首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It has been known that umami substances such as monosodium L-glutamate (MSG) and 5'-inosine monophosphate (IMP) elicit a unique taste called 'umami' in humans. One of the characteristics of the umami taste is synergism: the synergistic enhancement of the magnitude of response produced by the addition of 5'-ribonucleotides to MSG. In addition to this well-documented synergism, we report here for the first time on another type of synergism between a glutamate receptor agonist, L-AP4, and sweet substances, by analyzing the chorda tympani responses in rats. The results are as follows: (i) when L-AP4 was mixed with one of the sweet substances, such as sucrose, glucose, fructose and maltose, large synergistic responses were observed. (ii) These synergistic responses, except to L-AP4 + sucrose, were not suppressed by sweet taste suppressants, gurmarin and pronase E. (iii) These synergistic responses were not suppressed by either metabotropic or ionotropic glutamate receptor antagonists. (iv) Fibers that responded well to the binary mixtures of L-AP4 and sweet substances also responded well to NaCl and HCl, but very weakly to sucrose. These findings are different from the characteristics of synergism between glutamate and IMP. The multiple transduction mechanisms for the umami taste in rat taste cells are discussed.  相似文献   

2.
Monosodium glutamate (MSG) is believed to elicit a unique taste perception known as umami. We have used conditioned taste aversion assays in rats to compare taste responses elicited by the glutamate receptor agonists MSG, L-aspartic acid (L-Asp), and N-methyl-D-aspartate (NMDA), and to determine if these compounds share a common taste quality. This information could shed new light upon the receptor mechanisms of glutamate taste transduction. Taste aversions to either MSG, L-Asp or NMDA were produced by injecting rats with LiCl after they had ingested one of these stimuli. Subsequently, rats were tested to determine whether they would ingest any of the above compounds. The results clearly show that a conditioned aversion to MSG generalized to L-Asp in a dose-dependent manner. Conversely, rats conditioned to avoid L-Asp also avoided MSG. Conditioned aversions to MSG or L-Asp generalized to sucrose when amiloride was included in all solutions. Importantly, aversions to MSG or L-Asp did not generalize to NMDA, NaCl or KCl, and aversions to NMDA did not generalize to MSG, L-Asp, sucrose or KCl. These data indicate that rats perceive MSG and L-Asp as similar tastes, whereas NMDA, NaCl and KCl elicit other tastes. The results do not support a dominant role for the NMDA subtype of glutamate receptors in taste transduction for MSG (i.e. umami) in rats.  相似文献   

3.
To date, only one study has examined responses to monosodium glutamate (MSG) from gustatory neurons in the rat geniculate ganglion and none to free fatty acids. Accordingly, we recorded single-cell responses from geniculate ganglion gustatory neurons in anesthetized male rats to MSG and linoleic acid (LA), as well as to sucrose, NaCl, citric acid, and quinine hydrochloride. None of the 52 neurons responded to any LA concentration. In contrast, both narrowly tuned groups of gustatory neurons (sucrose specialists and NaCl specialists) responded to MSG, as did 2 of the broadly tuned groups (NaCl generalist(I) and acid generalists). NaCl-generalist(II) neurons responded only to the highest MSG concentration and only at low rates. No neuron type responded best to MSG; rather, responses to 0.1 M MSG were significantly less than those to NaCl for Na(+) -sensitive neurons and to sucrose for sucrose specialists. Interestingly, most Na(+) -sensitive neurons responded to 0.3 M MSG at levels comparable with those to 0.1 M NaCl, whereas sucrose specialists responded to 0.1 M MSG despite being unresponsive to NaCl. These results suggest that the stimulatory effect of MSG involves activation of sweet- or salt-sensitive receptors. We propose that glutamate underlies the MSG response of sucrose specialists, whereas Na(+) -sensitive neurons respond to the sodium cation. For the latter neuron groups, the large glutamate anion may reduce the driving force for sodium through epithelial channels on taste cell membranes. The observed concentration-dependent responses are consistent with this idea, as are cross-adaptation studies using 0.1 M concentrations of MSG and NaCl in subsets of these Na(+) -sensitive neurons.  相似文献   

4.
Whole nerve, as well as single fiber, responses in the chorda tympani proper (CT) and glossopharyngeal (NG) nerves of 1- to 7-week-old pigs were recorded during taste stimulation. In the CT acids and in the NG bitter compounds gave the largest responses. Both nerves exhibited large responses to monosodium glutamate (MSG), MSG with guanosine 5'-monophosphate (GMP) and MSG with inositine 5'-monophosphate (IMP) as well as to glycine, xylitol, sucrose, fructose and glucose. Alitame, aspartame, betaine, neohesperedin dihydrochalcone (NHDHC), super-aspartame, saccharin and thaumatin elicited no or little response. Hierarchical cluster analysis of 49 CT fibers separated four major clusters. The M cluster, comprising 28.5% of all fibers, is characterized by strong responses to MSG, KCl, LiCl and NaCl. The responses to NaCl and LiCl were unaffected by amiloride. The H cluster (24.5%) includes units responding principally to acids. The Q cluster (18.5%) responds to quinine hydrochloride (QHCl), sucrose octaacetate (SOA) and salts with amiloride. The S cluster (28.5%) exhibits strong responses to xylitol, glycine and the carbohydrates as well as to MSG alone and to MSG with GMP or IMP. In 31 NG fibers, hierarchical cluster analysis revealed four clusters: the M cluster (10%), responding to MSG and MSG with GMP or IMP; the H cluster (13%), responding to acids; the Q cluster (29%), responding strongly to QHCl, SOA and tilmicosinR; and the S cluster (48%), responding best to xylitol, carbohydrates and glycine but also to the umami compounds. Multidimensional scaling analysis across fiber responses to all stimuli showed the best separation between compounds with different taste qualities when information from both nerves was utilized.  相似文献   

5.
The relationship between acidic pH, taste cell pH(i), and chorda tympani (CT) nerve responses was investigated before and after incorporating the K(+)-H(+) exchanger, nigericin, in the apical membrane of taste cells. CT responses were recorded in anesthetized rats in vivo, and changes in pH(i) were monitored in polarized fungiform taste cells in vitro. Under control conditions, stimulating the tongue with 0.15 M potassium phosphate (KP) or 0.15 M sodium phosphate (NaP) buffers of pHs between 8.0 and 4.6, KP or NaP buffers did not elicit a CT response. Post-nigericin (500 × 10(-6) M), KP buffers, but not NaP buffers, induced CT responses at pHs ≤ 6.6. The effect of nigericin was reversed by the topical lingual application of carbonyl cyanide 3-chloro-phenylhydrazone, a protonophore. Post-nigericin (150 × 10(-6) M), KP buffers induced a greater decrease in taste cell pH(i) relative to NaP buffers and to NaP and KP buffers under control conditions. A decrease in pH(i) to about 6.9 induced by KP buffers was sufficient to elicit a CT response. The results suggest that facilitating apical H(+) entry via nigericin decreases taste cell pH(i) and demonstrates directly a strong correlation between pH(i) and the magnitude of the CT response.  相似文献   

6.
In long-term two-bottle tests, mice from the C57BL/6ByJ (B6) strain drink more monosodium L-glutamate (MSG) and inosine-5'-monophosphate (IMP) compared with mice from the 129P3/J (129) strain. The goal of this study was to assess the role of afferent gustatory input in these strain differences. We measured integrated responses of the mouse chorda tympani and glossopharyngeal nerves to lingual application of compounds that evoke umami taste in humans: MSG, monoammonium L-glutamate (NH(4) glutamate), IMP and guanosine-5'-monophosphate (GMP) and also to other taste stimuli. Chorda tympani responses to MSG and NH(4) glutamate were similar in B6 and 129 mice. Chorda tympani responses to IMP and GMP were lower in B6 than in 129 mice. Responses to umami stimuli in the glossopharyngeal nerve did not differ between the B6 and 129 strains. Responses to MSG, IMP and GMP were not affected by sodium present in these compounds because B6 and 129 mice had similar neural taste responses to NaCl. This study has demonstrated that the increased ingestive responses to the umami stimuli in B6 mice are accompanied by either unchanged or decreased neural responses to these stimuli. Lack of support for the role of the chorda tympani or glossopharyngeal nerves in the enhanced consumption of MSG and IMP by B6 mice suggests that it is due to some other factors. Although results of our previous study suggest that postingestive effects of MSG can affect its intake, contribution of other gustatory components (e.g. greater superficial petrosal nerve or central gustatory processing) to the strain differences in consumption of umami compounds also cannot be excluded. Strain differences in gustatory neural responses to nucleotides but not glutamate suggest that these compounds may activate distinct taste transduction mechanisms.  相似文献   

7.
Zinc supplementation is used to reduce diarrhea incidence in piglets and it has been shown in vitro that the antisecretory effects are maximal after basolateral zinc application. To examine whether the application site and dose of zinc also influence passive ion permeability and viability, porcine (IPEC‐J2) and human (Caco‐2) intestinal epithelial cells were treated with increasing zinc concentrations (0–200 μM) at either the apical or basolateral side. Transepithelial electrical resistance and viability decreased and expression of metallothionein and the efflux zinc transporter 1 increased most prominently when zinc was added in high concentrations at the basolateral side of IPEC‐J2 cells. Zinc transporter 4, a zinc importer, was not affected. Heat shock protein 70 mRNA expression increased only after basolateral addition of 200 μM zinc in IPEC‐J2 cells. Thus, zinc can elicit toxic effects especially when added at the basolateral side, with IPEC‐J2 cells being more susceptible than Caco‐2 cells.  相似文献   

8.
1. Strain differences of mice were found in the taste synergism between monosodium L-glutamate (MSG) and disodium 5'-guanylate (GMP). 2. Magnitudes of chorda tympani responses to the mixture of MSG and GMP over the sum of responses to each component were greater in the order of C3H/HeSlc(C3H) greater than C57BL/6CrSlc(C57BL) greater than BALB/cCrSlc(BALB) mice. The greatest synergism was observed in response to the mixture of 0.03 M MSG and 0.1 mM GMP, to which responses were about 2.6, 1.8 and 1.4 times greater than the sum of each component in C3H, C57BL and BALB mice, respectively. 3. Magnitudes of inhibition of MSG and mixture responses by the lingual treatment of proteolytic enzyme, Pronase E, were greater in the same order of C3H greater than C57BL greater than BALB mice as that observed in magnitudes of the synergism. These results suggest that there exists quantitative differences in receptors responsible for taste synergism between MSG and GMP among three mouse strains.  相似文献   

9.
Chlorhexidine, a bitter bis-biguanide antiseptic, is the only known blocker of the human salty taste. In order to characterize the effects of chlorhexidine on stimulus identification, taste confusion matrix (TCM) performance was measured for subjects treated with 1.34 mM chlorhexidine gluconate (n = 9) and water controls (n = 9). Ten stimuli [water, 0.1 M NaCl, 0.1 M KCl, 0.1 mM quinine-HCl (QHCl), 0.1 M monosodium glutamate (MSG), 3 mM citric acid, 0.3 M sucrose and mixtures of NaCl, QHCl and citric acid with sucrose] were presented in 10 replicates for identification from a list of 10 stimulus names. T(10), a measure of performance consistency from information theory, was lower for chlorhexidine-treated subjects (2.02 +/- 0.11 bits) than controls (2.73 +/- 0.11 bits) (P < 0.0001). T(2), an indirect measure of pairwise stimulus discrimination, approached chance levels (0.40 bit) in chlorhexidine-treated subjects for all possible pairs of NaCl, KCl, QHCl and water, as well as pairs composed of sucrose and the NaCl-sucrose and quinine-sucrose mixtures. In controls T(2) values approached perfect scores (1.00 bit) for all stimulus pairs except NaCl-KCl and NaCl-MSG. The results demonstrate a decreased ability to identify taste stimuli that is consistent with alterations in the ability of stimuli to elicit salty and bitter taste perceptions. As a selective, effective, persistent and reversible blocker of taste perceptions, chlorhexidine should prove useful in defining taste mechanisms in humans.  相似文献   

10.
1. Single chorda tympani fibres sensitive to monosodium L-glutamate (MSG), elicit a unique taste in humans and gave a greater response to NaCl and/or sucrose than to MSG whereas several MSG-sensitive glossopharyngeal fibres responded only slightly if at all to NaCl and sucrose. 2. The across-fibre correlations showed that MSG and NaCl produced similar response patterns in the chorda tympani fibres but different response patterns in the glossopharyngeal fibres. 3. These results suggest that taste information of glossopharyngeal fibres plays a relatively more important role in the qualitative discrimination between MSG and the four basic taste substances than that of chorda tympani fibres.  相似文献   

11.
The transduction mechanism of salt-induced responses of mouse taste cells was investigated using the patch clamp and the local stimulation techniques under quasi-natural conditions. Apically applied NaCl induced a voltage-independent current, which was partially suppressed by amiloride and Cd2+. In contrast, apically applied 0.5 M KCl induced an inwardly rectifying current (KCl-induced Iir). The KCl-induced Iir was unaffected by amiloride. The Iir was suppressed not only by external Ba2+ and Cs+, but also by a Cl- channel blocker, niflumic acid. The Er of the KCl-induced response was independent of the apical ionic concentration, but rather was close to the equilibrium potential of Cl- (E(Cl)) at the basolateral membrane. The KCl-induced Iir displayed a fast run-down under the conditions of the conventional whole cell clamp method, but not under the perforated patch conditions. Immunohistochemical localization of an inwardly rectifying Cl- channel protein, ClC-2, was observed in taste bud cells of the fungiform papillae. It is concluded that the transduction mechanism of NaCl-induced responses is completely different from that of KCl-induced responses in mouse taste cells.  相似文献   

12.
Changes in spontaneous activity of 291 neurons in the rabbit amygdala were analyzed during microelectrophoretic application of somatostatin under pentobarbital anesthesia. Somatostatin was found both to enhance and to inhibit the spontaneous activity of these cells, by contrast with the exclusively inhibitory effect on spontaneous activity of hypothalamic neurons described previously. After partial chronic deafferentiation of the amygdala, 76% of 103 neurons responded to somatostatin application; 90% of the responding cells, in which the initial spontaneous firing rate was 6–20 spikes/sec, responded by more rapid firing, and only 10% of neurons (with an initial spontaneous discharge frequency of over 20 spikes/sec) showed a decrease in firing rate. Neuronal responses in the amygdala to somatostatin, glutamate, and noradrenalin are compared. Preliminary application of noradrenalin caused an increase in the number of inhibitory responses on subsequent application of somatostatin to the same cell.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 14, No. 6, pp. 601–607, November–December, 1982.  相似文献   

13.
Previous studies suggest that the chorda tympani nerve (CT) is important in transmitting fat taste information to the central nervous system. However, the contribution of the CT in this process may depend upon the presence of other taste stimuli and/or differ in males and females. Accordingly, the present study investigated the role of the CT in free fatty acid taste processing by examining electrophysiological activity of the CT in response to the free fatty acid linoleic acid (LA), as well as by measuring behavioral responses to LA-taste mixtures. We recorded whole nerve responses from the CT in response to lingual application of LA with or without monosodium glutamate (MSG) in anesthetized male and female rats. In addition, we examined preferences for MSG + LA taste mixtures in behavioral tests. Although lingual application of LA alone did not produce CT whole nerve responses, coapplication of LA and MSG elicited greater CT responses than did MSG alone. These findings were paralleled by greater preferences for MSG + LA taste mixtures than for MSG alone. In both cases, the effect was particularly pronounced in male rats. Thus LA enhances CT activity and behavioral responses to LA + MSG taste mixtures, although there are sex differences in the effects. These results suggest that CT input is important in mediating behavioral responses to fat taste, but the effects depend upon other taste stimuli and differ in males and females.  相似文献   

14.
Inosine monophosphate (IMP) and guanosine monophosphate (GMP) elicit an umami taste in humans and synergistically increase the intensity of the umami taste of monosodium glutamate (MSG). Conditioned taste aversion (CTA) studies in rodents indicate that these nucleotides and MSG elicit quite similar tastes, but recent physiological evidence suggests that these nucleotides and MSG may not activate the same population of taste receptors and therefore may not elicit identical taste qualities. This study reports the findings of several behavioral experiments with rats that compared the taste properties of IMP and GMP with each other and with those of MSG. Well-trained rats were able to detect both nucleotides at nanomolar concentrations, but they did not respond to either nucleotide in two-bottle preference tests or brief-access CTA tests at concentrations less than 0.5 mM. Discrimination experiments found that the tastes of these nucleotides could not be discriminated from each other, but both could be discriminated from MSG, even when the taste of Na(+) was controlled. Overall, these experiments indicate the taste properties of the two 5'-ribonucleotides are quite similar to each other, and even though they may elicit an umami sensation, these sensations are not identical to the taste of MSG.  相似文献   

15.
Monosodium glutamate (MSG) has a multifaceted, unusual taste to humans. Rats and other rodents also detect a complex taste to MSG. Responses of the chorda tympani nerve (CT) to glutamate applied to the front of the tongue were recorded in 13 anesthetized rats. Whole-nerve responses to 30 mM, 100 mM and 300 mM MSG mixed with 300 mM sucrose were recorded before and after adding 30 micro M amiloride to the rinse and stimulus solutions. Responses of CT single fibers were also recorded. Predictions from models of whole-nerve responses to binary mixtures were compared to the observed data. Results indicated that MSG-elicited CT responses have multiple sources, even in an amiloride-inhibited environment in rats. Those sources include responses of sucrose-sensitive CT neural units, which may provide the substrate for a sucrose-glutamate perceptual similarity, and responses of sucrose-insensitive CT neural units, which may respond synergistically to MSG-sucrose mixtures.  相似文献   

16.
Umami taste is elicited by monosodium glutamate (MSG), a compound consisting of two potent taste stimuli, Na(+) and glutamate. In rat fungiform taste cells, amiloride-sensitive epithelial sodium channels (ENaCs) mediate Na(+) transduction, while glutamate is transduced by a combination of ionotropic and metabotropic glutamate receptors. We used giga-seal whole-cell recording to determine if responses to glutamate and Na(+) occur in the same taste cells. Approximately 68% of the cells tested responded to amiloride, indicating that they express functional ENaCs. Responses to glutamate occurred in about 58% of the cells tested. Interestingly, responses to glutamate occurred in the subset of cells that also responded to amiloride, indicating that glutamate receptors are located preferentially in the same taste cells that also express ENaCs. Further experiments showed that amiloride did not suppress responses to glutamate under voltage-clamp conditions. Taken together, the data suggest that although ENaCs are not involved directly in glutamate transduction, their co-localization with glutamate receptors provides a substrate for the cellular integration of these independent pathways. Copyright Copyright 1999 S. Karger AG, Basel  相似文献   

17.
The role of M cells in the protection of mucosal membranes   总被引:8,自引:0,他引:8  
 The mucosa-associated lymphoid tissues continuously take up antigenic matter from the lumen to generate immune responses or to maintain immune tolerance. This antigen sampling is performed by highly specialised epithelial cells, the membranous (M) cells of the dome epithelia. M cells possess a unique ultrastructure and lie in close contact to lymphoid cells. They endocytose soluble and solid substances, including entire microorganisms, at their apical membrane, transport these in vesicles to their basolateral membrane and exocytose them to the intercellular space. This review summarises the structural and functional peculiarities of M cells in different species and at the different sites of lymphoid tissue along the digestive and respiratory tracts. Specialisations of M cells for antigen uptake and transport comprise the composition of their apical membrane and its glycocalyx, a modified cytoskeleton as compared to enterocytes and a pocket-like invagination of the basolateral membrane populated by lymphocytes and macrophages. Besides ultrastructural characteristics, histochemical markers are listed that are currently available for detecting M cells by light microscopy. The origin, differentiation and distribution of M cells and other epithelial cell types of the dome epithelium are outlined. As M cells are used as entry sites by various pathogens and, in the future, might be employed for the oral application of vaccines and drugs, the clinical relevance of M cells in health and disease is discussed. Accepted: 4 August 1997  相似文献   

18.
We characterized the hyperpolarization of the electrical potential profile of flounder intestinal cells that accompanies inhibition of NaCl cotransport. Several observations indicate that hyperpolarization of psi a and psi b (delta psi a,b) results from inhibition of NaCl entry across the apical membrane: (a) the response was elicited by replacement of mucosal solution Cl or Na by nontransported ions, and (b) mucosal bumetanide or serosal cGMP, inhibitors of NaCl influx, elicited delta psi a,b and decreased the transepithelial potential (psi t) in parallel. Regardless of initial values, psi a and psi b approached the equilibrium potential for K (EK) so that in the steady state following inhibition of NaCl entry, psi a approximately equal to psi b approximately equal to ECl approximately equal to EK. Bumetanide decreased cell Cl activity (aClc) toward equilibrium levels. Bumetanide and cGMP decreased the fractional apical membrane resistance (fRa), increased the slope of the relation of psi a to [K]m, and decreased cellular conductance (Gc) by approximately 85%, which indicates a marked increase in basolateral membrane conductance (Gb). Since the basolateral membrane normally shows a high conductance to Cl, a direct relation between apical salt entry and GClb is suggested by these findings. As judged by the response to bumetanide or ion replacement in the presence of mucosal Ba, inhibition of Na/K/Cl co-transport alone is not sufficient to elicit delta psi a,b. This suggests the presence of a parallel NaCl co-transport mechanism that may be activated when Na/K/Cl co-transport is compromised. The delta psi a,b response to reduced apical NaCl entry would assist in maintaining the driving force for Na-coupled amino acid uptake across the apical membrane as luminal [NaCl] falls during absorption.  相似文献   

19.
Electrical stimulation of parasympathetic nerve (PSN) efferent fibers in the glossopharyngeal nerve induced a slow depolarizing synaptic potential (DSP) in frog taste cells under hypoxia. The objective of this study is to examine the interaction between a gustatory depolarizing receptor potential (GDRP) and a slow DSP. The amplitude of slow DSP added to a tastant-induced GDRP of 10 mV was suppressed to 60% of control slow DSPs for NaCl and acetic acid stimulations, but to 20–30% for quinine–HCl (Q-HCl) and sucrose stimulations. On the other hand, when a GDRP was induced during a prolonged slow DSP, the amplitude of GDRPs induced by 1 M NaCl and 1 M sucrose was suppressed to 50% of controls, but that by 1 mM acetic acid and 10 mM Q-HCl unchanged. It is concluded that the interaction between GDRPs and efferent-induced slow DSPs in frog taste cells under hypoxia derives from the crosstalk between a gustatory receptor current across the receptive membrane and a slow depolarizing synaptic current across the proximal subsynaptic membrane of taste cells.  相似文献   

20.
Conditioned taste aversion studies have demonstrated that rats conditioned to avoid monosodium glutamate (MSG) with amiloride added to reduce the intensity of the sodium component of MSG taste, will generalize an aversion for MSG to sucrose and vice versa. This suggests that taste transduction for sodium, sucrose and MSG may intersect at some point. Generalization of conditioned taste aversion indicates that two substances share similar taste features, but it does not reveal the extent of their differences. In this study, we tested how well rats can discriminate sucrose and MSG under a variety of conditions. Water-deprived rats were trained on a combination of water reinforcement and shock avoidance to discriminate between MSG and sucrose, both with and without amiloride, and with and without equimolar NaCl in all solutions. In the absence of amiloride, rats reliably distinguished between MSG and sucrose down to 10 mM solutions. However, they could correctly identify solutions only above 50 mM in the presence of amiloride, equimolar sodium chloride, or both. These results suggest that gustatory stimulation by MSG and sucrose interact somewhere in taste transduction, perhaps within taste receptor cells or gustatory afferent pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号