首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
This review article presents the traditional and medicinal uses, and examines recent investigations on the biological activities of extracts, and chemicals identified from mangroves and mangal associates. Metabolites identified from mangrove plants are classified according to ‘chemical classes’, and some of their structures are illustrated. The article also presents some of the functions of the chemicals present and attempt to emphasize and create an awareness of the great of potential mangroves and mangal associates possess as a source of novel agrochemicals, compounds of medicinal value, and a new source of many already known biologically active compounds. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Climate-change driven sea level rise causes a increase in salinity in coastal wetlands accelerating the alteration of the species composition. It triggers the gradual extinction of species, particularly the mangrove population which is intolerant of excessive salinity. Thus despite being crucial to a wide range of ecosystem services, mangroves have been identified as a vulnerable coastal biome. Hence restoration strategy of mangroves is undergoing rigorous research and experiments in literature at an interdisciplinary level. From a data-driven perspective, analysis of mangrove occurrence data could be the key to comprehend and predict mangrove behavior along different environmental parameters, and it could be important in formulating management strategy for mangrove rehabilitation and restoration. As salt marshes are the natural salt-accumulating halophytes, mitigating excessive salinity could be achieved by incorporating salt-marshes in mangrove restoration activities. This study intends to find a novel restoration strategy by assessing the frequent co-existence status of salt marshes, with the mangroves, and mangrove associates in different zones of degraded mangrove patches for species-rich plantation. To achieve this, we primarily design a novel methodological framework for the practice of knowledge discovery concerning the coexistence pattern of salt marshes, mangroves, and mangrove associates along with environmental parameters using a data mining paradigm of association rule mining. The proposed approach has the capability to uncover underlying facts and forecast likely facts that could automate the study in the field of ecological research to comprehend the occurrence of inter-species relationships. Our findings are based on published data gathered on the Sundarban Mangrove Forest, one of the world’s most important littoral forests. The existing literature reinforces the findings that include all the sets of frequently co-occurring mangroves, their associates, and salt marshes along the salinity gradient of coastal Sundarbans. A detailed understanding of the occurrence patterns of all these, along with the environmental variables, would be able to promote decision-making strategy. This framework is effective for both academia and stakeholders, especially the foresters/ conservation planners, to regulate the spread of salt marshes and the restoration of mangroves as well.  相似文献   

3.
Mangrove conservation: a global perspective   总被引:1,自引:0,他引:1  
Mangroves are of great ecological importance and socio-economic significance as a hub for tropical marine biotope. The mangroves are also one of the world’s richest storehouses of biological and genetic diversity. Furthermore, 90?% of the marine organisms spend part of their life in this ecosystem and 80?% of the global fish catches are dependent on mangroves. In addition, mangroves and their associated biota are identified as a promising source of natural and novel drugs. On the other hand, scientific community finds such an ecosystem as one among the world’s most threatened biome due to human intervention in the long past and on-going climate change. Already many countries lost their huge mangrove wealth within the last two decades. Further, decline of the mangrove cover may cause an irreparable damage of ecosystem service to mankind. Now it is high time to conserve the precious ecosystem in order to maintain a stable and healthy coastal environment.  相似文献   

4.
Aims Mangrove species are classified as true mangroves and mangrove associates. However, as for some fringe species found mainly on the landward transitional zones of mangroves, no consensus among scientists could be reached in favor of this classification and much debate arises. We hypothesized that true mangroves differ from mangrove associates physiologically and ecologically in their ability to survive in mangrove environment.Methods To test this hypothesis, leaf structural traits and osmotic properties were used to describe variation in 33 mangrove species (17 true mangroves, 6 mangrove associates and 10 controversial species).Important findings Specific leaf area (SLA) of true mangroves as well as leaf nitrogen concentration on a leaf mass (Nmass) were lower than that of mangrove associates; leaf succulence was, in general, twice as high in true mangroves compared to mangrove associates; true mangroves accumulated 8–9 times more Na and Cl than mangrove associates and the former had K/Na ratios <0.5, but the latter had K/Na ratios>0.5. These results indicated that true mangroves differed reliably from mangrove associates in leaf traits and osmotic properties. True mangroves are true halophytes and mangrove associates are glycophytes with certain salt tolerance. Combining distribution pattern information, the 10 controversial species were reclassified.  相似文献   

5.
Mangrove species are uniquely adapted to tropical and subtropical coasts, and although relatively low in number of species, mangrove forests provide at least US $1.6 billion each year in ecosystem services and support coastal livelihoods worldwide. Globally, mangrove areas are declining rapidly as they are cleared for coastal development and aquaculture and logged for timber and fuel production. Little is known about the effects of mangrove area loss on individual mangrove species and local or regional populations. To address this gap, species-specific information on global distribution, population status, life history traits, and major threats were compiled for each of the 70 known species of mangroves. Each species'' probability of extinction was assessed under the Categories and Criteria of the IUCN Red List of Threatened Species. Eleven of the 70 mangrove species (16%) are at elevated threat of extinction. Particular areas of geographical concern include the Atlantic and Pacific coasts of Central America, where as many as 40% of mangroves species present are threatened with extinction. Across the globe, mangrove species found primarily in the high intertidal and upstream estuarine zones, which often have specific freshwater requirements and patchy distributions, are the most threatened because they are often the first cleared for development of aquaculture and agriculture. The loss of mangrove species will have devastating economic and environmental consequences for coastal communities, especially in those areas with low mangrove diversity and high mangrove area or species loss. Several species at high risk of extinction may disappear well before the next decade if existing protective measures are not enforced.  相似文献   

6.
Endophytic fungi are ubiquitous organisms found in the plants, residing intercellular or intracellular, at least for a portion of their lives without causing apparent symptoms of infection. Almost all plants are known to harbor endophytes. The choice of the plant to be used for exploring endophytes for bioactives is important. Therefore, medicinal plants which are known to be used since centuries as an alternative source of medicine, are a valuable source for bioprospecting endophytes. Nevertheless, due to many reasons there is a dire need for novel resources for novel drugs which can be an answer to many deadly diseases. It is in this context that the present review was envisaged. The review reveals the importance of endophytic fungi from medicinal plants as a source of bioactive and chemically novel compounds. The bioactive metabolites produced by endophytic fungi originate from different biosynthetic pathways and belong to diverse structural groups such as terpenoids, steroids, quinones, phenols, coumarins etc. Endophytes therefore, represent a chemical reservoir for new compounds such as, anticancer, immunomodulatory, antioxidant, antiparasitic, antiviral, antitubercular, insecticidal etc. for use in the pharmaceutical and agrochemical industries. Although, efforts have been made to accommodate as many examples as possible but the depth of the subject is so vast that it cannot be covered in one single review. This in itself speaks of the fact that endophytic fungi from medicinal plants is indeed a treasure worth searching. In the present review only some selected examples have been covered.  相似文献   

7.
红树林生长于受潮汐影响的海滨特殊生境,具有重要的生态功能及应用价值。红树植物的水分利用特点一直是研究热点。由于受环境盐分影响,红树植物水势普遍较低;水分运输系统抗气穴化能力极强;水分利用保守,用水量处于同径级的热带陆生树木用水量的低值范围;表型可塑性大,可通过耐旱、耐盐和多样的水分管理策略适应潮间带环境;水分运输效率不低,能在环境条件适宜时进行高效的光合合成。本文通过大量的文献分析,综述了红树植物的水分关系特点、水分和盐分管理策略,对未来从多角度、结合新研究技术的红树植物水分关系研究进行了展望。  相似文献   

8.
Sengupta A  Chaudhuri S 《Mycorrhiza》2002,12(4):169-174
Mangroves are climax formation of hydrohalophytes inhabiting estuarine or marine salt marshes in the tropics and subtropics. As a terrestrial plant community inhabiting tidally inundated estuarine or marine sediments, mangroves show considerable adaptation to salinity, water-logging and nutrient stress. Thirty-one species of mangrove and mangrove associates and 23 species of transported flora, belonging to 25 families at four physiographic stages of succession of the mangrove plant community at the terminal part of the Ganges river estuary in India were examined for arbuscular mycorrhizal (AM) root association. Dominant members of the mangrove plant community were all AM, mostly with 'Paris' type structures. Many of the known non-mycotrophic plant families, except the Cyperaceae, also showed AM association, with intracellular hyphae and vesicles as the most discernible endophyte structures. Intensity of AM colonization varied both with the species and situations of their occurrence, being more intense and also more extensive in less saline dry ridge mangroves than in more saline formative and developed swamp mangroves. Introduced exotic trees on the ridges and embankments were infected by AM, but less than the declining mangroves in the same location. Seven species of AM fungi in common with those of the upstream mesophytic plants were isolated from root-free rhizosphere soils of the mangroves, three of which predominated in root association. These species, individually and as mixtures, infected roots of salinity tolerant herbs and trees in both locational silt and upstream alluvial soil with obvious improvements in their biomass yield and phosphorus nutrition. AM infective potential of root-free rhizosphere soils of the dominant members of the mangrove community were negatively related to salinity level of the sediment soil of the successional stages. The evidences of AM association of mangroves and other salt marsh plants obtained here and those reported elsewhere are discussed.  相似文献   

9.
Urban areas have unique assemblages of species which are governed by novel ecological processes. People living in these environments have specific needs and demands in terms of ecosystem services (ES). Urban ecosystems are transformed in many ways by human activities and their floras comprise a high proportion of alien plant species, many of which were intentionally introduced to provide, augment or restore ES. Urban environments also have novel disturbance regimes and provide colonization sites for the establishment, dispersal and proliferation of alien plant species; such conditions often generate biological invasions which may cause marked changes to ES. We review the roles that alien plants play in providing urban ES and ecosystem disservices (EDS) globally. We identify the main ES and EDS associated with alien plants, and highlight the key species involved. A literature search revealed 335 papers, representing studies in 58 cities or urban areas in 27 countries. These studies recorded 337 alien plant species, contributing to 39 different ES and 27 EDS–310 species were recorded as contributing to ES and 53 species to EDS. A small number of alien plant taxa were frequently recorded as providing multiple ES in many urban ecosystems; the 10 most recorded species accounted for 21% of the ES recorded. Some of these species also result in significant EDS; three species accounted for 30% of the EDS recorded. Cultural services (notably aesthetics) are the most reported ES provided by alien plants in urban areas of developed countries, while provisioning services (notably food production) are most reported in developing countries. The most commonly studied EDS provided by alien plants is the impact on human health (notably allergic reactions). Eighty percent of studies on alien plants and ES and EDS have been done in developed countries. To elucidate the full range of effects of alien plants, more work is needed in developing countries. Urban planners and managers need to be mindful of both the positive and negative impacts of alien plant species to maximise the provision of ES.  相似文献   

10.
Helleborus (family Ranunculaceae) are well-known as ornamental plants, but less known for their therapeutic benefits. Over the past few years, Helleborus sp. has become a subject of interest for phytochemistry, pharmacology and other medical research areas. On the basis of their usefulness in traditional medicine, it was assumed that their biochemical profile could be a source of metabolites with the potential to overcome critical medical issues. There are studies involving natural extracts from these species which demonstrate that Helleborus plants are a valuable source of chemical compounds with great medical potential. Some phytochemicals produced by these species have been separated and identified a few decades ago: hellebrin, deglucohellebrin, 20-hydroxyecdysone and protoanemonin. Lately, many other active compounds have been reported and considered as promising remedies for severe diseases such as cancer, ulcer, diabetes and also for common medical problems such as toothache, eczema, low immunity and arthritis. This paper is an overview of the Helleborus genus focusing on some recentlydiscovered compounds and their potential for finding new drugs and useful biochemicals derived from these species.  相似文献   

11.
Salt tolerance mechanisms in mangroves: a review   总被引:2,自引:0,他引:2  
Mangroves are woody plants which form the dominant vegetation in tidal, saline wetlands along tropical and subtropical coasts. The current knowledge concerning the most striking feature of mangroves i.e., their unique ability to tolerate high salinity is summarized in the present review. In this review, we shall discuss recent studies that have focused on morphological, anatomical, physiological, biochemical, molecular and genetic attributes associated with the response to salinity, some of which presumably function to mediate salt tolerance in the mangroves. Here we shall also review the major advances recently made at both the genetic and the genomic levels in mangroves. Salinity tolerance in mangroves depends on a range of adaptations, including ion compartmentation, osmoregulation, selective transport and uptake of ions, maintenance of a balance between the supply of ions to the shoot, and capacity to accommodate the salt influx. The tolerance of mangroves to a high saline environment is also tightly linked to the regulation of gene expression. By integrating the information from mangroves and performing comparisons among species of mangroves and non-mangroves, we could give a general picture of salt tolerance mechanisms of mangroves, thus providing a new avenue for development of salt tolerance in crop plants through effective breeding strategies and genetic engineering techniques.  相似文献   

12.
Currently 177 vascular plant species are known or presumed to be obligately associated with water in Peru. Their composition and diversity were surveyed in relationship to their distributions among the natural regions of Peru. Despite considerable aridity, the coastal plains of Peru have important aquatic ecosystems, including marshes in river deltas and mangroves in the far north, near the border with Ecuador; 70 species of aquatic plants are found in this coastal region. The Andean highlands include a great variety of wetlands, plus lakes and rivers; 62 species are found, including eight species of Isoetes, some of which are potentially threatened by extinction. The Amazon region of Peru includes both steep montane rivers in the headwaters and wide floodplains formed by meandering rivers in the lowlands; 102 species are found distributed among these ecosystems, although many additional species are semi-aquatic. Research and conservation strategies for Peru's aquatic plants need to take into account these important regional differences.  相似文献   

13.
Mycoheterotrophic species have abandoned an autotrophic lifestyle and obtain carbon exclusively from mycorrhizal fungi. Although these species have evolved independently in many plant families, such events have occurred most often in the Orchidaceae, resulting in the highest concentration of these species in the tracheophytes. Studies of mycoheterotrophic species' mycobionts have generally revealed extreme levels of mycorrhizal specialization, suggesting that this system is ideal for studying the evolution of mycorrhizal associations. However, these studies have often investigated single or few, often unrelated, species without consideration of their phylogenetic relationships. Herein, we present the first investigation of the mycorrhizal associates of all species of a well-characterized orchid genus comprised exclusively of mycoheterotrophic species. With the employment of molecular phylogenetic methods, we identify the fungal associates of each of nine Hexalectris species from 134 individuals and 42 populations. We report that Hexalectris warnockii associates exclusively with members of the Thelephoraceae, H. brevicaulis and H. grandiflora associate with members of the Russulaceae and Sebacinaceae subgroup A, while each member of the H. spicata species complex associates primarily with unique sets of Sebacinaceae subgroup A clades. These results are consistent with other studies of mycorrhizal specificity within mycoheterotrophic plants in that they suggest strong selection within divergent lineages for unique associations with narrow clades of mycorrhizal fungi. Our results also suggest that mycorrhizal associations are a rapidly evolving characteristic in the H. spicata complex.  相似文献   

14.
Ye Y  Pang B P  Chen G C  Chen Y 《农业工程》2011,31(3):169-173
In addition to carbon accumulation in plants, processes of organic carbon in mangrove ecosystems include origins of sediment organic carbon, carbon fluxes between mangroves and their adjacent systems (coastal waters and atmosphere), and cycling processes. Sediment organic carbon originates from suspending solids in coastal waters, mangrove plants and benthic algae. In mangroves with low organic carbon content in sediments, tidal seawater is the main origin of sediment organic carbon, while in mangroves with high sediment organic carbon contents, sediment organic carbon mainly originates from mangrove plants. Due to tidal flush, there is large material exchange between mangrove ecosystems and their adjacent coastal waters. In China, exports of organic carbon in litter falls and dissolved organic carbon from mangroves to their adjacent coastal waters have not been documented. Processes of mangrove litter falls, including production, decomposition, export and animal consumption, determine linkages among organic carbon among mangrove plants, secondary production and coastal ocean. Consumers especially benthic animals may influence organic carbon in mangrove ecosystems, because (1) their consumption rates are high, and their selective feeding on some food sources will change the relative quantities of export, bury and mineralization of organic carbon from different origins; (2) their consumption is much more than assimilation, resulting in the changes in sizes, forms and qualities of non-assimilated organic matters, and then the changes in availability of export, consumption or mineralization of organic carbon. Respiration and sulfate reduction are important mineralization processes of organic carbon in mangrove sediments. Mineralization rates of organic carbon in mangrove sediments are influenced by quantities, activities and particle sizes of organic matters, and other factors such as forest ages, root activities and animal burrowing activities. Researches on processes of mangrove organic carbon should be based on open systems, and ecological processes of organic carbon should be coupled with vegetation restoration.  相似文献   

15.
In addition to carbon accumulation in plants, processes of organic carbon in mangrove ecosystems include origins of sediment organic carbon, carbon fluxes between mangroves and their adjacent systems (coastal waters and atmosphere), and cycling processes. Sediment organic carbon originates from suspending solids in coastal waters, mangrove plants and benthic algae. In mangroves with low organic carbon content in sediments, tidal seawater is the main origin of sediment organic carbon, while in mangroves with high sediment organic carbon contents, sediment organic carbon mainly originates from mangrove plants. Due to tidal flush, there is large material exchange between mangrove ecosystems and their adjacent coastal waters. In China, exports of organic carbon in litter falls and dissolved organic carbon from mangroves to their adjacent coastal waters have not been documented. Processes of mangrove litter falls, including production, decomposition, export and animal consumption, determine linkages among organic carbon among mangrove plants, secondary production and coastal ocean. Consumers especially benthic animals may influence organic carbon in mangrove ecosystems, because (1) their consumption rates are high, and their selective feeding on some food sources will change the relative quantities of export, bury and mineralization of organic carbon from different origins; (2) their consumption is much more than assimilation, resulting in the changes in sizes, forms and qualities of non-assimilated organic matters, and then the changes in availability of export, consumption or mineralization of organic carbon. Respiration and sulfate reduction are important mineralization processes of organic carbon in mangrove sediments. Mineralization rates of organic carbon in mangrove sediments are influenced by quantities, activities and particle sizes of organic matters, and other factors such as forest ages, root activities and animal burrowing activities. Researches on processes of mangrove organic carbon should be based on open systems, and ecological processes of organic carbon should be coupled with vegetation restoration.  相似文献   

16.
Since early human history, plants have served as the most important source of medicinal natural products, and even in the “synthetic age” the majority of lead compounds for pharmaceutical development remain of plant origin. In the marine realm, algae and seagrasses were amongst the first organisms investigated by marine natural products scientists on their quest for novel pharmaceutical compounds. Forty years after the pioneering work in the field of marine drug discovery began, the biodiversity of marine organisms investigated as potential sources of anticancer, anti-inflammatory, and antibiotic compounds has increased tremendously. Nonetheless, marine plants are still an important source of novel secondary metabolites with interesting biomedical properties. The present review focuses on the antitumour properties of compounds isolated from marine algae, phytoplankton, mangroves, seagrasses, or cordgrasses. Compounds produced by marine epi- or endophytic fungi are also discussed.  相似文献   

17.
广东林业生态省建设与红树林保护   总被引:5,自引:0,他引:5  
广东是我国红树林分布最多的省份之一,有红树植物17科31种,红树林湿地面积21 438.3hm2,主要分布在粤西,其次是珠江三角洲地区。红树林具有防灾减灾、净化环境、调节区域小气候、保护生物多样性等重要生态功能。在广东林业生态省建设中,保护和发展红树林被列为八大林业生态工程之一。本文对红树林的生态功能进行了具体分析;阐述了广东红树林资源分布现状、红树林在广东林业生态省建设中的作用以及保护、发展状况;指出目前红树林还面临围海造田、围海养殖、沿海城市化、废水污染等威胁,红树林保护任务艰巨;并就加强红树林保护提出建议。  相似文献   

18.
Mangroves are among the most threatened ecosystems in the world and the coastal forests of East Africa are no exception to this trend. Although conservation, rehabilitation and sustainable management plans have been developed in various tropical regions, only a few locally based approaches have been launched along the Indian Ocean coast of Africa. In order to identify possible conditions for sustainable management of mangroves based on socio-economic and ecological considerations, we present a participatory approach designed to evaluate the relationships between mangroves and human activities and the use of multi-criterion analysis to identify management solutions. To achieve this goal, all the subjects involved in mangrove management (local communities, institutions and researchers) took an active part in the process. The research was carried out in three communities relying on mangrove swamps: Kisakasaka village on the island of Zanzibar, Mida Creek in Kenya, both relying on mangrove forests known to be endangered by over-exploitation, and Inhaca Island in Mozambique, where mangroves are more pristine. Families were the hub of the research and the importance of each of their economic activities was assessed. We then examined the methods by which mangroves are exploited by the local community and by other stakeholders working in the study areas. Our results show that the mangroves in Inhaca are exploited only for household needs and the pressure on the forests is still ecologically sustainable. In contrast, there is a well-established demand for mangrove products in Kisakasaka and Mida Creek and the mangroves represent an essential source of income for the families, resulting in an ecologically unsustainable rate of exploitation. Therefore, possible alternatives to the current management practices were identified in the two areas by means of a participatory approach. Multi-criterion analysis was then used to compare and discuss the alternatives in terms of social, economic and ecological criteria.  相似文献   

19.
Plant populations are regulated by a diverse assortment of abiotic and biotic factors that influence seed dispersal and viability, and seedling establishment and growth at the microsite. Rarely does one animal guild exert as significant an influence on different plant assemblages as land crabs. We review three tropical coastal ecosystems–mangroves, island maritime forests, and mainland coastal terrestrial forests–where land crabs directly influence forest composition by limiting tree establishment and recruitment. Land crabs differentially prey on seeds, propagules and seedlings along nutrient, chemical and physical environmental gradients. In all of these ecosystems, but especially mangroves, abiotic gradients are well studied, strong and influence plant species distributions. However, we suggest that crab predation has primacy over many of these environmental factors by acting as the first limiting factor of tropical tree recruitment to drive the potential structural and compositional organisation of coastal forests. We show that the influence of crabs varies relative to tidal gradient, shoreline distance, canopy position, time, season, tree species and fruiting periodicity. Crabs also facilitate forest growth and development through such activities as excavation of burrows, creation of soil mounds, aeration of soils, removal of leaf litter into burrows and creation of carbon-rich soil microhabitats. For all three systems, land crabs influence the distribution, density and size-class structure of tree populations. Indeed, crabs are among the major drivers of tree recruitment in tropical coastal forest ecosystems, and their conservation should be included in management plans of these forests.  相似文献   

20.
Increasing global energy demands have led to the ongoing intensification of hydrocarbon extraction from marine areas. Hydrocarbon extractive activities pose threats to native marine biodiversity, such as noise, light, and chemical pollution, physical changes to the sea floor, invasive species, and greenhouse gas emissions. Here, we assessed at a global scale the spatial overlap between offshore hydrocarbon activities and marine biodiversity (>25,000 species, nine major ecosystems, and marine protected areas), and quantify the changes over time. We discovered that two‐thirds of global offshore hydrocarbon activities occur in areas within the top 10% for species richness, range rarity, and proportional range rarity values globally. Thus, while hydrocarbon activities are undertaken in less than one percent of the ocean's area, they overlap with approximately 85% of all assessed species. Of conservation concern, 4% of species with the largest proportion of their range overlapping hydrocarbon activities are range restricted, potentially increasing their vulnerability to localized threats such as oil spills. While hydrocarbon activities have extended to greater depths since the mid‐1990s, we found that the largest overlap is with coastal ecosystems, particularly estuaries, saltmarshes and mangroves. Furthermore, in most countries where offshore hydrocarbon exploration licensing blocks have been delineated, they do not overlap with marine protected areas (MPAs). Although this is positive in principle, many countries have far more licensing block areas than protected areas, and in some instances, MPA coverage is minimal. These findings suggest the need for marine spatial prioritization to help limit future spatial overlap between marine conservation priorities and hydrocarbon activities. Such prioritization can be informed by the spatial and quantitative baseline information provided here. In increasingly shared seascapes, prioritizing management actions that set both conservation and development targets could help minimize further declines of biodiversity and environmental changes at a global scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号