首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The change in the decay rates of a high-threshold calcium current (ICa) when a depolarizing pulse is presented was investigated under conditions of an increased level of cyclic adenosine monophosphate (cAMP) in the cytoplasm of isolated snail neurons using an intracellular injection of cAMP or extracellular application of dibutyryl-cAMP. For 20 of the 38 neurons it was found that cAMP reduced the half-life of the fast and slow components of ICa decay by 2–2.5 times. The effect did not depend on the test-pulse potential and was reproduced with respect to a high-threshold barium current. In double-pulse experiments it was found that cAMP enhanced the effect of depolarized prepulses (Vc) on the ICa tested (It). Analysis of the It-Vc curve showed that cAMP enhanced both calcium- and potential-dependent inactivation of ICa. It was found that when the interval between the pulses changes, cAMP slows the recovery of the calcium channel from calcium-dependent inactivation. The results suggest that cAMP increases the affinity of the Ca2+-channel inactivation substrate for Ca2+-ions.Brain Institute, Russian Academy of Medical Sciences, Moscow. Translated from Neirofiziologiya, Vol. 24, No. 1, pp. 60–68, January–February, 1992.  相似文献   

2.
A dual-microelectrode voltage clamp technique was used for recording voltage-dependent calcium current (Ica) in unidentified neurons isolated fromHelix pomatia. Neither intracellular injection of cyclic adenosine monophosphate (cAMP; 10 nA, 5 min) nor intracellular application of dibutyril-cAMP (dcAMP; 1 mM, 10–20 min) induced a change in normal Ica or produce a reversible 10–20% reduction in amplitude. Adding S-100 protein fraction antibodies to the external medium led to the onset of calcium-dependent inactivation of Ica, bringing amplitude of Ica down to 15±12% of its initial level. Either cAMP or dcAMP then restored inhibited Ica to 50±11% of its original level. It was found that the effects of cAMP on Ica of intact neurons depend on level of cytoplasmic Ca2+.Institute for Brain Research, All-Union Center for Mental Health Research, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 21, No. 2, pp. 247–252, March–April, 1989.  相似文献   

3.
The effects of quinine on the peak amplitude and the decay of calcium currents (ICa) were investigated in nonidentified neurons isolated fromHelix pomatia. A concentration of 1×10–5–5×10–4 M quinine was found to produce a reversible dose-dependent deceleration in the decline of ICa ("lead" effect) and a reversible, slowly evolving dose-dependent reduction in ICa amplitude ("lag" effect). A reduction in amplitude down to half control level is observed at a quinine concentration of 6 ×10–5 M, while the current-voltage relationship of ICa shifts by 5–10 mV towards negative potentials. Results show that quinine successfully blocks calcium channels inHelix pomatia neurons.Institute of Brain Research, All-Union Mental Health Research Center, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 19, No. 3, pp. 413–417, May–June, 1987.  相似文献   

4.
The effects of cAMP and serotonin (5-HT) on calcium current (ICa) were investigated inHelix pomatia neurons using voltage clamp and intracellular perfusion techniques. Three types of neuronal response to extracellular application of 5-HT (1–10 µM) were found: reversible blockage of calcium conductance, absence of response, and increase in ICa amplitude. Intracellular application of exogenous cAMP was also found to produce an increase in ICa in cells stimulated by 5-HT action. Effects of 5-HT and cAMP were non-additive under these circumstances and were potentiated equally by cyclic nucleotide phosphodiesterase inhibitor. Applying cAMP led to no noticeable increase in ICa amplitude in cells with calcium conductance unchanged or blocked by 5-HT. Findings would indicate that the stimulating action of 5-HT is mediated by a rise in intracellular level of cAMP. It is postulated that two types of calcium channels differing in their dependence on cAMP metabolism exist; the presence of cAMP-dependent calcium channels at the neuronal membrane fits in with a certain type of 5-HT receptor also present in the cell, moreover. A new approach is suggested for research on isolated neurons, i.e., that of functional identification.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 22, No. 5, pp. 605–512, October–September, 1990.  相似文献   

5.
A two-microelectrode voltage-clamp method was used to measure a high-threshold calcium current (ICa) on isolated snail neurons. Tolbutamide (1–5 mmole/liter) and H-8 (1–30 µmole/liter), inhibitors of kinase A, caused a decrease in the peak amplitude and accelerated ICa decay during a depolarizing stimulus. The half-life of the "slow" time constant of ICa decay decreased in the presence of tolbutamide, and was two to three times stronger than the half-life of the "fast" time constant. ICa inactivation curves plotted in a double-stimulus experiment have shown that after tolbutamide application, ICa inactivation elicited by the application of high-amplitude depolarizing pre-stimuli preferentially rises (Vc=+30 to +70 mV). The results suggest that dephosphorylation of Ca2+ channels enhances a potential-dependent component of the inactivation process.Scientific-Research Institute of the Brain, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 23, No. 5, pp. 515–519, September–October, 1991.  相似文献   

6.
We investigated the electrophysiological effect and antiarrhythmic potential of cinnamophilin (Cinn), a thromboxane A2 antagonist isolated fromCinnamomum philippinense, on rat cardiac tissues. Action potential and ionic currents in single rat ventricular cells were examined by current clamp or voltage clamp in a whole-cell configuration. In 9 episodes of ischemia-reperfusion arrhythmia, 10 µM Cinn converted 6 of them to normal sinus rhythm. Cinn suppressed the maximal rate of rise of the action potential upstroke (Vmax) and prolonged the action potential duration at 50% repolarization (APD50). Voltage clamp study showed that the suppression of Vmax by Cinn was associated with an inhibition of sodium inward current (INa, IC50=10.0 ± 0.4 µM). At 30 µM, V1/2 for the steady-state inactivation curve of INa was shifted from –84.1 ± 0.2 to –93.0 ± 0.5 mV. Cinn also reduced calcium inward current (ICa) dose-dependently with an IC50 value of 9.5 ± 0.3 µM. Cinn (10 µM) reduced the ICa with a negative shift of V1/2 for the steady-state inactivation curve of ICa from –32.2 ± 0.3 to –50.7 ± 0.4 mV. The prolongation of APD50 was associated with an inhibition of the integral of potassium outward current with IC50 values between 4.8 and 7.1 µM. At 10 µM, Cinn reduced INa without a negative shift of its voltage-dependent steady-state inactivation curves. The inhibition of transient outward current (Ito) by Cinn (3–30 µM) was associated with an acceleration of its time constant of inactivation and negative shift of its potential-dependent steady-state inactivation curves. The equilibrium dissociation constant (Kd) of Cinn to inhibit open state Ito channels, as calculated from the time constant of developing block, was 18.3 µM. The time constant of recovery of Ito from inactivation state was unaffected by Cinn. The rate constant for the relief from the depolarization-dependent block of Ito was calculated to be 23.9 ms. As compared with its effect on Ito, Cinn exerted about half the potency to block INa and ICa. These results indicate that the inhibition of INa, ICa and Ito may contribute to the antiarrhythmic activity of Cinn against ischemia-reperfusion arrhythmia.  相似文献   

7.
The effect of nitroglycerin (NG) on inward voltage-activated calcium current (I Ca) was studied in isolated smooth muscle cells (SMC) of the guinea pigtaenia coli with the voltage clamp technique in an intracellular dialysis mode. Addition of NG (10–7 to 10–4 M) to the extracellular solution reduced theI Ca amplitude and increased theI Ca inactivation rate. The maximum inhibition ofI Ca (on the average, by 41.7 ± 4.8%,n=13) was produced by 10–4 M NG; the inhibition was dose-dependent. No shift of theI Ca current-voltage curve under the NG influence was observed. Application of dibutyril-cGMP (2·10–4 M), a membrane-penetrating analog of cyclic 3,5-guanosine monophosphate (cGMP), likewise decreased theI Ca amplitude and increased its inactivation rate. The results obtained suggest that the NG inhibitory effect onI Ca is related to a cGMP-dependent modulation of the voltage-activated calcium channels of L-type in the SMC membrane in the guinea pigtaenia coli.Neirofiziologiya/Neurophysiology, Vol. 26, No. 3, pp. 218–222, May–June, 1994.  相似文献   

8.
The effects of 10–10–10–5 M parathyroid hormone (PTH) on voltage-dependent potassium channels at theHelix pomatia neuronal membrane were investigated in voltage-clamped experiments using intracellular perfusion techniques. The hormone was found to produce a 2-stage effect on calcium current (ICa). The initial, brief stage of PTH action consisted of a minor (7–10%) increase in ICa and was partially reversible. This was followed by the second (slow) stage, developing for 60–70 min, whereupon level of ICa doubled. This hormonal action was not easily reversed and did not occur unless the intracellular solution contained ATP or the hormone was applied after perfusing the cell. Introducing 10 mM EDTA into the perfusate induced a considerable decline in PTH effects. Adding concentrations of 100 and 60 µM of exogenous cAMP and cGMP, respectively, did not imitate the action of this hormone. The first-mentioned effect is thought to be produced by indirect PTH action on channel protein or structures closely associated with the channel and the second by metabolic processes, possibly the phosphoinositide pathway of signal transmission.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Medical Institute, Erevan. Translated from Neirofiziologiya, Vol. 22, No. 3, pp. 373–380, May–June, 1990.  相似文献   

9.
Inhibitory effects of cyclic adenosine monophosphate (cAMP) on calcium current (ICa) were investigated in experiments on unidentified neurons isolated fromHelix pomatia by means of voltage clamping techniques using two microelectrodes. Intracellular level of cAMP was raised by intracellular injection of this substance or by extracellular application of dibutyryl-cAMP or isobutylmethyl-xanthine. A set of neurons showing inhibitory effects of cAMP on ICa was used. Effects on barium current (IBa) of an equal extent were also revealed. Injection of cGMP through a double-barreled microelectrode into these neurons produced an increase in amplitude of ICa. Intracellular application of phorbol ester had no effect on this current, however. Intracellular injection of EGTA led to enhancement of ICa amplitude, but the inhibitory effect of cAMP persisted following the action of EGTA. Tolbutamide and H-8 (but to a lesser extent) inhibited ICa. The inhibitory effects of tolbutamide and dibutyryl cAMP were not found to be cumulative in six out of twelve instances. These findings would imply that the inhibitory action of cAMP on ICa is unassociated with activation of cAMP-dependent protein kinase, cGMP-dependent protein kinase or protein kinase C; nor does it depend on level of intracellular Ca2+. The possibility of direct interaction between cAMP and channel-forming protein is considered.Institute of Brain Research, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 22, No. 1, pp. 54–61, January–February, 1990.  相似文献   

10.
Steady-state fluorescence anisotropy measurements of the fluorescent hydrocarbon probe 1,6-diphenyl-1,3,4-hexatriene (DPH) were carried out in isolated hepatocytes of saline control andSalmonella enteritidis endotoxin (20 mg/kg) injected rats. Statistically significant differences were observed in the fluorescent anisotropy (rs) and membrane microviscosity ( ) values of control (rs=0.107±0.004 (SEM), =0.98±0.08, n±6) versus endotoxin injected rat hepatocytes (rs=0.134±0.005, =1.43±0.08, n=6, p<0.001) at 37°C. Fluidity was similarly lower in the isolated plasma membrane preparations from endotoxin-injected rat livers relative to control livers. When endotoxin-injected rats were treated with the calcium channel-blocker diltiazem, the anisotropy and microviscosity values were comparable to thos eobtained from control rats (rs=0.152±0.003, =1.00±0.003, n=6). These measurements were made in animals five hours after endotoxin had been injected, and thus represent thein vivo effects of bacterial endotoxins. Temperature scan studies of DPH from 5–40°C revealed that the membrane fluidity of endotoxin-injected rat hepatocytes was significantly lower than control hepatocytes at all temperatures investigated. The data suggest that endotoxin alters the membrane fluidity of hepatocytes, and that calcium-channel blockers can prevent the alteration. Our previous studies have shown that calcium channel blocker prevented endotoxin induced alterations in hepatic cellular regulation of Ca2+. Thus, cellular calcium homeostasis may be important in the maintenance of membrane fluidity and other membrane-associated transport functions. (Mol Cell Biochem121: 143–148, 1993)  相似文献   

11.
We investigated the effects of pressure overload hypertrophy on inward sodium (I Na) and calcium currents (I Ca) in single left ventricular myocytes to determine whether changes in these current systems could account for the observed prolongation of the action potential. Hypertrophy was induced by pressure overload caused by banding of the abdominal aorta. Whole-cell patch clamp experiments were used to measure tetrodotoxin (TTX)-sensitive inward currents. The main findings were that I Ca density was unchanged whereas I Na density after stepping from –80 to –30 mV was decreased by 30% (–9.0 ± 1.16 pA pF–1 in control and –6.31 ± 0.67 pA pF–1 in hypertrophy, p < 0.05, n= 6). Steady-state activation/inactivation variables of I Na, determined by using double-pulse protocols, were similar in control and hypertrophied myocytes, whereas the time course of fast inactivation of I Na was slowed (p < 0.05) in hypertrophied myocytes. In addition, action potential clamp experiments were carried out in the absence and presence of TTX under conditions where only Ca2+ was likely to enter the cell via TTX-sensitive channels. We show for the first time that a TTX-sensitive inward current was present during the plateau phase of the action potential in hypertrophied but not control myocytes. The observed decrease in I Na density is likely to abbreviate rather than prolong the action potential. Delayed fast inactivation of Na+ channels was not sustained throughout the voltage pulse and may therefore merely counteract the effect of decreased I Na density so that net Na+ influx remains unaltered. Changes in the fast I Na do not therefore appear to contribute to lengthening of the action potential in this model of hypertrophy. However, the presence of a TTX-sensitive current during the plateau could potentially contribute to the prolongation of the action potential in hypertrophied cardiac muscle. (Mol Cell Biochem 261: 217–226, 2004)  相似文献   

12.
We have studied two aspects of calcium channel activation. First, we investigated the molecular regions that are important in determining differences in activation between low- and high-voltage activated channels. For this, we made chimeras between the low-voltage activating CaV3.1 channel and the high-voltage activating CaV1.2 channel. Chimeras were expressed in oocytes, and calcium channel currents recorded by voltage clamp. For domain I, we found that the molecular region that is important in determining the voltage dependence of activation comprises the pore regions S5-P as well as P-S6, but surprisingly not the voltage sensor S1–S4 region, which might have been expected to play a major part. By contrast, the smaller, but still significant, modulating effects of domain II on activation properties were due to effects involving both S1–S4 and S5–S6 but not the I/II linker. Second, during channel activation we studied movement of the S4 segment in domain I of one of the chimeras, using cysteine-scanning mutagenesis. The reagent parachloromercuribenzensulfonate inhibited currents for mutants V263, A265, L266 and A268, but not for F269 and V271, and voltage dependence of inhibition for residue V263 indicated S4 movement, which occurred before channel opening. The data indicate movement outwards upon depolarisation so as to expose amino acids up to residue 268 in S4.Junying Li and Louisa Stevens contributed equally to this work.  相似文献   

13.
By intracellular dialysis of isolated neurons of the mollusksHelix pomatia andLimnaea stagnalis and by a voltage clamp technique the characteristics of transmembrane ionic currents were studied during controlled changes in the ionic composition of the extracellular and intracellular medium. By replacing the intracellular potassium ions by Tris ions, functional blocking of the outward potassium currents was achieved and the inward current distinguished in a pure form. Replacement of Ringer's solution in the extracellular medium with sodium-free or calcium-free solution enabled the inward current to be separated into two additive components, one carried by sodium ions, the other by calcium ions. Sodium and calcium inward currents were found to have different kinetics and different potential-dependence: mNa=1±0.5 msec, mCa=3±1 msec, hNa=8±2 msec, hCa=115±10 msec (Vm=0), GNa=0.5 (Vm=–21±2 mV), GCa=0.5 (Vm=–8±2 mV). Both currents remained unchanged by tetrodotoxin, but the calcium current was specifically blocked by cadmium ions (2·10–3 M), verapamil, and D=600, and also by fluorine ions if injected intracellularly. All these results are regarded as evidence that the soma membrane of the neurons tested possesses separate systems of sodium and calcium ion-conducting channels. Quantitative differences are observed in the relative importance of the systems of sodium and calcium channels in different species of mollusks.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 8, No. 2, pp. 183–191, March–April, 1976.  相似文献   

14.
Patel  R.  Yago  M.D.  Mañas  M.  Victoria  E.M.  Shervington  A.  Singh  J. 《Molecular and cellular biochemistry》2004,261(1):83-89
This study investigated the effects of cholecystokinin-octapeptide (CCK-8) on pancreatic juice flow and its contents, and on cytosolic calcium (Ca2+) and magnesium (Mg2+) levels in streptozotocin (STZ)-induced diabetic rats compared to healthy age-matched controls. Animals were rendered diabetic by a single injection of STZ (60 mg kg–1, I.P.). Age-matched control rats obtained an equivalent volume of citrate buffer. Seven weeks later, animals were either anaesthetised (1 g kg–1 urethane; IP) for the measurement of pancreatic juice flow or humanely killed and the pancreas isolated for the measurements of cytosolic Ca2+ and Mg2+ levels. Non-fasting blood glucose levels in control and diabetic rats were 92.40 ± 2.42 mg dl–1 (n= 44) and >500 mg dl–1 (n= 27), respectively. Resting (basal) pancreatic juice flow in control and diabetic anaesthetised rats was 0.56 ± 0.05 ul min–1 (n= 10) and 1.28 ± 0.16 ul min–1 (n= 8). CCK-8 infusion resulted in a significant (p < 0.05) increase in pancreatic juice flow in control animals compared to a much larger increase in diabetic rats. In contrast, CCK-8 evoked significant (p < 0.05) increases in protein output and amylase secretion in control rats compared to much reduced responses in diabetic animals. Basal [Ca2+]i in control and diabetic fura-2-loaded acinar cells was 109.40 ± 15.41 nM (n= 15) and 130.62 ± 17.66 nM (n= 8), respectively. CCK-8 (10–8M) induced a peak response of 436.55 ± 36.54 nM (n= 15) and 409.31 ± 34.64 nM (n= 8) in control and diabetic cells, respectively. Basal [Mg2+]i in control and diabetic magfura-2-loaded acinar cells was 0.96 ± 0.06 nM (n= 18) and 0.86 ± 0.04 nM (n= 10). In the presence of CCK-8 (10–8) [Mg2+]i in control and diabetic cells was 0.80 ± 0.05 nM (n= 18) and 0.60 ± 0.02 nM (n= 10), respectively. The results indicate that diabetes-induced pancreatic insufficiency may be associated with derangements in cellular Ca2+ and Mg2+ homeostasis. (Mol Cell Biochem 261: 83–89, 2004)  相似文献   

15.
Summary Internal perfusion ofHelix neurons with a solution containing potassium aspartate, MgCl2, ATP, and HEPES causes the calcium-activated potassium current (I K(Ca)) evoked by depolarizing voltage steps to decrease with time. When internal free Ca++ is strongly buffered to 10–7 m by including 0.5mm EGTA and 0.225mm CaCl2 in the internal solution,I K(Ca) remains constant for up to 3 hours of perfusion. In cells whereI K(Ca) is small at the start of perfusion, perfusion with the strongly buffered 10–7 m free Ca++ solution produces increases inI K(Ca) which ultimately saturate. In cells perfused with solutions buffered to 10–6 m free Ca++,I K(Ca) is low and does not change with perfusion. These results lead us to conclude thatI K(Ca) is stable in perfusedHelix neurons and that the apparent loss ofI K(Ca) seen initially with perfusion is due to accumulation of cytoplasmic calcium. Since the calcium current (I Ca) provides the Ca++ which activatesI K(Ca) during a depolarizing pulse,I Ca is also stable in perfused cells when free intracellular Ca++ is buffered.Perfusion with 1 m calmodulin (CaM) produces no effect onI K(Ca) with either 10–7 or 10–6 m free internal calcium. Inhibiting endogenous CaM by including 50 m trifluoperazine (TFP) in both the bath and the internal perfusion solution also produces no effect onI K(Ca) with 10–7 m free internal calciu. It is concluded that CaM plays no role inI K(Ca) activation.  相似文献   

16.
Effects of ryanodine on calcium transients evoked by depolarization of external membrane under voltage clamp conditions or by a train of action potentials under current clamp conditions were studied on isolated dorsal root ganglion neurons of newborn rats. In 70% neurons tested, ryanodine, a blocker of Ca2+-induced Ca2+ release from endoplasmic reticulum, significantly decreased the amplitude of calcium transients. The data obtained indicate that the Ca2+-induced Ca2+ release plays an important role for calcium signal generation in a subpopulation of sensory neurons.Neirofiziologiya/Neurophysiology, Vol. 26, No. 6, pp. 420–422, November–December, 1994.  相似文献   

17.
Using indo-1- and fura-2-based microfluorometry for measuring the cytoplasmic free calcium concentration ([Ca2+] in ), the properties of caffeine-induced Ca2+ release from internal stores were studied in rat cultured central and peripheral neurons, including dorsal root ganglion (DRG) neurons, neurons from then. cuneatus, CA1 and CA3 hippocampal regions, and pyramidal neocortical neurons. Under resting conditions, the Ca2+ content of internal stores in DRG neurons was high enough to produce caffeine-triggered [Ca2+] in transients. Prolonged exposure of caffeine depleted the caffeine-sensitive stores of releasable Ca2+; the degree of this depletion depended on caffeine concentration. The depletion of the caffeine-sensitive internal stores to some extent was linked to calcium extrusion via La3+-sensitive plasmalemmal Ca2+-ATPases. Caffeine-induced Ca2+ release deprived internal stores in DRG neurons, but they refilled themselves spontaneously within 10 min. Pharmacological manipulation with caffeine-sensitive stores interferred with the depolarization-induced [Ca2+] in transients. In the presence of low caffeine concentration (0.5–1.0 mM) in the extracellular solution, the rate of rise of the depolarization-triggered [Ca2+] in transients significantly increased (by a factor of 2.15 ± 0.29) suggesting the occurrence of Ca2+-induced Ca2+ release. When the caffeine-sensitive stores were emptied by prolonged application of caffeine, the amplitude and rate of rise of the depolarization-induced [Ca2+] in transients decreased. These findings suggest the involvement of internal caffeine-sensitive calcium stores in generation of calcium signal in sensory neurons. In contrast, in all types of central neurons tested the resting Ca2+ content of internal stores was low, but the stores could be charged by transmembrane Ca2+ entry through voltage-operated calcium channels. After charging, the stores in central neurons spontaneously lost releasable calcium content and within 10 min they became completely empty again. We suggest that internal Ca2+ stores in peripheral and central neurons, although having similar pharmacological characteristics, handle Ca2+ ions in a different manner. Calcium stores in sensory neurons are continuously filled by releasable calcium and after discharging they can be spontaneously refilled, whereas in central neurons internal calcium stores can be charged by releasable calcium only transiently. Caffeine-evoked [Ca2+] in transients in all types of neurons were effectively blocked by 10 mM ryanodine, 5 mM procaine, 10 mM dantrolene, or 0.5 mM Ba2+, thus sharing the basic properties of the Ca2+-induced Ca2+ release from endoplasmic reticulum.Neirofiziologiya/Neurophysiology, Vol. 26, No. 1, pp. 16–25, January–February, 1994.  相似文献   

18.
Somatostatin subtype-4 receptors (sst4) inhibit L-type calcium channel currents (ICa) in retinal ganglion cells (RGCs). Here we identify the signaling pathways involved in sst4 stimulation leading to suppression of ICa in RGCs. Whole cell patch clamp recordings were made on isolated immunopanned RGCs using barium as a charge carrier to isolate ICa. Application of the selective sst4 agonist, L-803 (10 nM), reduced ICa by 41.2%. Pretreatment of cells with pertussis toxin (Gi/o inhibitor) did not prevent the action of L-803, which reduced ICa by 34.7%. To determine the involvement of Gβγ subunits after sst4 activation, depolarizing pre-pulse facilitation paradigms were used to remove voltage-dependent inhibition of calcium channels. Pre-pulse facilitation did not reverse the inhibitory effects of L-803 on ICa (8.4 vs. 8.8% reductions, ctrl vs. L-803); however, pharmacologic inhibition of Gβγ reduced ICa suppression by L-803 (23.0%, P < 0.05). Inhibition of PKC (GF109203X; GFX) showed a concentration-dependent effect in preventing the action of L-803 on ICa (1 μM GFX, 34.3%; 5 μM GFX, 14.6%, P < 0.05). When both PKC and Gβγ were inhibited, the effects of L-803 on ICa were blocked (1.8%, P < 0.05). These results suggest that sst4 stimulation modulates RGC calcium channels via Gβγ and PKC activation. Since reducing intracellular Ca2+ is known to be neuroprotective in RGCs, modulating these sst4 signaling pathways may provide insights to the discovery of unique therapeutic targets to reduce intracellular Ca2+ levels in RGCs.  相似文献   

19.
Modulatory effects of diadenosine tetraphosphate (Ap4A) and diadenosine pentaphosphate (Ap5A) on Ca2+ channels were studied on isolated hippocampal neurons and synaptosomes taken from the rat midbrain. In experiments on synaptosomes obtained from the whole brain, Ap5A applied at a concentration of 100 µM increased the intrasynaptosomal calcium level (measured by means of spectrofluorometry) for 26±1.8 nM, i.e., by 24±2%. Nifedipine failed to block this effect in synaptosomes and in hippocampal neurons. The high voltage-activated Ca2+ currents were identified by recording from freshly isolatedCA3 neurons using a whole-cell patch-clamp technique. Current-voltage relationships were measured in control and after incubation with 5 µM Ap5A. In the majority of tested pyramidal neurons, the latter procedure resulted in a reversible increase in the high voltage-activated currents through Ca2+ channels measured at a holding potential of –100 mV, but not of –40 mV. Potentiation of the currents through Ca2+ channels in hippocampal neurons as well as an increase in intrasynaptosomal [Ca2+] could be irreversibly blocked by 5 µM -conotoxin, but not by 200 nM -Aga-IVA. These data indicate that diadenosine polyphosphates enhance the activity of N-type but not of L-type or P-type Ca2+ channels in many central neurons of the rat brain.Neirofiziologiya/Neurophysiology, Vol. 26, No. 6, pp. 409–416, November–December, 1994.  相似文献   

20.
The experiments were conducted on intracellularly persfused neurons of the molluskHelix pomatia, in which a serotonin (5-HT)-induced increase in the calcium current (ICa), mediated by cAMP, is observed. It was established that desensitization of the cell to the action of 5-HT is due to an increase in the intracellular Ca2+ concentration ([Ca2+]i). At [Ca2+]i=10–7 and 10–6 M, the effect of 5-HT constituted 60 and 32% of this value in the control (in the presence of 10 mM EGTA in the intracellular solution), respectively; at [Ca2+]i=10–5 M, there was no effect of 5-HT at all. The addition of the calmodulin antagonist trifluoperazine (5·10–5 mM) or blockers of phosphodiesterase (5 mM theophylline or 10–4 M IBMX) to the perfusate sharply weakened the ability of calcium to inhibit the effect of 5-HT; at [Ca2+]i=10–5 M, in the presence of one of these compounds, the effect constituted 60–70% of its control value. It is concluded that the calcium-calmodulin-dependent phosphodiesterase is a key link in the interaction of the two-signal transduction pathway — Ca2+ and cAMP in modulation of the calcium-channel activity.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 23, No. 3, pp. 306–313, May–June, 1991.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号