首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Mu B protein is an ATP-dependent DNA-binding protein and an allosteric activator of the Mu transposase. As a result of these activities, Mu B is instrumental in efficient transposition and target-site choice. We analysed in vivo the role of Mu B in the two different recombination reactions performed by phage Mu: non-replicative transposition, the pathway used during integration, and replicative transposition, the pathway used during lytic growth. Utilizing a sensitive PCR-based assay for Mu transposition, we found that Mu B is not required for integration, but enhances the rate and extent of the process. Furthermore, three different mutant versions of Mu B, Mu BC99Y, Mu BK106A, and Mu B1-294, stimulate integration to a similar level as the wild-type protein. In contrast, these mutant proteins fail to support Mu growth. This deficiency is attributable to a defect in formation of an essential intermediate for replicative transposition. Biochemical analysis of the Mu B mutant proteins reveals common features: the mutants retain the ability to stimulate transposase, but are defective in DNA binding and target DNA delivery. These data indicate that activation of transposase by Mu B is sufficient for robust non-replicative transposition. Efficient replicative transposition, however, demands that the Mu B protein not only activate transposase, but also bind and deliver the target DNA.  相似文献   

2.
3.
4.
G Chaconas  E B Giddens  J L Miller  G Gloor 《Cell》1985,41(3):857-865
The phage-encoded proteins required for conservative integration of infecting bacteriophage Mu DNA were investigated. Our findings show that functional gpA, an essential component of the phage transposition system, is required for integration. The Mu B protein, which greatly enhances replicative transposition of Mu DNA, is also required. Furthermore, a truncated form of gpB lacking 18 amino acids from the carboxy terminus is blocked in replicative transposition, but not conservative integration. Our results point to a more prominent role for gpB than simply a replication enhancer in Mu DNA transposition. The ability of a truncated form of B to function in conservative integration, but not replicative transposition, also suggests a key role for the carboxy-terminal domain of the protein in the replicative reaction. The existence of a shortened form of gpB, which uncouples conservative integration from replicative transposition, should be invaluable for future dissection of Mu DNA transposition.  相似文献   

5.
DNA transposases use a single active center to sequentially cleave the transposable element DNA and join this DNA to a target site. Recombination requires controlled conformational changes within the transposase to ensure that these chemically distinct steps occur at the right time and place, and that the reaction proceeds in the net forward direction. Mu transposition is catalyzed by a stable complex of MuA transposase bound to paired Mu DNA ends (a transpososome). We find that Mu transpososomes efficiently catalyze disintegration when recombination on one end of the Mu DNA is blocked. The MuB activator protein controls the integration versus disintegration equilibrium. When MuB is present, disintegration occurs slowly and transpososomes that have disintegrated catalyze subsequent rounds of recombination. In the absence of MuB, disintegration goes to completion. These results together with experiments mapping the MuA-MuB contacts during DNA joining suggest that MuB controls progression of recombination by specifically stabilizing a concerted transition to the “joining” configuration of MuA. Thus, we propose that MuB's interaction with the transpososome actively promotes coupled joining of both ends of the element DNA into the same target site and may provide a mechanism to antagonize formation of single-end transposition products.  相似文献   

6.
M Mizuuchi  K Mizuuchi 《The EMBO journal》2001,20(23):6927-6935
Initiation of phage Mu DNA transposition requires assembly of higher order protein-DNA complexes called Mu transpososomes containing the two Mu DNA ends and MuA transposase tetramer. Mu transpososome assembly is highly regulated and involves multiple DNA sites for transposase binding, including a transpositional enhancer called the internal activation sequence (IAS). In addition, a number of protein cofactors participate, including the target DNA activator MuB ATPase. We investigated the impact of the assembly cofactors on the kinetics of transpososome assembly with the aim of deciphering the reaction steps that are influenced by the cofactors. The transpositional enhancer IAS appears to have little impact on the initial pairing of the two Mu end segments bound by MuA. Instead, it accelerates the post-synaptic conformational step(s) that converts the reversible complex to the stable transpososome. The transpososome assembly stimulation by MuB does not require its stable DNA binding activity, which appears critical for directing transposition to sites distant from the donor transposon.  相似文献   

7.
The bacteriophage Mu transposase (the Mu A gene product), which is absolutely required for both integration of Mu and replicative transposition during the lytic cycle, has been overproduced by cloning the gene on a plasmid under the control of the phage lambda PL promoter. The protein has been purified to near homogeneity from the lysate of heat-induced cells of a strain carrying the plasmid. The purified protein is active as judged by its ability to complement Mu A- cell extracts for supporting Mu transposition in a cell-free reaction.  相似文献   

8.
A study of the properties of deletion mutants at the 3’ end ofA, the gene encoding the transposase protein of phage Mu, shows that the mutants are defective in the high-frequency non-replicative transposition observed early after Mu infection as well as the high-frequency replicative transposition observed during Mu lytic growth. They show near-normal levels of lysogenization, low frequency transposition and precise excision. The mutants behave as if they are “blind” to the presence of Mu B, a protein whose function is essential for the high frequency of both replicative and non-replicative Mudna transposition. We have sequenced these deletion mutants as well as the amber mutant A 7110 which is known to be defective in replicative transposition.A 7110 maps at the 3’ end of geneA. We suggest that the carboxyl-terminal region of the A-protein is involved in protein-protein interactions, especially with the B-protein. We also show in this study that mutations upstream of the Shine-Dalgarno sequence of geneA and within the preceding genener, perturb the synthesis of A-protein and that higher levels of A-protein cause an inhibition ofA activity.  相似文献   

9.
Kennedy AK  Haniford DB  Mizuuchi K 《Cell》2000,101(3):295-305
The transposase family of proteins mediate DNA transposition or retroviral DNA integration via multistep phosphoryl transfer reactions. For Tn10 and phage Mu, a single active site of one transposase protomer catalyzes the successive transposition reaction steps. We examined phosphorothioate stereoselectivity at the scissile position for all four reaction steps catalyzed by the Tn10 transposase. The results suggest that the first three steps required for double-strand cutting at the transposon end proceed as a succession of pseudo-reverse reaction steps while the 3' end of the transposon remains bound to the same side of the active site. However, the mode of substrate binding to the active site changes for the cut transposon 3' end to target DNA strand joining. The phosphorothioate stereoselectivity of the corresponding steps of phage Mu transposition and HIV DNA integration matches that of Tn10 reaction, indicating a common mode of substrate-active site interactions for this class of DNA transposition reactions.  相似文献   

10.
M Mizuuchi  T A Baker  K Mizuuchi 《Cell》1992,70(2):303-311
Discovery and characterization of a new intermediate in Mu DNA transposition allowed assembly of the transposition machinery to be separated from the chemical steps of recombination. This stable intermediate, which accumulates in the presence of Ca2+, consists of the two ends of the Mu DNA synapsed by a tetramer of the Mu transposase. Within this stable synaptic complex (SSC), the recombination sites are engaged but not yet cleaved. Thus, the SSC is structurally related to both the cleaved donor and strand transfer complexes, but precedes them on the transposition pathway. Once the active protein-DNA complex is constructed, it is conserved throughout transposition. The participation of internal sequence elements and accessory factors exclusively during SSC assembly allows recombination to be controlled prior to the irreversible chemical steps.  相似文献   

11.
M Yamauchi  T A Baker 《The EMBO journal》1998,17(18):5509-5518
MuB protein, an ATP-dependent DNA-binding protein, collaborates with Mu transposase to promote efficient transposition. MuB binds target DNA, delivers this target DNA segment to transposase and activates transposase''s catalytic functions. Using ATP-bound, ADP-bound and ATPase-defective MuB proteins we investigated how nucleotide binding and hydrolysis control the activities of MuB protein, important for transposition. We found that both MuB-ADP and MuB-ATP stimulate transposase, whereas only MuB-ATP binds with high affinity to DNA. Four different ATPase-defective MuB mutants fail to activate the normal transposition pathway, further indicating that ATP plays critical regulatory roles during transposition. These mutant proteins fall into two classes: class I mutants are defective in target DNA binding, whereas class II mutants bind target DNA, deliver it to transposase, but fail to promote recombination with this DNA. Based on these studies, we propose that the switch from the ATP- to ADP-bound form allows MuB to release the target DNA while maintaining its stimulatory interaction with transposase. Thus, ATP-hydrolysis by MuB appears to function as a molecular switch controlling how target DNA is delivered to the core transposition machinery.  相似文献   

12.
Bacteriophage Mu uses non-replicative transposition for integration into the host's chromosome and replicative transposition for phage propagation. Biochemical and structural comparisons together with evolutionary considerations suggest that the Mu transposition machinery might share functional similarities with machineries of the systems that are known to employ a hairpin intermediate during the catalytic steps of transposition. Model transposon end DNA hairpin substrates were used in a minimal-component in vitro system to study their proficiency to promote Mu transpososome assembly and subsequent MuA-catalyzed chemical reactions leading to the strand transfer product. MuA indeed was able to assemble hairpin substrates into a catalytically competent transpososome, open the hairpin ends and accurately join the opened ends to the target DNA. The hairpin opening and transposon end cleavage reactions had identical metal ion preferences, indicating similar conformations within the catalytic center for these reactions. Hairpin length influenced transpososome assembly as well as catalysis: longer loops were more efficient in these respects. In general, MuA's proficiency to utilize different types of hairpin substrates indicates a certain degree of flexibility within the transposition machinery core. Overall, the results suggest that non-replicative and replicative transposition systems may structurally and evolutionarily be more closely linked than anticipated previously.  相似文献   

13.
We have generated a series of 3' deletions of a cloned copy of the bacteriophage Mu transposase (A) gene. The corresponding truncated proteins, expressed under the control of the lambda PI promoter, were analysed in vivo for their capacity to complement a super-infecting MuAam phage, both for lytic growth and lysogeny, and for their effect on growth of wild-type Mu following infection or induction of a lysogen. Using crude cell extracts, we have also examined binding properties of these proteins to the ends of Mu. The results allow us to further define regions of the protein important in replicative transposition, establishment of lysogeny and DNA binding.  相似文献   

14.
We isolated 142 Hir- (host inhibition of replication) mutants of an Escherichia coli K-12 Mu cts Kil- lysogen that survived heat induction and the killing effect of Mu replicative transposition. All the 86 mutations induced by insertion of Tn5 or a kanamycin-resistant derivative of Tn10 and approximately one-third of the spontaneous mutations were found by P1 transduction to be linked to either zdh-201::Tn10 or Tn10-1230, indicating their location in or near himA or hip, respectively. For a representative group of these mutations, complementation by a plasmid carrying the himA+ gene or by a lambda hip+ transducing phage confirmed their identification as himA or hip mutations, respectively. Some of the remaining spontaneously occurring mutations were located in gyrA or gyrB, the genes encoding DNA gyrase. Mutations in gyrA were identified by P1 linkage to zei::Tn10 and a Nalr gyrA allele; those in gyrB were defined by linkage to tna::Tn10 and to a gyrB(Ts) allele. In strains carrying these gyrA or gyrB mutations, pBR322 plasmid DNA exhibited altered levels of supercoiling. The extent of growth of Mu cts differed in the various gyrase mutants tested. Phage production in one gyrA mutant was severely reduced, but it was only delayed and slightly reduced in other gyrA and gyrB mutants. In contrast, growth of a Kil- Mu was greatly reduced in all gyrase mutant hosts tested.  相似文献   

15.
Mu transposition occurs within a large protein-DNA complex called a transpososome. This stable complex includes four subunits of MuA transposase, each contacting a 22-base pair recognition site located near an end of the transposon DNA. These MuA recognition sites are critical for assembling the transpososome. Here we report that when concentrations of Mu DNA are limited, the MuA recognition sites permit assembly of transpososomes in which non-Mu DNA substitutes for some of the Mu sequences. These "hybrid" transpososomes are stable to competitor DNA, actively transpose the non-Mu DNA, and produce transposition products that had been previously observed but not explained. The strongest activator of non-Mu transposition is a DNA fragment containing two MuA recognition sites and no cleavage site, but a shorter fragment with just one recognition site is sufficient. Based on our results, we propose that MuA recognition sites drive assembly of functional transpososomes in two complementary ways. Multiple recognition sites help physically position MuA subunits in the transpososome plus each individual site allosterically activates transposase.  相似文献   

16.
Martin L. Pato  Claudia Reich 《Cell》1984,36(1):197-202
The transposase of bacteriophage Mu (gene A protein) mediates the coupled replication and integration processes that constitute transposition during the lytic cycle. Our previous results showed that the activity of the A protein is unstable, as its continued synthesis is required to maintain Mu DNA replication throughout the lytic cycle. We present here the results of experiments in which the A protein is used stoichiometrically and must be synthesized de novo for each round of Mu DNA replication. Induction of a Mu lysogen in the absence of DNA replication allows accumulation of potential for a single round of Mu DNA replication. Once achieved, this potential is stable even in the absence of further protein synthesis. Release of inhibition of DNA replication leads to a single semi-conservative replicative transposition event, followed by later rounds only if additional synthesis of the A protein is allowed.  相似文献   

17.
We present the detailed research on the previously described Escherichia coli K-12 Mud- mutants with impaired development of bacteriophage Mu. The ability of Mu phage DNA to penetrate into mutant cells on infection was shown. If introduced into the cells or combined with mud mutation by recombination, the prophage may be induced, which results in phage Mu lythic development and phage burst from mutant cells. In the course of conjugative transfer into the mutant cells, within a DNA fragment of the lysogenic donor chromosome, MupAp1 prophage is not inherited by recombinants. At the same time, Mu prophage deficient in genes A and B, whose products are required for transposition, is inherited by the mutant with the usual frequency. These data enable us to conclude that the mud mutations disturb the stage of conservative transposition which is connected with the insertion of the Mu prophage into the chromosome, after excision from the linear DNA introduced into the cells via infection or conjugation.  相似文献   

18.
PriA and other primosome assembly proteins of Escherichia coli recruit the major replicative helicase DnaB for replisome assembly during bacteriophage Mu transposition and replication. MuA transposase catalyzes the transfer of Mu ends to target DNA, forming a potential replication fork that provides the assembly site for the replisome. However, this fork lacks the single-stranded DNA needed to load DnaB. Although no pre-existing primosome assembly sites that bind PriA were found within the Mu end sequences, PriA was able to bind to the forked DNA structure created by MuA. The helicase activity of PriA could then open the duplex to create the DnaB binding site. In a tightly coupled reaction on synthetic forked substrates, PriA promoted both the unwinding of the lagging strand arm and preprimosome assembly to load DnaB onto the lagging strand template. PriA apparently translocated 3' to 5' along the lagging strand template until sufficient single-stranded DNA was exposed for binding of DnaB, which then translocated 5' to 3' in the opposite direction. Mutant PriA lacking helicase activity was unable to promote this process, and loss of PriA helicase impaired Mu DNA replication in vivo and in vitro. This suggests that the opening of the duplex by PriA helicase is a critical step in the initiation of Mu DNA replication. Concerted helicase and primosome assembly functions would allow PriA to act as initiator on recombination intermediates and stalled replication forks. As part of the replisome, PriA may act as a mobile initiator that minimizes interruptions in chromosomal replication.  相似文献   

19.
Retroviral integration, like all forms of DNA transposition, proceeds through a series of DNA cutting and joining reactions. During transposition, the 3' ends of linear transposon or donor DNA are joined to the 5' phosphates of a double-stranded cut in target DNA. Single-end transposition must be avoided in vivo because such aberrant DNA products would be unstable and the transposon would therefore risk being lost from the cell. To avoid suicidal single-end integration, transposons link the activity of their transposase protein to the combined functionalities of both donor DNA ends. Although previous work suggested that this critical coupling between transposase activity and DNA ends occurred before the initial hydrolysis step of retroviral integration, work in the related Tn10 and V(D)J recombination systems had shown that end coupling regulated transposase activity after the initial hydrolysis step of DNA transposition. Here, we show that integrase efficiently hydrolyzed just the wild-type end of two different single-end mutants of human immunodeficiency virus type 1 in vivo, which, in contrast to previous results, proves that two functional DNA ends are not required to activate integrase's initial hydrolysis activity. Furthermore, despite containing bound protein at their processed DNA ends, these mutant viruses did not efficiently integrate their singly cleaved wild-type end into target DNA in vitro. By comparing our results to those of related DNA recombination systems, we propose the universal model that end coupling regulates transposase activity after the first chemical step of DNA transposition.  相似文献   

20.
Y Kano  N Goshima  M Wada  F Imamoto 《Gene》1989,76(2):353-358
The closely related Escherichia coli genes hupA and hupB each encode a bacterial histone-like protein HU. We report here that mutator phage Mucts62 was unable to replicate in a hupA hupB double mutant, although it could replicate in hupA or hupB single mutant as efficiently as in the wild-type strain. Mucts62 was able to lysogenize the double mutant at 30 degrees C; cell killing occurred when the lysogen was incubated at 42 degrees C, but did not result in phage production. High-frequency non-replicative integration of Mu into host genomic DNA soon after infection could not be detected in the hupAB double mutant. These results provide the evidence that HU protein is essential for replicative transposition of Mu phage in E. coli, and also participates in high-frequency conservative integration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号