首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Substituted naphthalenyl derivatives bearing oxazole, or thiazole or furyl heteronuclei have been carried out as bioisosters of aryl-oxazoles and -thiazoles derivatives previously reported in order to investigate the role of the hindrance on the activity towards P-gp/BCRP/and MRP1 transporters. In addition, the role of naphthalenyl group to modulate P-gp intrinsic activity of these compounds was ascertained.The results demonstrated that all naphthalenyl derivatives displayed comparable P-gp activity with respect to lead compounds previously characterized in our SAR studies but were less active towards BCRP and MRP1 pumps. In terms of intrinsic activity, the replacement of aryl with naphthalenyl moiety led to P-gp inhibitors, unambiguous or ambiguous substrates on the base of the heteronucleus and the substituent on the naphthalenyl fragment. Indeed, oxazole derivatives were: inhibitors (R = H, F, OH), unambiguous substrates (R = OCH3), or ambiguous substrate (R = Br); thiazole derivatives were: unambiguous substrates (R = OCH3, Br), or ambiguous substrates (R = H, F). Finally furyl derivatives were ambiguous substrates.  相似文献   

2.
3.
ATP-binding cassette (ABC) transporters in human metabolism and diseases   总被引:12,自引:0,他引:12  
The ATP-binding cassette (ABC) superfamily of active transporters involves a large number of functionally diverse transmembrane proteins. They transport a variety of substrates including amino acids, lipids, inorganic ions, peptides, saccharides, metals, drugs, and proteins. The ABC transporters not only move a variety of substrates into and out of the cell, but also are also involved in intracellular compartmental transport. Energy derived from the hydrolysis of ATP is used to transport the substrate across the membrane against a concentration gradient. The typical ABC transporter consists of two transmembrane domains and two nucleotide-binding domains. Defects in 14 of these transporters cause 13 genetic diseases (cystic fibrosis, Stargardt disease, adrenoleukodystrophy, Tangier disease, etc.). Mutations in three genes affect lipid levels expressively. Mutations in ABCA1 cause severe HDL deficiency syndromes called Tangier disease and familial high-density lipoprotein deficiency, which are characterized by a severe deficiency or absence of high-density lipoprotein in the plasma. Two other ABCG transporters, ABCG5 and ABCG8, mutations of which cause sitosterolemia, have been identified. The affected individuals absorb and retain plant sterols, as well as shellfish sterols.  相似文献   

4.
CFTR (cystic fibrosis transmembrane conductance regulator), MDR1 (multidrug resistance), and MRP1 (multidrug resistance-associated protein), members of the ABC transporter superfamily, possess multiple functions, particularly Cl(-), anion, and glutathione conjugate transport and cell detoxification. They are also hypothesized to have a number of complementary functions. It is generally accepted that data obtained from nasal mucosa can be extrapolated to lower airway cell physiology. The aim of the present study was to investigate by immunohistochemistry the differential localization of CFTR, MDR1, and MRP1 in the normal mucosa of 10 human nasal turbinates. In ciliated epithelial cells, CFTR was inconstantly expressed at the apical cell surface, intense membranous labeling was observed for MDR1, and intense cytoplasmic labeling was observed for MRP1. In the glands, a higher level of expression was observed on serous cells, at the apical surface (for CFTR), on lateral membranes (for MDR1), and with an intracytoplasmic distribution (for MRP1). In conclusion, CFTR, MDR1 and MRP1 are expressed in the epithelium and glands of the nasal respiratory mucosa, but with different patterns of expression. These results suggest major roles for CFTR, MDR1, and MRP1 in serous glandular cells and a protective function for MDR1 and MRP1 in respiratory ciliated cells. (J Histochem Cytochem 48:1215-1222, 2000)  相似文献   

5.
Imatinib mesylate is a selective tyrosine kinase inhibitor that is successfully used in the treatment of chronic myeloid leukaemias and gastrointestinal stromal tumours. The drug is taken orally on a daily basis in order to suppress tumour growth. Unfortunately, the vast majority of patients will eventually progress while on therapy. It is generally thought that this acquired unresponsiveness is due to gene amplification or somatic mutations in the drug’s target genes. However, we have now evidence, based on several in vitro and in vivo observations suggesting that pharmacokinetic resistance may also play a definitive role in the ultimate resistance of patients on chronic imatinib. Our findings may have serious implications for the chronic imatinib treatment of cancer patients.  相似文献   

6.
7.
Here we describe a comparative study of phenotypic properties of hepatic cells in situ and in vitro. We analyzed the expression levels and distribution patterns of ABC transporters MRP2 and MDR1, pan-cytokeratin, cytokeratin 18, albumin, alpha-fetoprotein and the specific hepatocyte marker OCH1E5 in the fetal and adult rat as well as human liver tissue and in human fetal hepatocytes of WRL 68 cell line using peroxidase immunohistochemistry or immunofluorescence. Transporters MRP2 and MDR1 were expressed in all examined liver tissues, except rat ED13 embryo. The immunopositivity of these proteins was localized to the canalicular membrane of differentiating and mature hepatocytes but in the later developmental stages and in the adult liver tissues it was also found in the apical membrane of cholangiocytes. In WRL 68 cells, MRP2 and MDR1 immunoreactivity appeared after 5-6 days of cultivation and both transporters were fully expressed in the plasmalemma and in the cytoplasm 9 days after the passage. In conclusion, we observed only moderate variances reflecting diverse ontogenetic phases between the fetal and adult liver tissue. To study functions of hepatocytes in vitro, WRL 68 cells have to differentiate prior to the examination. Our findings indicate that WRL 68 cells can undergo differentiation in vitro and their antigenic profile closely resembles hepatocytes in the human liver.  相似文献   

8.
The multidrug resistance proteins MRP2 (ABCC2) and MRP3 (ABCC3) are key primary active transporters involved in anionic conjugate and drug extrusion from the human liver. The major physiological role of MRP2 is to transport conjugated metabolites into the bile canaliculus, whereas MRP3 is localized in the basolateral membrane of the hepatocytes and transports similar metabolites back to the bloodstream. Both proteins were shown to interact with a large variety of transported substrates, and earlier studies suggested that MRPs may work as co-transporters for different molecules. In the present study we expressed the human MRP2 and MRP3 proteins in insect cells and examined their transport and ATPase characteristics in isolated, inside-out membrane vesicles. We found that the primary active transport of estradiol-17-beta-d-glucuronide (E217betaG), a major product of human steroid metabolism, was differently modulated by bile acids and organic anions in the case of human MRP2 and MRP3. Active E217betaG transport by MRP2 was significantly stimulated by the organic anions indomethacin, furosemide, and probenecid and by several conjugated bile acids. In contrast, all of these agents inhibited E217betaG transport by MRP3. We found that in the case of MRP2, ATP-dependent vesicular bile acid transport was increased by E217betaG, and the results indicated an allosteric cross-stimulation, probably a co-transport of bile acids and glucuronate conjugates through this protein. There was no such stimulation of bile acid transport by MRP3. In conclusion, the different transport modulation of MRPs by bile acids and anionic drugs could play a major role in regulating physiological and pathological metabolite fluxes in the human liver.  相似文献   

9.
10.
The in vivo effect of rifampicin, a potent ligand of PXR, on gene expression of CYP2B22, 3A22, 3A29, 3A46, CAR, PXR and MDR1, MRP1, MRP2, LRP transporters in liver and cortex, cerebellum, midbrain, hippocampus, meninges and brain capillaries of pig was investigated. Animals were treated i.p. with four daily doses of rifampicin (40 mg/kg). The basal mRNA expressions of the individual CYP3As, CYP2B22, CAR, and PXR in various brain regions, except meninges, were about or below 10% of the corresponding hepatic mRNA values, whereas the mRNAs of brain transporters were closer or comparable to those in liver. After pig treatment with rifampicin, the mRNA expression of CYPs and transporters from brain regions did not appear to change, except CYP3A22 and 3A29 in cortex and hippocampus, CYP2B22 in meninges. An enzymatic analysis for CYP3As and CYP2B, in microsomes and mitochondria from liver and brain tissues using the marker activities 7-benzyloxyquinoline O-debenzylase and the anthraldehyde oxidase, showed the lack of rifampicin induction in all the brain regions, unlike liver. Taken together, our results demonstrate that CYP2B22, CYP3As, and MDR1, MRP1, MRP2, and LRP transporters are all expressed, although at different extent, in the brain regions but, despite the presence of PXR and CAR, are resistant to induction indicating that the regulation of these proteins is more complex in brain than in liver. These data obtained in vivo in the brain regions and liver of pig may be of interest to human metabolism in CNS.  相似文献   

11.
Specific tyrosine kinase inhibitors (TKIs) are rapidly developing clinical tools applied for the inhibition of malignant cell growth and metastasis formation. Most of these newly developed TKI molecules are hydrophobic, thus rapidly penetrate the cell membranes to reach intracellular targets. However, a large number of tumor cells overexpress multidrug transporter membrane proteins, which efficiently extrude hydrophobic drugs and thus may prevent the therapeutic action of TKIs. In the present work, we demonstrate that the most abundant and effective cancer multidrug transporters, MDR1 and MRP1, directly interact with several TKIs under drug development or already in clinical trials. This interaction with the transporters does not directly correlate with the hydrophobicity or molecular structure of TKIs, and shows a large variability in transporter selectivity and affinity. We suggest that performing enzyme- and cell-based multidrug transporter interaction tests for TKIs may greatly facilitate drug development, and allow the prediction of clinical TKI resistance based on this mechanism. Moreover, diagnostics for the expression of specific multidrug transporters in the malignant cells, combined with information on the interactions of the drug transporter proteins with TKIs, should allow a highly effective, individualized clinical treatment for cancer patients.  相似文献   

12.
The MDR1 multidrug transporter P-gp (P-glycoprotein) is an efflux pump that extrudes diverse hydrophobic drugs and peptides from cells. Since the entry of HIV-1 into cells involves an initial interaction of the viral gp41 hydrophobic peptide with the plasma membrane, a potential effect of P-gp on HIV-1 infectivity was explored. Virus production was greatly decreased when P-gp was overexpressed at the surface of a continuous CD4(+) human T-leukemic cell line (12D7) infected with HIV-1(NL4-3), a T-tropic molecular clone of HIV-1. P-gp overexpression did not significantly alter the surface expression or distribution of either the HIV-1 receptor CD4 or the coreceptor CXCR4. Reduction of HIV-1 infectivity in P-gp-expressing cells occurred both during the fusion of viral and plasma membranes and at subsequent step(s) in the HIV-1 life cycle.  相似文献   

13.
目的建立人结肠癌多药耐受性动物模型并初步探索其耐药机制。方法结合体内外诱导方法建立人结肠癌多药耐受性动物模型,利用VCR和CTX的肿瘤抑制实验评价其MDR特性;利用real-time PCR和West-ern blotting等方法分析其P-gp/MDR1和MRP1基因和蛋白的表达。结果肿瘤抑制实验结果显示,MDR和敏感型结肠癌模型的肿瘤生长速度差异不显著,MDR结肠癌动物模型对于VCR和CTX的耐药性均有较大程度的提高;表达分析结果显示,人结肠癌MDR动物模型的P-gp/MDR1表达水平有较大提高,而MRP1表达没有显著变化。结论人结肠癌多药耐受性动物模型具有较好的多药耐受性,其多药耐受性表型主要是由于P-gp/MDR1过量表达所导致。  相似文献   

14.
15.
Responses to nucleoside analog drugs used in the treatment of cancers and viral infections can vary considerably between individuals. Genetic variability between individuals in their ability to transport drugs may be a contributory factor. Nucleoside transporters (NTs) move nucleosides and analog drugs across cell membranes. Four human NTs have been cloned: hENT1, hENT2, hCNT1, and hCNT2. Human NT expression profiles are not well defined; therefore, we undertook a comprehensive quantitative analysis of the differential expression of NTs within normal and tumor tissue. Results show tissue specific expression of the different NTs in normal tissue while matched normal/tumor tissue cDNA array data show considerable variability in all NT expression profiles from different individuals, in particular decreased expression in tumor tissue. Decreased NT expression in tumor tissue may contribute to reduced drug uptake and the development of resistance. These data suggest that nucleoside analog drug therapies may be optimized by determining individual NT expression profiles.  相似文献   

16.
多药耐药基因MDR1和 (或 )MRP1过度表达是引起肿瘤细胞对化疗药物产生多重耐药性的重要原因 .在以往研究抗MDR1基因的核酶 (196MDR1 Rz)的基础上 ,合成了针对MRP1基因 2 10和 730编码子的核酶 (2 10MRP1 Rz ,730MRP1 Rz) ,同时利用RNA二级结构分析程序mfold 3 0设计合成了一种双靶位自剪切核酶体系 (Coat) .将 196MDR1 Rz和 2 10MRP1 Rz基因同时载入到该体系中 ,建立了抗MDR1 MRP1双靶位核酶 .在无细胞体系中对上述核酶进行的生物活性实验表明 ,2 10MRP1 Rz与 730MRP1 Rz相比能够更有效地切割底物 ;载入Coat的抗MDR1和MRP1核酶均能得以有效释放 ,同时切割各自的靶RNA序列 ,切割效率与单靶位核酶一致 ;串联核酶的先后顺序不影响切割活性  相似文献   

17.
18.
The ABC (ATP-binding cassette) protein superfamily is a ubiquitous and functionally versatile family of proteins that is conserved from archaea to humans. In eukaryotes, most of these proteins are implicated in the transport of a variety of molecules across cellular membranes, whereas the remaining ones are involved in biological processes unrelated to transport. The biological functions of several ABC proteins have been described in clinically important parasites and nematode worms and include vesicular trafficking, phospholipid movement, translation and drug resistance. This chapter reviews our current understanding of the role of ABC proteins in drug resistance and treatment failure in apicomplexan, trypanosomatid and amitochondriate parasites of medical relevance as well as in helminths.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号