首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conformational energy analyses were carried out on the chemotactic tripeptide fMLF (CHO-Met-Leu-Phe) and three analogs fALF (CHO-Ala-Leu-Phe). fMF (CHO-Met-Phe), and MLF (H-Met-Leu-Phe). A near-folded or puckered conformation predominates in all four peptides. The calculated average end-to-end distance R of each of the peptides is 7.4 A, 7.6 A, 7.0 A, and 7.3 A, respectively (where bends have R less than or equal to 7 A and extended structures have R approximately 10.5 A). The puckered conformation calculated for fMLF is similar to that determined experimentally for fMLF in nonpolar solvents and in the protein receptor. The results suggest that maximum chemotactic activity of the peptides depends on a combination of the chemical structure (the presence of N-formyl-methionine) and backbone conformation (C7conformation of the first amino acid residue).  相似文献   

2.
The formyl peptide receptor (FPR) is a chemotactic G protein-coupled receptor found on the surface of phagocytes. We have previously shown that the formyl peptide binding site maps to the membrane-spanning region (Miettinen, H. M., Mills, J. S., Gripentrog, J. M., Dratz, E. A., Granger, B. L., and Jesaitis, A. J. (1997) J. Immunol. 159, 4045-4054). Recent reports have indicated that non-formylated peptides, such as MMWLL can also activate this receptor (Chen, J., Bernstein, H. S., Chen, M., Wang, L., Ishi, M., Turck, C. W., and Coughlin, S. R. (1995) J. Biol. Chem. 270, 23398-23401.) Here we show that the selectivity for the binding of different NH(2)-terminal analogs of MMWLL or MLF can be markedly altered by mutating Asp-106 to asparagine or Arg-201 to alanine. Both D106N and R201A produced a similar change in ligand specificity, including an enhanced ability to bind the HIV-1 peptide DP178. In contrast, the mutation R205A exhibited altered specificity at the COOH terminus of fMLF, with R205A binding fMLF-O-butyl > fMLF-O-methyl > fMLF, whereas wt FPR bound fMLF > fMLF-O-methyl approximately fMLF-O-butyl. These data, taken together with our previous finding that the leucine side chain of fMLF is probably bound to FPR near FPR (93)VRK(95) (Mills, J. S., Miettinen, H. M., Barnidge, D., Vlases, M. J., Wimer-Mackin, S., Dratz, E. A., and Jesaitis, A. J. (1998) J. Biol. Chem. 273, 10428-10435.), indicate that the most likely positioning of fMLF in the binding pocket of FPR is approximately parallel to the fifth transmembrane helix with the formamide group of fMLF hydrogen-bonded to both Asp-106 and Arg-201, the leucine side chain pointing toward the second transmembrane region, and the COOH-terminal carboxyl group of fMLF ion-paired with Arg-205.  相似文献   

3.
N-Formyl-methionyl peptides can specifically bind to surface receptors on phagocytic cells. A single copy of N-formyl-methionine-leucine-phenylalanine (fMLF) covalently linked to a poly(ethylene glycol)-based polymer displayed reduced binding avidity (K(d) = 190 nM) for differentiated HL-60 cells relative to free fMLF (K(d) = 28 nM). Increasing the number of fMLF residues (up to eight) attached to a single polymer results in enhanced avidity for these cells (K(d) = 0.18 nM), which appears to be independent of whether the polymer backbone is linear or branched. However, no conjugate showed enhanced ability to activate phagocytic cells, relative to the free peptide (EC(50) = 5 nM), as measured by transient stimulation of release of calcium ions from intracellular stores into the cytoplasm. A polymer bearing four fMLF and four digoxigenin residues showed specific enhancement in binding to differentiated HL-60 cells and mouse peritoneal macrophages in situ relative to a polymer lacking fMLF; no such enhancement was seen in binding to receptor-negative lymphocytic Jurkat cells. These results suggest that multiple fMLF residues linked to a drug-delivery polymer can be used to target appended drugs to phagocytic cells with relatively little toxicity due to cellular activation.  相似文献   

4.
Spinorphin is an endogenous heptapeptide (leucylvalylvalyltyrosylprolyltryptophylthreonine), first isolated from bovine spinal cord, whose sequence matches a conserved region of beta-hemoglobin. Also referred to as LVV-hemorphin-4 and a member of the nonclassical opioid hemorphin family, spinorphin inhibits enkephalin-degrading enzymes and is analgesic. Recently, spinorphin was reported to block neutrophil activation induced by the chemotactic N-formylpeptide N-formylmethionylleucylphenylalanine (fMLF), suggesting a potential role as an endogenous negative regulator of inflammation. Here we use both gain- and loss-of-function genetic tests to identify the specific mechanism of spinorphin action on neutrophils. Spinorphin induced calcium flux in normal mouse neutrophils, but was inactive in neutrophils from mice genetically deficient in the fMLF receptor subtype FPR (N-formylpeptide receptor). Consistent with this, spinorphin induced calcium flux in human embryonic kidney 293 cells transfected with mouse FPR, but had no effect on cells expressing the closely related fMLF receptor subtype FPR2. Despite acting as a calcium-mobilizing agonist at FPR, spinorphin was a weak chemotactic agonist and effectively blocked neutrophil chemotaxis induced by fMLF at concentrations selective for FPR. Spinorphin did not affect mouse neutrophil chemotaxis induced by concentrations of fMLF that selectively activate FPR2. Thus, spinorphin blocks fMLF-induced neutrophil chemotaxis by acting as a specific antagonist at the fMLF receptor subtype FPR.  相似文献   

5.
Human leukemic HL-60 cells were differentiated into neutrophil-like cells by treatment with dimethylsulfoxide (Me2SO) or N6,O2'-dibutyryladenosine 3',5'-phosphate (Bt2cAMP), and membrane fractions were prepared from the differentiated cells. Receptors for fMLF (fM,N-formylmethionine) and guanine-nucleotide-binding regulatory proteins (G proteins) serving as the substrate for pertussis toxin (islet-activating protein; IAP) were extracted from cell membranes then reconstituted into phospholipid vesicles. The binding of fMLF to the reconstituted vesicles (or the membranes) was determined with 10 nM [3H] fMLF. In both cases, high-affinity binding to vesicle preparations from the Me2SO- and Bt2cAMP-induced cells was abolished following treatment with IAP, suggesting that fMLF receptors were functionally coupled to IAP-sensitive G proteins in each of the two vesicle types. However, the high-affinity fMLF binding was much higher in vesicle preparations originating from Bt2cAMP-induced cells than in those from Me2SO-induced cells, although the amount of IAP-substrate G protein reconstituted into the each phospholipid vesicles preparation was not significantly different from the other. The G proteins of the two differentiated cells were both identified as inhibitory forms (Gi-2) based on their electrophoretic mobilities and immunoblot analyses. When purified Gi-2 from rat brain was reconstituted into the two IAP-treated vesicles, high-affinity fMLF binding was restored in a similar manner in both. IAP-substrate G proteins partially purified from the two differentiated HL-60 cells were also effective in restoring high-affinity fMLF binding to the IAP-treated vesicles. However, a significant difference was observed that the reconstituted binding was higher with the G-protein-rich fraction from Bt2cAMP-induced cells than with that from Me2SO-induced cells, with each of the two IAP-treated vesicle types. These results suggest that the different high-affinity binding of fMLF observed in the two differentiated HL-60 cells are due to a difference in the property of endogenous G proteins rather than fMLF receptors, though the two G proteins are indistinguishable from each other in terms of the subtype of G protein, Gi-2.  相似文献   

6.
The non-self cellular (hemocytic) responses of Galleria mellonella larvae, including the attachment to slides and the removal of the bacteria Xenorhabdus nematophila and Bacillus subtilis from the hemolymph, were affected by N-formyl peptides. Both N-formyl methionyl-leucyl-phenylalanine (fMLF) and the ester derivative decreased hemocyte adhesion in vitro, and both elevated hemocyte counts and suppressed the removal of both X. nematophila and B. subtilis from the hemolymph in vivo. The amide derivative and the antagonist tertiary-butoxy-carbonyl-methionyl-leucyl-phenylalanine (tBOC) increased hemocyte attachment to glass. The fMLF suppressed protein discharge from monolayers of granular cells with and without bacterial stimulation, while tBOC stimulated protein discharge. The peptide tBOC offset the effects of fMLF in vitro and in vivo. This is the first report implying the existence of formyl peptide receptors on insect hemocytes in which the compounds fMLF and tBOC inhibited and activated hemocyte activity, respectively.  相似文献   

7.
Myeloid leukemia factor 1 (MLF1) stabilizes the activity of the tumor suppressor p53 by suppressing its E3 ubiquitin ligase, COP1, through a third component of the COP9 signalosome (CSN3). However, little is known about how MLF1 functions upstream of the CSN3-COP1-p53 pathway and how its deregulation by the formation of the fusion protein nucleophosmin (NPM)-MLF1, generated by t(3;5)(q25.1;q34) chromosomal translocation, leads to leukemogenesis. Here we show that MLF1 is a cytoplasmic-nuclear-shuttling protein and that its nucleolar localization on fusing with NPM prevents the full induction of p53 by both genotoxic and oncogenic cellular stress. The majority of MLF1 was located in the cytoplasm, but the treatment of cells with leptomycin B rapidly induced a nuclear accumulation of MLF1. A mutation of the nuclear export signal (NES) motif identified in the MLF1 sequence enhanced the antiproliferative activity of MLF1. The fusion of MLF1 with NPM translocated MLF1 to the nucleolus and abolished the growth-suppressing activity. The introduction of NPM-MLF1 into early-passage murine embryonic fibroblasts allowed the cells to escape from cellular senescence at a markedly earlier stage and induced neoplastic transformation in collaboration with the oncogenic form of Ras. Interestingly, disruption of the MLF1-derived NES sequence completely abolished the growth-promoting activity of NPM-MLF1 in murine fibroblasts and hematopoietic cells. Thus, our results provide important evidence that the shuttling of MLF1 is critical for the regulation of cell proliferation and a disturbance in the shuttling balance increases the cell's susceptibility to oncogenic transformation.  相似文献   

8.
Calpain inhibitors, including peptide aldehydes (N-acetyl-Leu-Leu-Nle-CHO and N-acetyl-Leu-Leu-Met-CHO) and α-mercapto-acrylic acid derivatives (PD150606 and PD151746), have been shown to stimulate phagocyte functions via activation of human formyl peptide receptor (hFPR) and/or hFPR-like 1 (hFPRL1). Using the homology modeling of the receptors and the ligand docking simulation, here we show that these calpain inhibitors could bind to the putative N-formyl-Met-Leu-Phe (fMLF) binding site on hFPR and/or hFPRL1. The studies with HEK-293 cells stably expressing hFPR or hFPRL1 showed that the concentrations of calpain inhibitors required to induce an increase in cytoplasmic free Ca2+ ([Ca2+]i) was much higher (>100 folds) than those of fMLF and Trp-Lys-Tyr-Met-Val-D-Met (WKYMVm). HEK-293 cells expressing hFPR or hFPRL1 with the mutated fMLF binding site never exhibited the [Ca2+]i response to calpain inhibitors. When the optimal concentrations of each stimulus were used, pretreatment of cells with fMLF or WKYMVm abolished an increase in [Ca2+]i induced by calpain inhibitors as well as the same stimulus, whereas pretreatment of cells with calpain inhibitors significantly suppressed, but never abolished, the [Ca2+]i response induced by fMLF or WKYMVm, suggesting that the binding affinity of the inhibitors to the putative fMLF binding site may be lower than that of fMLF or WKYMVm.  相似文献   

9.
Myeloid leukemia factor 1 (MLF1) is associated with the development of leukemic diseases such as acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). However, information on the physiological function of MLF1 is limited and mostly derived from studies identifying MLF1 interaction partners like CSN3, MLF1IP, MADM, Manp and the 14-3-3 proteins. The 14-3-3-binding site surrounding S34 is one of the only known functional features of the MLF1 sequence, along with one nuclear export sequence (NES) and two nuclear localization sequences (NLS). It was recently shown that the subcellular localization of mouse MLF1 is dependent on 14-3-3 proteins. Based on these findings, we investigated whether the subcellular localization of human MLF1 was also directly 14-3-3-dependent. Live cell imaging with GFP-fused human MLF1 was used to study the effects of mutations and deletions on its subcellular localization. Surprisingly, we found that the subcellular localization of full-length human MLF1 is 14-3-3-independent, and is probably regulated by other as-yet-unknown proteins.  相似文献   

10.
The oxygen-dependent respiratory burst is a key neutrophil function required for the killing of bacteria. However, despite intensive investigation, the molecular events which initiate the respiratory burst remain unclear. Recent reports have suggested the agonist-induced hydrolysis of cellular phosphatidylcholine (PtdCho) by phospholipase D may be an essential requirement for initiating or mediating the respiratory burst. We have investigated the effects of the chemotactic peptide N-formylmethionylleucylphenylalanine (fMLF), the phorbol ester 12-O-tetradecanoyl-phorbol 13-acetate (TPA) and the polyunsaturated fatty acids arachidonic [20:4 (n-6)] and docosahexaenoic [22:6 (n-3)] acids in light of this hypothesis. Ethanol-inhibited superoxide production in response to 20:4, 22:6 and fMLF, in a dose-dependent fashion, suggesting an involvement of phospholipase D. The phosphatidic-acid phosphohydrolase inhibitor DL-propranolol completely inhibited superoxide production induced by both 20:4 and 22:6, and partially inhibited the response to TPA. In contrast, superoxide production in response to fMLF was increased by propranolol. fMLF and TPA, but not the fatty acids, stimulated phospholipase D as indicated by the accumulation of phosphatidic acid and, in the presence of ethanol, phosphatidylethanol derived from PtdCho. Extracellular Ca2+ was found to be an essential requirement for fMLF-induced superoxide production. However, responses to the fatty acids were dramatically enhanced under Ca(2+)-free conditions. Responses to TPA were independent of the extracellular Ca2+ concentration. Both fatty acids and fMLF, but not TPA, mobilised Ca2+ from intracellular stores, a response insensitive to the effects of both ethanol and propranolol. These results show that, unlike fMLF and TPA, the fatty acids do not cause hydrolysis of PtdCho by phospholipase D. However, the data indirectly suggests that the fatty acids may initiate the phospholipase-D-catalysed hydrolysis of phospholipids other than PtdCho.  相似文献   

11.
In guinea-pig ileum (GPI), the chemotactic peptide N-formyl-Met-Leu-Phe-OH (fMLF) possesses spasmogenic properties through the activation of formyl peptide receptors (FPRs). Despite this, the mediators involved remain to be elucidated. fMLF (1 nM-1 μM) induced a dose-dependent contraction of GPI (EC50 = 24 nM), that is blocked by pre-treatment with the FPRs antagonist Boc2. The pre-treatment with tetrodotoxin (TTX) atropine or with SR140333 reduced the fMLF-induced contraction, whereas with hexamethonium, MEN10627, SB222200, mepyramine, cimetidine, thioperamide or methysergide did not produce any effect. With DuP697 pre-treatment, but not with piroxicam, reduced the fMLF-induced contraction. After stimulation with 24 nM fMLF, a strong increase in the PGE2 levels was observed. Finally, the concomitant blocking of the NK1 receptor, the muscarinic receptors and COX-2 abolished the GPI contractions induced by fMLF.fMLF induced a concentration-dependent contraction of guinea-pig jejunum (EC50 = 11 nM), proximal colon (EC50 = 3.5 nM) and distal colon (EC50 = 2.2 nM), with a time-course similar to that observed in GPI. In these preparations as well, the co-administration of atropine, SR140333 and DuP697 abolished the contractions induced by fMLF. Intraperitoneal injection of fMLF (0.1 or 1 μmol/kg) enhanced the gastrointestinal motility in mice, abolished by the co-administration of atropine, SR140333 and DuP697. In conclusion, we showed that fMLF exerts spasmogenic actions on guinea-pig intestine both in vitro and in vivo through the release of acetylcholine and substance P from myenteric motorneurons and through prostanoids, probably from the inflammatory cells of the enteric immune system.  相似文献   

12.
Myeloid leukemia factor 1 (MLF1) was first identified as the leukemic fusion protein NPM-MLF1 generated by the t(3;5)(q25.1;q34) chromosomal translocation. Although MLF1 expresses normally in a variety of tissues including hematopoietic stem cells and the overexpression of MLF1 correlates with malignant transformation in human cancer, little is known about how MLF1 is involved in the regulation of cell growth. Here we show that MLF1 is a negative regulator of cell cycle progression functioning upstream of the tumor suppressor p53. MLF1 induces p53-dependent cell cycle arrest in murine embryonic fibroblasts. This action requires a novel binding partner, subunit 3 of the COP9 signalosome (CSN3). A reduction in the level of CSN3 protein with small interfering RNA abrogated MLF1-induced G1 arrest and impaired the activation of p53 by genotoxic stress. Furthermore, ectopic MLF1 expression and CSN3 knockdown inversely affect the endogenous level of COP1, a ubiquitin ligase for p53. Exogenous expression of COP1 overcomes MLF1-induced growth arrest. These results indicate that MLF1 is a critical regulator of p53 and suggest its involvement in leukemogenesis through a novel CSN3-COP1 pathway.  相似文献   

13.
The ability of the lectin concanavalin A (ConA) and N-formyl-methionyl-leucyl-phenylalanine (fMLF) to induce protein-tyrosine phosphorylation in human neutrophils was examined by immunoblot analysis. ConA caused an increase in tyrosine phosphorylation of protein bands with apparent molecular masses of 120, 80, 76, 66 and 40 kDa; on the other hand, fMLF caused an increase in those of only 80-kDa and 40-kDa proteins. These protein-tyrosine phosphorylations were time- and dose-dependent. The tyrosine phosphorylation of 40-kDa protein induced by fMLF was suppressed but that by ConA was not suppressed by pertussis toxin pretreatment. At the same time, pertussis toxin pretreatment also inhibited lysozyme release and aggregation of neutrophils induced by fMLF but did not inhibit those responses induced by ConA. These results suggest that the tyrosine phosphorylation of 40-kDa protein may be involved in a part of neutrophil activation and be regulated via pleiotropic signal transduction pathways. In addition, immunoblot analysis employing antibodies against microtubule-associated protein 2 (MAP2) kinase suggested that this tyrosine-phosphorylated 40-kDa protein might be the MAP2 kinase.  相似文献   

14.
Myeloid leukaemia factor 1 (MLF1) binds to 14-3-3 adapter proteins by a sequence surrounding Ser34 with the functional consequences of this interaction largely unknown. We present here the high-resolution crystal structure of this binding motif [MLF1(29-42)pSer34] in complex with 14-3-3ε and analyse the interaction with isothermal titration calorimetry. Fragment-based ligand discovery employing crystals of the binary 14-3-3ε/MLF1(29-42)pSer34 complex was used to identify a molecule that binds to the interface rim of the two proteins, potentially representing the starting point for the development of a small molecule that stabilizes the MLF1/14-3-3 protein-protein interaction. Such a compound might be used as a chemical biology tool to further analyse the 14-3-3/MLF1 interaction without the use of genetic methods. Database Structural data are available in the Protein Data Bank under the accession number(s) 3UAL [14-3-3ε/MLF1(29-42)pSer34 complex] and 3UBW [14-3-3ε/MLF1(29-42)pSer34/3-pyrrolidinol complex] Structured digital abstract ? 14-3-3 epsilon?and?MLF1?bind?by?x-ray crystallography?(View interaction) ? 14-3-3 epsilon?and?MLF1?bind?by?isothermal titration calorimetry?(View Interaction:?1,?2).  相似文献   

15.
16.
AIMS: In this study we determined the extent to which lactic acid bacteria (LAB) occurred in brandy base wines, their ability to catalyse the malolactic fermentation (MLF) and the effect of MLF on the quality of the base wine and the brandy distillate. METHODS AND RESULTS: Lactic acid bacteria were isolated and enumerated from grape juice, experimental and commercially produced brandy base wines. Spontaneous MLF occurred in approximately 50% of the commercial base wines. The occurrence of MLF had an influence on the quality of the base wines and the resulting distillates. In samples where MLF occurred there was a loss of fruitiness and in the intensity of aroma. Volatile compounds like iso-amyl acetate, ethyl acetate, ethyl caproate, 2-phenethyl acetate and hexyl acetate decreased in samples having undergone MLF, while ethyl lactate, acetic acid and diethyl succinate increased in the same samples. CONCLUSIONS: Spontaneous malolactic fermentation does occur in commercial brandy base wines and it has an influence on base wine and brandy quality. SIGNIFICANCE AND IMPACT OF THE STUDY: This study showed that MLF influences the quality of the base wine and the resulting distillate and with this in mind commercial base wine producers should be able to produce brandy of higher quality.  相似文献   

17.
The effects of the N-formyl methionyl peptide, formyl-methionyl-leucyl phenylalanine (fMLF) on the lateral mobility of the complement receptor type 1 (CR1/CD35) in glass-adherent human neutrophils were investigated, using fluorescence recovery after photobleaching (FRAP) and confocal microscopy (CSLM). It was found that addition of 0.1–1 M fMLF increased the diffusion constant (D) of CR1/CD35 to 167–278% of controls. No effect was observed on the receptor distribution or the mobile fraction of receptors. The effect of fMLF on the lateral diffusion of CR1/CD35 could be totally inhibited by addition of pertussis toxin (PT, 250 ng/ml) or of the free radical scavenger enzymes superoxide dismutase (SOD, 2000 U/ml) and catalase (CAT, 200 U/ml), added together the results show that oxidative metabolites produced by neutrophils in response to fMLF can modulate CR1/CD35 diffusion, and indicate a regulatory role for oxygen radicals in phagocytosis.  相似文献   

18.
Neutrophils play a key role at inflammatory sites where, in addition to destroying infecting microorganisms, they may also have deleterious effects on host tissues. Both activities involve activation of the NADPH-oxidase that produces bactericidal and tissue-destructive reactive oxygen species (ROS). We activated the murine NADPH-oxidase using different types of neutrophil activators and characterized the oxidative responses with respect to magnitude, localization, and kinetics. We show that agonist-induced activation of murine neutrophils results exclusively in extracellular release of ROS and no intracellular production could be detected. We also show that the formylated peptide, formyl-Met-Leu-Phe (fMLF), is a much less potent activator of the murine NADPH-oxidase than of the human analogue. Nevertheless, fMLF responses can be primed by pretreating the murine neutrophils with either cytochalasin B or bacterial lipopolysaccharide. Finally, we show that a synthetic hexapeptide, WKYMVM, is a more potent stimulus than fMLF for murine neutrophils and that these two agonists probably act via nonidentical high-affinity receptors.  相似文献   

19.
In this research work we investigated changes in volatile aroma composition associated with four commercial Oenococcus oeni malolactic fermentation (MLF) starter cultures in South African Shiraz and Pinotage red wines. A control wine in which MLF was suppressed was included. The MLF progress was monitored by use of infrared spectroscopy. Gas chromatographic analysis and capillary electrophoresis were used to evaluate the volatile aroma composition and organic acid profiles, respectively. Significant strain-specific variations were observed in the degradation of citric acid and production of lactic acid during MLF. Subsequently, compounds directly and indirectly resulting from citric acid metabolism, namely diacetyl, acetic acid, acetoin, and ethyl lactate, were also affected depending on the bacterial strain used for MLF. Bacterial metabolic activity increased concentrations of the higher alcohols, fatty acids, and total esters, with a larger increase in ethyl esters than in acetate esters. Ethyl lactate, diethyl succinate, ethyl octanoate, ethyl 2-methylpropanoate, and ethyl propionate concentrations were increased by MLF. In contrast, levels of hexyl acetate, isoamyl acetate, 2-phenylethyl acetate, and ethyl acetate were reduced or remained unchanged, depending on the strain and cultivar evaluated. Formation of ethyl butyrate, ethyl propionate, ethyl 2-methylbutryate, and ethyl isovalerate was related to specific bacterial strains used, indicating possible differences in esterase activity. A strain-specific tendency to reduce total aldehyde concentrations was found at the completion of MLF, although further investigation is needed in this regard. This study provided insight into metabolism in O. oeni starter cultures during MLF in red wine.  相似文献   

20.
The aim of this study was to clarify the role of the actin cytoskeleton during chemotactic peptide fMet-Leu-Phe (fMLF)-stimulated respiratory burst in human neutrophil granulocytes. Reactive oxygen species (ROS) was measured as luminol-amplified chemiluminescence (CL) and F-actin content as bodipy phallacidin fluorescence in neutrophils treated with latrunculin B or jasplakinolide, an inhibitor and activator of actin polymerization, respectively. Latrunculin B markedly decreased, whereas jasplakinolide increased, the F-actin content in neutrophils, unstimulated or stimulated with fMLF. Latrunculin B enhanced the fMLF-triggered ROS-production more than tenfold. Jasplakinolide initially inhibited the fMLF-induced CL-response, however, caused a potent second sustained phase (>400% of control). Both actin drugs triggered a substantial CL-response when added 5-25 min after fMLF. This was also valid for chemotactic doses of fMLF, where latrunculin B and jasplakinolide amplified the ROS-production 5-10 times. By using specific signal transduction inhibitors, we found that the NADPH oxidase activation triggered by destabilization of the actin cytoskeleton occurs downstream of phospholipase C and protein kinase C but is mediated by Rho GTPases and tyrosine phosphorylation. In conclusion, rearrangements of the actin cytoskeleton are a prerequisite in connecting ligand/receptor activation, generation of second messengers and assembly of the NADPH oxidase in neutrophil granulocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号