首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
近年来,随着国内外几款溶瘤病毒制剂的相继上市,溶瘤病毒疗法成为肿瘤免疫治疗的焦点。溶瘤病毒可选择性感染并裂解肿瘤细胞,同时释放肿瘤相关抗原激活机体的抗肿瘤免疫反应,达到杀伤肿瘤细胞和抑制肿瘤生长的目的。溶瘤病毒对肿瘤的靶向杀伤作用决定了其安全性和溶瘤效果。为了开发出安全高效的溶瘤病毒,目前主要采用以下策略:利用某些病毒载体对肿瘤细胞的天然靶向性,使溶瘤病毒选择性地在肿瘤细胞内复制并杀伤肿瘤细胞;或者对病毒基因组进行缺失和插入等修饰,通过靶向肿瘤细胞特异性表面受体、胞内信号通路或者肿瘤微环境等提高溶瘤病毒的肿瘤靶向性。其中,肿瘤微环境中的低氧状态、新血管生成以及免疫抑制状态等都可成为溶瘤病毒的靶点。而溶瘤病毒通过表达细胞因子和免疫检查点抑制剂,或者与CAR-T细胞联合作用,靶向调节肿瘤微环境中免疫抑制状态,成为提高溶瘤病毒肿瘤靶向性的常用方法。本文将对以上溶瘤病毒靶向治疗肿瘤策略的研究进展进行综述。  相似文献   

2.
Malignant gliomas are the most common primary brain tumor and are characterized by rapid and highly invasive growth. Because of their poor prognosis, new therapeutic strategies are needed. Oncolytic virotherapy (OV) is a promising strategy for treating cancer that incorporates both direct viral replication mediated and immune mediated mechanisms to kill tumor cells. C134 is a next generation Δγ134.5 oHSV-1 with improved intratumoral viral replication. It remains safe in the CNS environment by inducing early IFN signaling which restricts its replication in non-malignant cells. We sought to identify how C134 performed in an immunocompetent tumor model that restricts its replication advantage over first generation viruses. To achieve this we identified tumors that have intact IFN signaling responses that restrict C134 and first generation virus replication similarly. Our results show that both viruses elicit a T cell mediated anti-tumor effect and improved animal survival but that subtle difference exist between the viruses effect on median survival despite equivalent in vivo viral replication. To further investigate this we examined the anti-tumor activity in immunodeficient mice and in syngeneic models with re-challenge. These studies show that the T cell response is integral to C134 replication independent anti-tumor response and that OV therapy elicits a durable and circulating anti-tumor memory. The studies also show that repeated intratumoral administration can extend both OV anti-tumor effects and induce durable anti-tumor memory that is superior to tumor antigen exposure alone.  相似文献   

3.
Cancer immunotherapy is a new therapeutic strategy for cancer treatment that targets tumors by improving or restoring immune system function. Therapies targeting immune checkpoint molecules have exerted potent anti-tumor effects and prolonged the overall survival rate of patients. However, only a small number of patients benefit from the treatment. Oncolytic viruses exert anti-tumor effects by regulating the tumor microenvironment and affecting multiple steps of tumor immune circulation. In this study, we engineered two oncolytic viruses that express mouse anti-PD-1 antibody (VT1093M) or mouse IL-12 (VT1092M). We found that both oncolytic viruses showed significant anti-tumor effects in a murine CT26 colon adenocarcinoma model. Importantly, the intratumoral combined injection with VT1092M and VT1093M inhibited growth of the primary tumor, prevented growth of the contralateral untreated tumor, produced a vaccine-like response, activated antigen-specific T cell responses and prolonged the overall survival rate of mice. These results indicate that combination therapy with the engineered oncolytic virus may represent a potent immunotherapy strategy for cancer patients, especially those resistant to PD-1/PD-L1 blockade therapy.  相似文献   

4.
Active vaccination strategies using viral vectors often give disappointing protection from tumor development, and usually require multiple immunizations. These approaches normally use viruses that cause acute infections, as they provoke potent CD8 T cell responses. Persistent virus vectors have not been used in this setting due to the perception that exhaustion of the T cell response occurs and would lead to poor anti-tumor protection. However, such exhaustion generally only occurs in high-load virus infections, whereas T cell function is intact in lower-load persistent infections. In fact, CD8 T cell responses in these infections, which are adapted for long-term immune surveillance, have properties that may make them more desirable for long-term anti-tumor immunity. In this report, we show that a persistent gammaherpesvirus vector provides superior protection against melanoma, relative to a non-persistent mutant of the same virus. These data suggest that vaccine vectors derived from persistent viruses may perform better than those from acute viruses at mediating anti-tumor protection.  相似文献   

5.
Interferons (IFN) are potent immune stimulators that play key roles in both innate and adaptive immune responses. They are considered the first line of defense against viral pathogens and can even be used as treatments to boost the immune system. While viruses are usually seen as a threat to the host, an emerging class of cancer therapeutics exploits the natural capacity of some viruses to directly infect and kill cancer cells. The cancer-specificity of these bio-therapeutics, called oncolytic viruses (OVs), often relies on defective IFN responses that are frequently observed in cancer cells, therefore increasing their vulnerability to viruses compared to healthy cells. To ensure the safety of the therapy, many OVs have been engineered to further activate the IFN response. As a consequence of this IFN over-stimulation, the virus is cleared faster by the immune system, which limits direct oncolysis. Importantly, the therapeutic activity of OVs also relies on their capacity to trigger anti-tumor immunity and IFNs are key players in this aspect. Here, we review the complex cancer–virus–anti-tumor immunity interplay and discuss the diverse functions of IFNs for each of these processes.  相似文献   

6.
Oncolytic viruses are viruses that specifically infect cancer cells and kill them, while leaving healthy cells largely intact. Their ability to spread through the tumor makes them an attractive therapy approach. While promising results have been observed in clinical trials, solid success remains elusive since we lack understanding of the basic principles that govern the dynamical interactions between the virus and the cancer. In this respect, computational models can help experimental research at optimizing treatment regimes. Although preliminary mathematical work has been performed, this suffers from the fact that individual models are largely arbitrary and based on biologically uncertain assumptions. Here, we present a general framework to study the dynamics of oncolytic viruses that is independent of uncertain and arbitrary mathematical formulations. We find two categories of dynamics, depending on the assumptions about spatial constraints that govern that spread of the virus from cell to cell. If infected cells are mixed among uninfected cells, there exists a viral replication rate threshold beyond which tumor control is the only outcome. On the other hand, if infected cells are clustered together (e.g. in a solid tumor), then we observe more complicated dynamics in which the outcome of therapy might go either way, depending on the initial number of cells and viruses. We fit our models to previously published experimental data and discuss aspects of model validation, selection, and experimental design. This framework can be used as a basis for model selection and validation in the context of future, more detailed experimental studies. It can further serve as the basis for future, more complex models that take into account other clinically relevant factors such as immune responses.  相似文献   

7.
The interactions between the immune system, a malignant tumour and an oncolytic virus are complex and poorly understood. For oncolytic viruses to become successful therapeutics we need to better understand these interactions and identify strategies to take advantage of defects in the innate immune response within tumours and avoid cellular anti-viral responses while capitalizing on anti-tumoural immunity. In this review we will discuss the evidence for the induction of tumour-specific immune responses by oncolytic viruses as well as by cancer vaccines. We will then describe some of the barriers to successful cancer immunotherapy, and finally we will outline a strategy for enhancing anti-tumoural immunity while reducing anti-viral immunity by combining tumour vaccination with oncolytic viral therapy.  相似文献   

8.
Interactions between tumor cells and their microenvironment have been shown to play a very significant role in the initiation, progression, and invasiveness of cancer. These tumor–stromal interactions are capable of altering the delivery and effectiveness of therapeutics into the tumor and are also known to influence future resistance and re-growth after treatment. Here we review recent advances in the understanding of the tumor microenvironment and its response to oncolytic viral therapy. The multifaceted environmental response to viral therapy can influence viral infection, replication, and propagation within the tumor. Recent studies have unveiled the complicated temporal changes in the tumor vasculature post-oncolytic virus (OV) treatment, and their impact on tumor biology. Similarly, the secreted extracellular matrix in solid tumors can affect both infection and spread of the therapeutic virus. Together, these complex changes in the tumor microenvironment also modulate the activation of the innate antiviral host immune response, leading to quick and efficient viral clearance. In order to combat these detrimental responses, viruses have been combined with pharmacological adjuvants and “armed” with therapeutic genes in order to suppress the pernicious environmental conditions following therapy. In this review we will discuss the impact of the tumor environment on viral therapy and examine some of the recent literature investigating methods of modulating this environment to enhance oncolysis.  相似文献   

9.
溶瘤病毒疗法是一种重要的抗癌手段。经研究,新城疫病毒(Newcastlediseasevirus,NDV)是一种非常有效的溶瘤病毒(oncolyticvirus,OV),它能选择性杀伤肿瘤细胞,对正常细胞几乎无影响。本文从NDV诱导肿瘤细胞发生凋亡、自噬、抑制细胞代谢、刺激机体免疫反应和诱导肿瘤细胞发生核糖体应激反应等方面综述了新城疫病毒的抗肿瘤效应机制,并着重探讨了NDV通过诱导核糖体压力应激反应调控肿瘤细胞翻译系统并诱导细胞发生凋亡的具体机制,旨在为今后NDV抗肿瘤作用的深入研究及靶向治疗癌症提供更加扎实丰富的理论基础。  相似文献   

10.
11.
溶瘤病毒(oncolytic virus,OVs)历经百年发展,应用于当前最具潜力的肿瘤免疫疗法。它主要是天然的或基因修饰的DNA病毒和RNA病毒。近年来随着基因工程技术的飞跃发展,经基因改造的溶瘤病毒在肿瘤治疗领域取得很大进展,很多不同类型的病毒(包括单纯疱疹病毒、腺病毒、痘病毒、麻疹病毒和呼肠孤病毒等)正处于临床前研究、临床试验阶段或已批准上市,显示了良好的安全性和临床疗效。普遍认为溶瘤病毒靶向杀伤肿瘤细胞是通过选择性在肿瘤细胞内自我复制,最终裂解肿瘤细胞,同时可激发机体的免疫应答反应,进而增强抗肿瘤免疫效果,靶向杀伤肿瘤细胞而对正常细胞无明显影响。运用基因重组技术将溶瘤病毒与免疫检查点相结合以及肿瘤免疫联合疗法的兴起和不断进步,使溶瘤病毒的应用更加广泛,但仍存在病毒靶向性、安全性、给药途径等瓶颈问题。本文综述了溶瘤病毒的发展史、病毒分类、不同类型溶瘤病毒产品的临床研究进展、溶瘤病毒靶向杀伤肿瘤的免疫学机制及未来发展面临的挑战与展望等。  相似文献   

12.
13.
Immunostimulatory oligodeoxynucleotides (ODN) containing cytosine-guanine (CpG) motifs are powerful stimulators of innate as well as adaptive immune responses, exerting their activity through triggering of the Toll-like receptor 9. We have previously shown that encapsulation in liposomal nanoparticles (LN) enhances the immunostimulatory activity of CpG ODN (LN-CpG ODN) (Mui et al. in J Pharmacol Exp Ther 298:1185, 2001). In this work we investigate the effect of encapsulation on the immunopotency of subcutaneously (s.c.) administered CpG ODN with regard to activation of innate immune cells as well as its ability to act as a vaccine adjuvant with tumor-associated antigens (TAAs) to induce antigen (Ag)-specific, adaptive responses and anti-tumor activity in murine models. It is shown that encapsulation specifically targets CpG ODN for uptake by immune cells. This may provide the basis, at least in part, for the significantly enhanced immunostimulatory activity of LN-CpG ODN, inducing potent innate (as judged by immune cell activation and plasma cytokine/chemokine levels) and adaptive, Ag-specific (as judged by MHC tetramer positive T lymphocytes, IFN-γ secretion and cytotoxicity) immune responses. Finally, in efficacy studies, it is shown that liposomal encapsulation enhances the ability of CpG ODN to adjuvanate adaptive immune responses against co-administered TAAs after s.c. immunization, inducing effective anti-tumor activity against both model and syngeneic tumor Ags in murine tumor models of thymoma and melanoma.  相似文献   

14.
microRNAs(miRNAs)是一类转录后调控基因表达的内源性非编码微小RNA。愈来愈多的研究显示,miRNAs在肿瘤免疫应答中发挥重要调控作用。一方面,miRNAs通过转录后调控ICAM(intercellular adhesion molecule)、B7(CD80/86)和HLA—G(human leucocyte antigen—G)等肿瘤表面分子的表达,影响肿瘤的免疫原性;另一方面,miRNAs通过平衡肿瘤局部的细胞因子微环境或调控肿瘤免疫相关细胞的分化、发育及功能发挥,调节机体抗肿瘤免疫应答。为后续深入研究肿瘤与宿主的相互作用机制,以及发展更有效的肿瘤生物治疗手段,就目前miRNAs在肿瘤免疫中的调控作用的研究进展做一综述。  相似文献   

15.

Background

Anti-cancer chemotherapy can be simultaneously lymphodepleting and immunostimulatory. Pre-clinical models clearly demonstrate that chemotherapy can synergize with immunotherapy, raising the question how the immune system can be mobilized to generate anti-tumor immune responses in the context of chemotherapy.

Methods and Findings

We used a mouse model of malignant mesothelioma, AB1-HA, to investigate T cell-dependent tumor resolution after chemotherapy. Established AB1-HA tumors were cured by a single dose of cyclophosphamide in a CD8 T cell- and NK cell-dependent manner. This treatment was associated with an IFN-α/β response and a profound negative impact on the anti-tumor and total CD8 T cell responses. Despite this negative effect, CD8 T cells were essential for curative responses. The important effector molecules used by the anti-tumor immune response included IFN-γ and TRAIL. The importance of TRAIL was supported by experiments in nude mice where the lack of functional T cells could be compensated by agonistic anti-TRAIL-receptor (DR5) antibodies.

Conclusion

The data support a model in which chemotherapy sensitizes tumor cells for T cell-, and possibly NK cell-, mediated apoptosis. A key role of tumor cell sensitization to immune attack is supported by the role of TRAIL in tumor resolution and explains the paradox of successful CD8 T cell-dependent anti-tumor responses in the absence of CD8 T cell expansion.  相似文献   

16.
《Bioscience Hypotheses》2008,1(6):309-311
The concept of using viruses to kill tumors has long been established, but the field has suffered great setbacks and “bottle neck” in target efficiency. The problem with using systemic virotherapy is that the immune system and tumor microenvironment could seek, sabotage and destroy virus, which allows only a tiny fraction of viruses to find their way to tumors. In our prospect, cytokine-induced killer (CIK) cells can be a prospective sheltering agent. The tumor-selective viruses encapsuled in CIK cells can be safely and efficiently delivered to tumor cells, attaining a synergy of tumor killing by both CIK cells and tumor-selective viruses. For successful delivery, the viruses should have high infectious ability to CIK cells, and the replication of viruses should be strictly modulated by cell vehicles. Ad5F35 chimeric adenovirus can be satisfactory agents if their replication can be driven by promoter of CD40 ligands. Moreover, ensuring absolute safety, either CIK cells or viral passengers can be engineered to express certain therapeutic genes to further enhance tumoricidal effect.  相似文献   

17.
新城疫病毒(newcastle disease virus,NDV)属副黏病毒,由于其安全性,自从被发现以来,即受到广大研究者们的关注。经过多年的研究,新城疫病毒在抑制人肝癌、恶性胸膜间皮瘤、纤维肉瘤以及头颈癌细胞方面都取得了可喜的成果。目前,新城疫病毒抑瘤作用的机制尚未完全阐明,研究表明主要涉及诱导肿瘤细胞凋亡,发挥抑瘤佐剂作用,增强免疫细胞活性及抑制肿瘤化疗耐药。NDV即使在缺氧环境下,也可以稳定的发挥抗肿瘤作用,且其强毒株具有高效的抗肿瘤作用。本文主要就近年来新城疫病毒抗肿瘤作用的研究进展进行了综述。  相似文献   

18.
Live vaccinia virus recombinants expressing viral antigens have recently been developed as effective anti-viral vaccines. We have examined the possibility of extending this approach to specific anti-tumor immunity, using tumors induced by the polyoma virus (PyV) as a model system. Three recombinant vaccinia viruses, separately encoding the three early proteins of the polyoma virus (large, middle and small tumor (T) antigens) were constructed. Each recombinant efficiently expresses the appropriate T antigen, which exhibits biochemical properties and subcellular localization of the authentic PyV protein. The potential of the recombinants to elicit immunity towards PyV-induced tumors was assessed in rats by a challenge injection of syngeneic PyV-transformed cells. After prior immunization with the large-T or the middle-T viruses, small tumors developed, which later regressed and were eliminated in more than 50% of the animals. In contrast, the small-T virus failed to elicit tumor rejection. Established tumors could also be eliminated by curative vaccinations. No circulating antibodies directed against PyV large-T or middle-T antigens were detected in animals vaccinated with the large-T or middle-T viruses, suggesting that rejection may be due to a cell-mediated immune response.  相似文献   

19.
Viruses carry nucleic acids between and within host cells. Invariably, virus attachment to host cells leads to activation of cell signalling. These so‐called forward signals emerge from interactions with cell surface receptors or cytosolic proteins and elicit profound responses in the cells, for example induction of growth or innate immunity responses. They can enhance or suppress infection. In addition, viruses receive signals from the cell. These reverse signals can impact on the structure of the virus leading to genome uncoating. They can enhance infection or inactivate virus, for example by facilitating degradation. Here we discuss the nature and mechanisms by which forward and reverse signals emerge and affect the outcome of human adenovirus infections. We describe how human adenoviruses use cell surface receptors for forward signalling to activate cell growth, intracellular transport or innate immune response. We also discuss how adenoviruses use acto‐myosin, integrins or microtubule‐based kinesin motors for reverse signalling to facilitate their stepwise uncoating programme.  相似文献   

20.
Evading immune-mediated destruction is a critical step of tumor evolution and the immune system is one of the strongest selective pressures during tumorigenesis. Analyzing tumor immune evasion from a Darwinian perspective may provide critical insight into the mechanisms of primary immune escape and acquired resistance to immunotherapy. Here, we review the steps required to mount an anti-tumor immune response, describe how each of these steps is disrupted during tumorigenesis, list therapeutic strategies to restore anti-tumor immunity, and discuss each mechanism of immune and therapeutic evasion from a Darwinian perspective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号