximately 12- and approximately 3.7-fold greater than those mediated by factor Xa and activated protein C, respectively. SDS-PAGE analysis showed that plasmin cleaved the heavy chain of factor VIII into two terminal products, A1(37-336) and A2 subunits, by limited proteolysis at Lys(36), Arg(336), Arg(372), and Arg(740). The 80-kDa light chain was converted into a 67-kDa subunit by cleavage at Arg(1689) and Arg(1721), identical to the pattern induced by factor Xa. Plasmin-catalyzed cleavage at Arg(336) proceeded faster than that at Arg(372), in contrast to proteolysis by factor Xa. Furthermore, breakdown was faster than that in the presence of activated protein C, consistent with rapid inactivation of factor VIII. The cleavages at Arg(336) and Lys(36) occurred rapidly in the presence of A2 and A3-C1-C2 subunits, respectively. These results strongly indicated that cleavage at Arg(336) was a central mechanism of plasmin-catalyzed factor VIII inactivation. Furthermore, the cleavages at Arg(336) and Lys(36) appeared to be selectively regulated by the A2 and A3-C1-C2 domains, respectively, interacting with plasmin.  相似文献   

2.
Factor VIIIa consists of subunits designated A1, A2, and A3-C1-C2. The limited cofactor activity observed with the isolated A2 subunit is markedly enhanced by the A1 subunit. A truncated A1 (A1(336)) was previously shown to possess similar affinity for A2 and retain approximately 60% of its A2 stimulatory activity. We now identify a second site in A1 at Lys(36) that is cleaved by factor Xa. A1 truncated at both cleavage sites (A1(37-336)) showed little if any affinity for A2 (K(d)>2 microm), whereas factor VIIIa reconstituted with A2 plus A1(37-336)/A3-C1-C2 dimer demonstrated significant cofactor activity ( approximately 30% that of factor VIIIa reconstituted with native A1) in a factor Xa generation assay. These affinity values were consistent with values obtained by fluorescence energy transfer using acrylodan-labeled A2 and fluorescein-labeled A1. In contrast, factor VIIIa reconstituted with A1(37-336) showed little activity in a one-stage clotting assay. This resulted in part from a 5-fold increase in K(m) for factor X when A1 was cleaved at Arg(336). These findings suggest that both A1 termini are necessary for functional interaction of A1 with A2. Furthermore, the C terminus of A1 contributes to the K(m) for factor X binding to factor Xase, and this parameter is critical for activity assessed in plasma-based assays.  相似文献   

3.
Thrombin activates factor VIII by proteolysis at three P1 residues: Arg372, Arg740, and Arg1689. Cleavage at Arg372 and Arg1689 are essential for procofactor activation; however cleavage at Arg740 has not been rigorously studied. To evaluate the role for cleavage at Arg740, we prepared and stably expressed two recombinant B-domainless factor VIII mutants, R740H and R740Q to slow and eliminate, respectively, cleavage at this site. Specific activity values for the variants were approximately 50 and 20%, respectively, that of wild-type factor VIII. Activation of factor VIII R740H by thrombin showed an approximately 40-fold reduction in the rate of A2 subunit generation, which reflected an approximately 20-fold reduction in cleavage rate at Arg372. Similarly, a approximately 40-fold rate reduction in cleavage at Arg1689 and consequent generation of the A3-C1-C2 subunit were observed. Rate values for A2 and A3-C1-C2 subunit generation were reduced by >700-fold and approximately 140-fold, respectively, in the R740Q variant. These results suggest that initial cleavage at Arg740 affects cleavage at both Arg372 and Arg1689 sites. Results obtained evaluating proteolysis of the factor VIII mutants by factor Xa revealed more modest rate reductions (<10-fold) in generating A2 and A3-C1-C2 subunits from either variant, suggesting that factor Xa-catalyzed activation of factor VIII was significantly less dependent upon prior cleavage at residue 740 than thrombin. Overall, these results support a model whereby cleavage of factor VIII by thrombin is an ordered pathway with cleavage at Arg740 facilitating cleavages at Arg372 and Arg1689, which result in procofactor activation.  相似文献   

4.
The 337-372 sequence of the factor VIIIa A1 subunit contains interactive sites for both zymogen factor X and the active enzyme, factor Xa. Solid phase binding studies indicated that factor Xa possessed a >20-fold higher affinity for the isolated A1 subunit of factor VIIIa compared with factor X. Heparin completely inhibited zero-length cross-linking of the 337-372 peptide to factor Xa but not to factor X. In the presence of calcium, factor Xa showed greater affinity for heparin than factor X. Studies using factor Xa mutants in which heparin-binding exosite residues were individually replaced by Ala showed that the R240A mutant was defective in recognition of the Lys36 cleavage site, generating the A137-372 intermediate with approximately 20% the catalytic efficiency of wild type. This defect likely resulted from an approximately 4-fold increase in Km for the A1 substrate because kcat values for the wild type and mutant were equivalent. Cleavage of the A1-A2 domain junction by factor Xa R240A was not blocked by the 337-372 peptide. Studies using mutant factor VIII where clustered acidic residues in the 337-372 segment were replaced by Ala showed that a factor VIIIa D361A/D362A/D363A mutant possessed a approximately 1.6-fold increase in Km for factor X compared with wild type. However, similar Km values were observed for recombinant factor X and R240A substrates. These results indicate that the binding regions of factor X and factor Xa for A1 domain overlap and that both utilize acidic residues 361-363. Furthermore, factor Xa but not factor X interacts with high affinity at this site via residues contained within the heparin-binding exosite of the proteinase.  相似文献   

5.
Human factor VIII and factor VIIIa were proteolytically inactivated by activated protein C. Cleavages occurred within the heavy chain (contiguous A1-A2-B domains) of factor VIII and in the heavy chain-derived A1 and A2 subunits of factor VIIIa, whereas no proteolysis was observed in the light chain or light chain-derived A3-C1-C2 subunit. Reactivity to an anti-A2 domain monoclonal antibody and NH2-terminal sequence analysis of three terminal digest fragments from factor VIII allowed ordering of fragments and identification of cleavage sites. Fragment A1 was derived from the NH2 terminus and resulted from cleavage at Arg336-Met337. The A2 domain was bisected following cleavage at Arg562-Gly563 and yielded fragments designated A2N and A2C. A third cleavage site is proposed at the A2-B junction (Arg740-Ser741) since fragment A2C was of equivalent size when derived either from factor VIII or factor VIIIa. The site at Arg562 was preferentially cleaved first in factor VIII(alpha) compared with the site at Arg336, and it was this initial cleavage that most closely correlated with the loss of cofactor activity. Factor VIIIa was inactivated 5-fold faster than factor VIII, possibly as a result of increased protease utilization of the site at Arg562 when the A2 subunit is not contiguous with the A1 domain. When initial cleavage occurred at Arg336, it appeared to preclude subsequent cleavage at Arg562, possibly by promoting dissociation of the A2 domain (subunit) from the A1/light chain dimer. This conclusion was supported by the failure of protease treated A1/A3-C1-C2 dimer to bind A2 subunit and gel filtration analysis that showed dissociation of the A2 domain-derived fragments, A2N and A2C, from the A1 fragment/light chain dimer. These results suggest a mechanism for activated protein C-catalyzed inactivation of factor VIII(alpha) involving both covalent alteration and fragment dissociation.  相似文献   

6.
Factor VIIIa consists of three subunits designated A1, A2, and A3-C1-C2. The isolated A2 subunit possesses limited cofactor activity in stimulating factor IXa-catalyzed activation of factor X. This activity is markedly enhanced by the A1 subunit (inter-subunit K(d) = 1.8 microm). The C-terminal region of A1 subunit (residues 337-372) is thought to represent an A2-interactive site. This region appears critical to factor VIIIa, because proteolysis at Arg(336) by activated protein C or factor IXa is inactivating. A truncated A1 (A1(336)) showed similar affinity for A2 subunit (K(d) = 0.9 microm) and stimulated its cofactor activity to approximately 50% that observed for native A1. However, A1(336) was unable to reconstitute factor VIIIa activity in the presence of A2 and A3-C1-C2 subunits. Fluorescence anisotropy of fluorescein (Fl)-FFR-factor IXa was differentially altered by factor VIIIa trimers containing either A1 or A1(336). Fluorescence energy transfer demonstrated that, although Fl-A1(336)/A3-C1-C2 bound acrylodan-A2 with similar affinity as the native dimer, an increased inter-fluorophore separation was observed. These results indicate that the C-terminal region of A1 appears necessary to properly orient A2 subunit relative to factor IXa in the cofactor rather than directly stimulate A2 and elucidate the mechanism for cofactor inactivation following cleavage at this site.  相似文献   

7.
Factor VIIIa is inactivated by a combination of two mechanisms. Activation of factor VIII by thrombin results in a heterotrimeric factor VIIIa that spontaneously inactivates due to dissociation of the A2 subunit. Additionally, factor VIIIa is cleaved by the anticoagulant serine protease, activated protein C, at two cleavage sites, Arg(336) in the A1 subunit and Arg(562) in the A2 subunit. We previously characterized an engineered variant of factor VIII which contains a disulfide bond between the A2 and the A3 subunits that prevents the spontaneous dissociation of the A2 subunit following thrombin activation. Thus, in the absence of activated protein C, this variant has stable activity following activation by thrombin. To isolate the effects of the individual activated protein C cleavage sites on factor VIIIa, we engineered mutations of the activated protein C cleavage sites into the disulfide bond-cross-linked factor VIII variant. Arg(336) cleavage is 6-fold faster than Arg(562) cleavage, and the Arg(336) cleavage does not fully inactivate factor VIIIa when A2 subunit dissociation is blocked. Protein S enhances both cleavage rates but enhances Arg(562) cleavage more than Arg(336) cleavage. Factor V also enhances both cleavage rates when protein S is present. Factor V enhances Arg(562) cleavage more than Arg(336) cleavage as well. As a result, in the presence of both activated protein C cofactors, Arg(336) cleavage is only twice as fast as Arg(562) cleavage. Therefore, both cleavages contribute significantly to factor VIIIa inactivation.  相似文献   

8.
Activated Protein C (APC) inactivates factor VIIIa by cleavage at Arg(336) and Arg(562) within the A1 and A2 subunits, respectively, with reaction at the former site occurring at a rate approximately 25-fold faster than the latter. Recombinant factor VIII variants possessing mutations within the P4-P3' sequences were used to determine the contributions of these residues to the disparate cleavage rates at the two P1 sites. Specific activity values for 336(P4-P3')562, 336(P4-P2)562, and 336(P1'-P3')562 mutants, where indicated residues surrounding the Arg(336) site were replaced with those surrounding Arg(562), were similar to wild type (WT) factor VIII; whereas 562(P4-P3')336 and 562(P4-P2)336 mutants showed specific activity values <1% the WT value. Inactivation rates for the 336 site mutants were reduced approximately 6-11-fold compared with WT factor VIIIa, and approached values attributed to cleavage at Arg(562). Cleavage rates at Arg(336) were reduced approximately 100-fold for 336(P4-P3')562, and approximately 9-16-fold for 336(P4-P2)562 and 336(P1'-P3')562 mutants. Inhibition kinetics revealed similar affinities of APC for WT factor VIIIa and 336(P4-P3')562 variant. Alternatively, the 562(P4-P3')336 variant showed a modest increase in cleavage rate ( approximately 4-fold) at Arg(562) compared with WT, whereas these rates were increased by approximately 27- and 6-fold for 562(P4-P3')336 and 562(P4-P2)336, respectively, using the factor VIII procofactor form as substrate. Thus the P4-P3' residues surrounding Arg(336) and Arg(562) make significant contributions to proteolysis rates at each site, apparently independent of binding affinity. Efficient cleavage at Arg(336) by APC is attributed to favorable P4-P3' residues at this site, whereas cleavage at Arg(562) can be accelerated following replacement with more optimal P4-P3' residues.  相似文献   

9.
We recently demonstrated that the residues 337-372, comprising the acidic C-terminal region in A1 subunit, interact with factor Xa during the proteolytic inactivation of factor VIIIa (Nogami, K., Wakabayashi, H., and Fay, P. J. (2003) J. Biol. Chem. 278, 16502-16509). We now show this sequence is important for factor Xa-catalyzed activation of factor VIII. Peptide 337-372 markedly inhibited cofactor activation, consistent with a delay in the rate of cleavage at the A1-A2 junction. Studies using the isolated factor VIII heavy chain indicated that the peptide completely blocked cleavage at the A1-A2 junction (IC50 = 11 microm) and partially blocked cleavage at the A2-B junction (IC50 = 100 microm). Covalent cross-linking was observed between the 337-372 peptide and factor Xa following reaction with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide, and the peptide quenched the fluorescence of dansyl-Glu-Gly-Arg active site-modified factor Xa, suggesting that residues 337-372 directly interact with factor Xa. Studies using a monoclonal antibody recognizing residues 351-365 as well as the peptide to this sequence further restricted the interactive region. Mutant factor VIII molecules in which clustered acidic residues in the 337-372 segment were converted to alanine were evaluated for activation by factor Xa. Of the mutants tested, only factor Xa-catalyzed activation of the D361A/D362A/D363A mutant was inhibited with peak activity of approximately 50% and an activation rate constant of approximately 30% of the wild type values. These results indicate that the 337-372 acidic region separating A1 and A2 domains and, in particular, a cluster of acidic residues at position 361-363 contribute to a unique factor Xa-interactive site within the factor VIII heavy chain that promotes factor Xa docking during cofactor activation.  相似文献   

10.
Factor (F)VIII can be activated to FVIIIa by FXa following cleavages at Arg(372), Arg(740), and Arg(1689). FXa also cleaves FVIII/FVIIIa at Arg(336) and Arg(562) resulting in inactivation of the cofactor. These inactivating cleavages occur on a slower time scale than the activating ones. We assessed the contributions to cleavage rate and cofactor function of residues flanking Arg(336), the primary site yielding FVIII(a) inactivation, following replacement of these residues with those flanking the faster-reacting Arg(740) and Arg(372) sites and the slower-reacting Arg(562) site. Replacing P4-P3' residues flanking Arg(336) with those from Arg(372) or Arg(740) resulted in ~4-6-fold increases in rates of FXa-catalyzed inactivation of FVIIIa, which paralleled the rates of proteolysis at Arg(336). Examination of partial sequence replacements showed a predominant contribution of prime residues flanking the scissile bonds to the enhanced rates. Conversely, replacement of this sequence with residues flanking the slow-reacting Arg(562) site yielded inactivation and cleavage rates that were ~40% that of the WT values. The capacity for FXa to activate FVIII variants where cleavage at Arg(336) was accelerated due to flanking sequence replacement showed marked reductions in peak activity, whereas reducing the cleavage rate at this site enhanced peak activity. Furthermore, plasma-based thrombin generation assays employing the variants revealed significant reductions in multiple parameter values with acceleration of Arg(336) cleavage suggesting increased down-regulation of FXase. Overall, these results are consistent with a model of competition for activating and inactivating cleavages catalyzed by FXa that is modulated in large part by sequences flanking the scissile bonds.  相似文献   

11.
Factor VIIIa can be reconstituted from A2 subunit and A1/A3-C1-C2 dimer in a reaction that is facilitated by slightly acidic pH. We recently demonstrated that a truncated A1 (A1(37-336)) possessed markedly reduced affinity for A2 compared with intact A1, but retained 30% of native factor VIIIa activity in the presence of A3-C1-C2. We now identify A1-interactive regions for A2 using A1 fragments derived from a limited tryptic digest. Unfractionated trypsin-cleaved A1 inhibited reconstituted factor VIIIa activity. Two fragments, designated A1(37-121) and A1(221-336), markedly inhibited factor VIIIa reconstitution with either native A1 (K(i)=340 and 194 nM, respectively) or with A1(37-336) (K(i)=69 and 116 nM, respectively) at pH 6.0. A third fragment designated A1(122-206) did not possess inhibitory activity. At pH 7.2, the A1(221-336) partially inhibited reconstitution, whereas the A1(37-121) possessed little if any inhibitory activity. Both fragments inhibited factor VIIIa reconstitution as judged by fluorescence energy transfer using acrylodan-labeled A2 and fluorescein-labeled A1 forms at pH 6.0. Furthermore, covalent cross-linking between A2 and A1(37-121) but not A1(221-336) was observed following reaction with a zero-length cross-linker. These findings demonstrate the presence of an extended, pH-dependent A2-interactive surface within regions 37-121 and 221-336 of A1. This interactive surface appears conformationally labile in the truncated A1 as judged by its apparent stabilization following association with A3-C1-C2.  相似文献   

12.
Factor VIII is activated and inactivated by plasmin by limited proteolysis. In our one-stage clotting assay, these plasmin-catalyzed reactions were inhibited by the addition of isolated factor VIII A2 subunits and by Glu-Gly-Arg-active-site modified factor IXa. SDS-PAGE analysis showed that an anti-A2 monoclonal antibody, recognizing the factor IXa-interactive site (residues 484-509), blocked the plasmin-catalyzed cleavage at Arg(336) and Arg(372) but not at Arg(740). Surface plasmon resonance-based assays and ELISA demonstrated that the A2 subunit bound to active-site modified anhydro-plasmin with high affinity (K(d): 21 nM). Both an anti-A2 monoclonal antibody and a peptide comprising of A2 residues 479-504 blocked A2 binding by approximately 80% and approximately 55%, respectively. Mutant A2 molecules where the basic residues in A2 were converted to alanine were evaluated for binding of anhydro-plasmin. Among the tested mutants, the R484A A2 mutant possessed approximately 250-fold lower affinity than the wild-type A2. The affinities of K377A, K466A, and R471A mutants were decreased by 10-20-fold. The inhibitory effect of R484A mutant on plasmin-catalyzed inactivation of factor VIIIa was approximately 20% of that of wild-type A2. In addition, the inactivation rate by plasmin of factor VIIIa reconstituted with R484A mutant was approximately 3-fold lower than that with wild-type A2. These findings demonstrate that Arg(484) plays a key role within the A2 plasmin-binding site, responsible for plasmin-catalyzed factor VIII(a) inactivation.  相似文献   

13.
Activation of factor VIII by thrombin occurs via limited proteolysis at R372, R740, and R1689. The resultant active factor VIIIa molecule consists of three noncovalently associated subunits: A1-a1, A2-a2, and A3-C1-C2 (50, 45, and 73 kDa respectively). Further proteolysis of factor VIIIa at R336 and R562 by activated protein C subsequently inactivates this cofactor. We now find that the factor VIIa-tissue factor complex (VIIa-TF/PL), the trigger of blood coagulation with restricted substrate specificity, can also catalyze limited proteolysis of factor VIII. Proteolysis of factor VIII was observed at 10 sites, producing 2 major fragments (47 and 45 kDa) recognized by an anti-factor VIII A2 domain antibody. Time courses indicated the slow conversion of the large fragment to 45 kDa, followed by further degradation into at least two smaller fragments. N-Terminal sequencing along with time courses of proteolysis indicated that VIIa-TF/PL cleaved factor VIII first at R740, followed by concomitant cleavage at R336 and R372. Although cleavage of the light chain at R1689 was observed, the majority remained uncleaved after 17 h. Consistent with this, only a transient 2-fold increase in factor VIII clotting activity was observed. Thus, heavy chain cleavage of factor VIII by VIIa-TF/PL produces an inactive factor VIII cofactor no longer capable of activation by thrombin. In addition, VIIa-TF/PL was found to inactivate thrombin-activated factor VIII. We hypothesize that these proteolyses may constitute an alternative pathway to regulate coagulation under certain conditions. In addition, the ability of VIIa-TF/PL to cleave factor VIII at 10 sites greatly expands the known protein substrate sequences recognized by this enzyme-cofactor complex.  相似文献   

14.
The mechanism of inactivation of bovine factor Va by plasmin was studied in the presence and absence of phospholipid vesicles (PCPS vesicles). Following 60-min incubation with plasmin (4 nm) membrane-bound factor Va (400 nm) is completely inactive, whereas in the absence of phospholipid vesicles following a 1-h incubation period, the cofactor retains 90% of its initial cofactor activity. Amino acid sequencing of the fragments deriving from cleavage of factor Va by plasmin demonstrated that while both chains of factor Va are cleaved by plasmin, only cleavage of the heavy chain correlates with inactivation of the cofactor. In the presence of a membrane surface the heavy chain of the bovine cofactor is first cleaved at Arg(348) to generate a fragment of M(r) 47,000 containing the NH(2)-terminal part of the cofactor (amino acid residues 1-348) and a M(r) 42,000 fragment (amino acid residues 349-713). This cleavage is associated with minimal loss in cofactor activity. Complete loss of activity of the membrane-bound cofactor coincides with three cleavages at the COOH-terminal portion of the M(r) 47,000 fragment: Lys(309), Lys(310), and Arg(313). These cleavages result in the release of the COOH terminus of the molecule and the production of a M(r) 40,000 fragment containing the NH(2)-terminal portion of the factor Va molecule. Factor Va was treated with plasmin in the absence of phospholipid vesicles followed by the addition of PCPS vesicles and activated protein C (APC). A rapid inactivation of the cofactor was observed as a result of cleavage of the M(r) 47,000 fragment at Arg(306) by APC and appearance of a M(r) 39,000 fragment. These data suggest a critical role of the amino acid sequence 307-348 of factor Va. A 42-amino acid peptide encompassing the region 307-348 of human factor Va (N42R) was found to be a good inhibitor of factor Va clotting activity with an IC(50) of approximately 1.3 microm. These data suggest that plasmin is a potent inactivator of factor Va and that region 307-348 of the cofactor plays a critical role in cofactor function and may be responsible for the interaction of the cofactor with factor Xa and/or prothrombin.  相似文献   

15.
Prothrombin is activated to thrombin by two sequential factor Xa-catalyzed cleavages, at Arg271 followed by cleavage at Arg320. Factor Va, along with phospholipid and Ca2+, enhances the rate of the process by 300,000-fold, reverses the order of cleavages, and directs the process through the meizothrombin pathway, characterized by initial cleavage at Arg320. Previous work indicated reduced rates of prothrombin activation with recombinant mutant factor Va defective in factor Xa binding (E323F/Y324F and E330M/V331I, designated factor VaFF/MI). The present studies were undertaken to determine whether loss of activity can be attributed to selective loss of efficiency at one or both of the two prothrombin-activating cleavage sites. Kinetic constants for the overall activation of prothrombin by prothrombinase assembled with saturating concentrations of recombinant mutant factor Va were calculated, prothrombin activation was assessed by SDS-PAGE, and rate constants for both cleavages were analyzed from the time course of the concentration of meizothrombin. Prothrombinase assembled with factor VaFF/MI had decreased k(cat) for prothrombin activation with Km remaining unaffected. Prothrombinase assembled with saturating concentrations of factor VaFF/MI showed significantly lower rate for cleavage of plasma-derived prothrombin at Arg320 than prothrombinase assembled with saturating concentrations of wild type factor Va. These results were corroborated by analysis of cleavage of recombinant prothrombin mutants rMz-II (R155A/R284A/R271A) and rP2-II (R155A/R284A/R320A), which can be cleaved only at Arg320 or Arg271, respectively. Time courses of these mutants indicated that mutations in the factor Xa binding site of factor Va reduce rates for both bonds. These data indicate that the interaction of factor Xa with the heavy chain of factor Va strongly influences the catalytic activity of the enzyme resulting in increased rates for both prothrombin-activating cleavages.  相似文献   

16.
Thrombin catalyzes the proteolytic activation of factor VIII, cleaving two sites in the heavy chain and one site in the light chain of the procofactor. Evaluation of thrombin binding the reaction products from heavy chain cleavage by steady state fluorescence energy transfer using a fluorophore-labeled, active site-modified thrombin as well as by solid phase binding assays using a thrombin Ser(205) --> Ala mutant indicated a high affinity site in the A1 subunit (K(d) approximately 5 nm) that was dependent upon the Na(+)-bound form of thrombin, whereas a moderate affinity site in the A2 subunit (K(d) approximately 100 nm) was observed for both Na(+)-bound and -free forms. The solid phase assay also indicated that hirudin blocked thrombin interaction with the A1 subunit and had little, if any, effect on its interaction with the A2 subunit. Conversely, heparin blocked thrombin interaction with the A2 subunit and showed a marginal effect on A1 binding. Evaluation of the A2 sequence revealed two regions rich in acidic residues that are localized close to the N and C termini of this domain. Peptides encompassing these clustered acidic regions, residues 373-395 and 719-740, blocked thrombin cleavage of the isolated heavy chain at Arg(372) and Arg(740) and inhibited A2 binding to thrombin Ser(205) --> Ala, suggesting that both A2 domain regions potentially support interaction with thrombin. A B-domainless, factor VIII double mutant Asp(392) --> Ala/Asp(394) --> Ala was constructed, expressed, and purified and possessed specific activity equivalent to a severe hemophilia phenotype. This mutant was resistant to cleavage at Arg(740), whereas cleavage at Arg(372) was not affected. These data suggest the acidic region comprising residues 389-394 in factor VIII A2 domain interacts with thrombin via its heparin-binding exosite and facilitates cleavage at Arg(740) during procofactor activation.  相似文献   

17.
Activation of prothrombin (Pro) by factor Xa to form thrombin occurs by proteolysis of Arg271-Thr272 and Arg320-Ile321, resulting in expression of regulatory exosites I and II. Cleavage of Pro by thrombin liberates fragment 1 and generates the zymogen analog, prethrombin 1 (Pre 1). The properties of exosite I on Pre 1 and its factor Xa activation intermediates were characterized in spectroscopic and equilibrium binding studies using the fluorescein-labeled probe, hirudin(54-65) ([5F]Hir(54-65)-(SO3-)). Prethrombin 2 (Pre 2), formed by factor Xa cleavage of Pre 1 at Arg271-Thr272, had the same affinity for hirudin(54-65) peptides as Pre 1 in the absence or presence of near-saturating fragment 2 (F2). Pre 2 and thrombin also had indistinguishable affinities for F2. By contrast, cleavage of Pre 1 at Arg320-Ile321, to form active meizothrombin des-fragment 1 MzT(-F1), showed a 11- to 20-fold increase in affinity for hirudin(54-65), indistinguishable from the 13- to 20-fold increase seen for conversion of Pre 2 to thrombin. Thus, factor Xa cleavage of Pre 1 at Arg271-Thr272 does not effect exosite I expression, whereas cleavage at Arg320-Ile321 results in concomitant activation of the catalytic site and exosite I. Furthermore, expression of exosite I on the Pre 1 activation intermediates is not modulated by F2, and exosite II is not activated conformationally. The differential expression of exosite I affinity on the Pre 1 activation intermediates and the previously demonstrated role of (pro)exosite I in factor Va-dependent substrate recognition suggest that changes in exosite I expression may regulate the rate and direction of the Pre 1 activation pathway.  相似文献   

18.
Factor VIII binds to phospholipid membranes and to von Willebrand factor (vWf) via its second C domain, which has lectin homology. The crystal structure of the C2 domain has prompted a model in which membrane binding is mediated by two hydrophobic spikes, each composed of a pair of residues displayed on a beta-hairpin turn, and also by net positive charge and specific interactions with phospho-l-serine. To test this model, we prepared 16 factor VIII mutants in which single or multiple amino acids were changed to alanine. Mutants at Arg(2215), Arg(2220), Lys(2227), Lys(2249), Gln(2213), Asn(2217), and Phe(2196)/Thr(2197) had specific activities that were >70% of the wild type. Mutants at Arg(2209), Lys(2227), Trp(2313), and Arg(2320) were degraded within the cell. Hydrophobic spike mutants at Met(2199)/Phe(2200), Leu(2251)/Leu(2252), and Met(2199)/Phe(2200)/Leu(2251)/Leu(2252) (4-Ala) exhibited 43, 59, and 91% reduction in specific activity in the activated partial thromboplastin time assay. In a phospholipid-limiting factor Xa activation assay, these mutants had a 65, 85, and 96% reduction in specific activity. Equilibrium binding of fluorescent, sonicated phospholipid vesicles to mutants immobilized on Superose beads was measured by flow cytometry. The affinities for phospholipid were reduced approximately 20-, 30-, and >35-fold for 2199/2200, 2251/2252, and 4-Ala, respectively. A dimeric form of mature vWf bound to immobilized factor VIII and the same mutants, but the affinities of the mutants were reduced approximately 5-, 10-, and >20-fold, respectively. In a competition, solution phase enzyme-linked immunosorbent assay, plasma vWf bound factor VIII and the same mutants with the affinities for the mutants reduced >5-, >5-, and >50-fold, respectively. We conclude that the two hydrophobic spikes are constituents of both the phospholipid-binding and vWf-binding motifs. In plasma, vWf apparently binds the inherently sticky membrane-binding motif, preventing nonspecific interactions.  相似文献   

19.
APC (activated Protein C) inactivates human Factor VIIIa following cleavage at residues Arg336 and Arg562 within the A1 and A2 subunits respectively. The role of the P1 arginine in APC-catalysed inactivation of Factor VIIIa was examined by employing recombinant Factor VIIIa molecules where residues 336 and 562 were replaced with alanine and/or glutamine. Stably expressed Factor VIII proteins were activated by thrombin and resultant Factor VIIIa was reacted at high concentration with APC to minimize cofactor inactivation due to A2 subunit dissociation. APC cleaved wild-type Factor VIIIa at the A1 site with a rate approximately 25-fold greater than that for the A2 site. A1 mutants R336A and R336Q were inactivated approximately 9-fold slower than wild-type Factor VIIIa, whereas the A2 mutant R562A was inactivated approximately 2-fold slower. No cleavage at the mutated sites was observed. Taken together, these results suggested that cleavage at the A1 site was the dominant mechanism for Factor VIIIa inactivation catalysed by the proteinase. On the basis of cleavage at Arg336, a K(m) value for wild-type Factor VIIIa of 102 nM was determined, and this value was significantly greater than K(i) values (approximately 9-18 nM) obtained for an R336Q/R562Q Factor VIIIa. Furthermore, evaluation of a series of cluster mutants in the C-terminal region of the A1 subunit revealed a role for acidic residues in segment 341-345 in the APC-catalysed proteolysis of Arg336. Thus, while P1 residues contribute to catalytic efficiency, residues removed from these sites make a primary contribution to the overall binding of APC to Factor VIIIa.  相似文献   

20.
Factor VIIIa, a cofactor for the protease factor IXa, is a trimer of A1, A2 and A3-C1-C2 subunits. In the absence of phospholipid (PL), the k(cat) for factor VIIIa-dependent, factor IXa-catalyzed conversion of factor X was markedly less than that observed in the presence of PL (approx. 150 min(-1)) and decreased as the ionic strength of the reaction increased. At low salt concentration, the k(cat) (5.5 min(-1)) was approx. 8-fold greater than observed at near physiologic ionic strength (0.7 min(-1)). However, this level of salt showed minimal effects on the intermolecular affinities of factor VIIIa (or isolated A2 subunit) for factor IXa or on the K(m) for factor X. Alternatively, the association of A2 subunit with A1 subunit was sensitive to increases in salt and paralleled the reduction in k(cat) observed with factor VIIIa. This instability was not observed in PL-containing reactions. Fluorescence energy transfer between acrylodan-A2 and fluorescein-A1/A3-C1-C2 dimer showed a requirement for both PL and factor IXa for maximal association of A2 with dimer. These results indicate that in the presence of factor IXa, the salt-dependent dissociation of factor VIIIa subunits is significantly enhanced in the absence of PL, promoting a reduced k(cat) for the cofactor-dependent generation of factor Xa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号