首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The germ cell nuclear factor of Xenopus laevis (xGCNF; NR6A1) is a nuclear orphan receptor that is predominantly expressed during neurula and late tailbud stages. As a strategy to analyze the role of xGCNF in embryogenesis, we have induced a gain of function by overexpression of full-length (fl) GCNF and a functional inhibition by a dominant-negative (dn) GCNF. Early events of embryogenesis including gastrulation and neurulation were not affected and the expression of several early mesodermal markers was normal. Yet specific defects were observed upon organogenesis. Ectopic posterior overexpression of the full-length xGCNF caused posterior defects and disturbed somite formation. In contrast, expression of dnGCNF interfered with differentiation of the neural tube and affected the differentiation of anterior structures, including the cement gland and the eyes. Embryos affected by dnGCNF were rescued by coexpression of flGCNF. After expression of dnGCNF, mRNA encoding the the retinoic acid receptor xRAR gamma 2 was selectively suppressed anteriorly. From the distinct phenotypes obtained, we conclude that GCNF has an essential function in anteroposterior differentiation during organogenesis.  相似文献   

2.
3.
Chordates undergo a characteristic morphogenetic process during neurulation to form a dorsal hollow neural tube. Neurulation begins with the formation of the neural plate and ends when the left epidermis and right epidermis overlying the neural tube fuse to close the neural fold. During these processes, mitosis and the various morphogenetic movements need to be coordinated. In this study, we investigated the epidermal cell cycle in Ciona intestinalis embryos in vivo using a fluorescent ubiquitination-based cell cycle indicator (Fucci). Epidermal cells of Ciona undergo 11 divisions as the embryos progress from fertilization to the tadpole larval stage. We detected a long G2 phase between the tenth and eleventh cell divisions, during which fusion of the left and right epidermis occurred. Characteristic cell shape change and actin filament regulation were observed during the G2 phase. CDC25 is probably a key regulator of the cell cycle progression of epidermal cells. Artificially shortening this G2 phase by overexpressing CDC25 caused precocious cell division before or during neural tube closure, thereby disrupting the characteristic morphogenetic movement. Delaying the precocious cell division by prolonging the S phase with aphidicolin ameliorated the effects of CDC25. These results suggest that the long interphase during the eleventh epidermal cell cycle is required for neurulation.  相似文献   

4.
Germ cell nuclear factor   总被引:2,自引:0,他引:2  
  相似文献   

5.
A novel zebrafish gene bloody fingers (blf) encoding a 478 amino acid protein containing fifteen C(2)H(2) type zinc fingers was identified by expression screening. As determined by in situ hybridization, blf RNA displays strong ubiquitous early zygotic expression, while during late gastrulation and early somitogenesis, blf expression becomes transiently restricted to the posterior dorsal and lateral mesoderm. During later somitogenesis, blf expression appears only in hematopoietic cells. It is completely eliminated in cloche, moonshine but not in vlad tepes (gata1) mutant embryos. Morpholino (MO) knockdown of the Blf protein results in the defects of morphogenetic movements. Blf-MO-injected embryos (morphants) display shortened and widened axial tissues due to defective convergent extension. Unlike other convergent extension mutants, blf morphants display a split neural tube, resulting in a phenotype similar to the human open neural tube defect spina bifida. In addition, dorsal ectodermal cells delaminate in blf morphants during late somitogenesis. We propose a model explaining the role of blf in convergent extension and neurulation. We conclude that blf plays an important role in regulating morphogenetic movements during gastrulation and neurulation while its role in hematopoiesis may be redundant.  相似文献   

6.
During neurulation in vertebrate embryos, epithelial cells of the neural plate undergo complex morphogenetic movements that culminate in rolling of the plate into a tube. Resolution of the determinants of this process requires an understanding of the precise movements of cells within the epithelial sheet. A computer algorithm that allows automated tracking of epithelial cells visible in digitized video images is presented. It is used to quantify the displacement field associated with morphogenetic movements in the axolotl (Ambystoma mexicanum) neural plate during normal neural tube formation. Movements from lateral to medial, axial elongations and area changes are calculated from the displacement field data and plotted as functions of time. Regional and temporal differences are identified. The approach presented is suitable for analyzing a wide variety of morphogenetic movements.  相似文献   

7.
To determine the function of germ cell nuclear factor (GCNF) in female reproduction, we generated an oocyte-specific GCNF knockout mouse model (GCNF(fl/fl)Zp3Cre(+)). These mice displayed hypofertility due to prolonged diestrus phase of the estrous cycle and aberrant steroidogenesis. These reproductive defects were secondary to a primary defect in the oocytes, in which expression of the paracrine transforming growth factor-beta signaling molecules, bone morphogenetic protein 15 (BMP-15) and growth differentiation factor 9 (GDF-9), were up-regulated in GCNF(fl/fl)Zp3Cre(+) females at diestrus. This was a direct effect of GCNF, as molecular studies showed that GCNF bound to DR0 elements within the BMP-15 and GDF-9 gene promoters and repressed their reporter activities. Consistent with these findings, abnormal double-oocyte follicles, indicative of aberrant BMP-15/GDF-9 expression, were observed in GCNF(fl/fl)Zp3Cre(+) females. The Cre/loxP knockout of GCNF in the oocyte has uncovered a new regulatory pathway in ovarian function. Our results show that GCNF directly regulates paracrine communication between the oocyte and somatic cells by regulating the expression of BMP-15 and GDF-9, to affect female fertility.  相似文献   

8.
Neurulation involves a complex coordination of cellular movements that are in great part based on the modulation of the actin cytoskeleton. MARCKS, an F‐actin‐binding protein and the major substrate for PKC, is necessary for gastrulation and neurulation morphogenetic movements in mice, frogs, and fish. We previously showed that this protein accumulates at the apical region of the closing neural plate in chick embryos, and here further explore its role in this process and how it is regulated by PKC phosphorylation. PKC activation by PMA caused extensive neural tube closure defects in cultured chick embryos, together with MARCKS phosphorylation and redistribution to the cytoplasm. This was concomitant with an evident disruption of neural plate cell polarity and extensive apical cell extrusion. This effect was not due to actomyosin hypercontractility, but it was reproduced upon MARCKS knockdown. Interestingly, the overexpression of a nonphosphorylatable form of MARCKS was able to revert the cellular defects observed in the neural plate after PKC activation. Altogether, these results suggest that MARCKS function during neurulation would be to maintain neuroepithelial polarity through the stabilization of subapical F‐actin, a function that appears to be counteracted by PKC activation.  相似文献   

9.
The formation of the nervous system in vertebrate embryos involves extensive morphogenetic movements that include the folding of the neural tube and the migration of neural crest cells. Changes in cell shape and cell movements underlie neural morphogenesis but the molecular mechanisms involved in these processes in vivo are not well understood. Here, we show that a new member of the hepatocyte growth factor family, which we name Livertine, is expressed in frog embryos in neural cells including neural crest and midline neural plate cells which are undergoing pronounced morphogenetic movements. The ectopic expression of Livertine perturbs gastrulation and leads to positional changes in injected cells without apparently changing cell type. These results suggest that one of the normal functions of Livertine is the control of neural morphogenesis in the vertebrate embryo.  相似文献   

10.
N-cadherin (Ncad) is a classical cadherin that is implicated in several aspects of vertebrate embryonic development, including somitogenesis, heart morphogenesis, neural tube formation and establishment of left-right asymmetry. However, genetic in vivo analyses of its role during neural development have been rather limited. We report the isolation and characterization of the zebrafish parachute (pac) mutations. By mapping and candidate gene analysis, we demonstrate that pac corresponds to a zebrafish n-cadherin (ncad) homolog. Three mutant alleles were sequenced and each is likely to encode a non-functional Ncad protein. All result in a similar neural tube phenotype that is most prominent in the midbrain, hindbrain and the posterior spinal cord. Neuroectodermal cell adhesion is altered, and convergent cell movements during neurulation are severely compromised. In addition, many neurons become progressively displaced along the dorsoventral and the anteroposterior axes. At the cellular level, loss of Ncad affects beta-catenin stabilization/localization and causes mispositioned and increased mitoses in the dorsal midbrain and hindbrain, a phenotype later correlated with enhanced apoptosis and the appearance of ectopic neurons in these areas. Our results thus highlight novel and crucial in vivo roles for Ncad in the control of cell convergence, maintenance of neuronal positioning and dorsal cell proliferation during vertebrate neural tube development.  相似文献   

11.
The central nervous system is derived from the neural plate that undergoes a series of complex morphogenetic movements resulting in formation of the neural tube in a process known as neurulation. During neurulation, morphogenesis of the mesenchyme that underlies the neural plate is believed to drive neural fold elevation. The cranial mesenchyme is comprised of the paraxial mesoderm and neural crest cells. The cells of the cranial mesenchyme form a pourous meshwork composed of stellate shaped cells and intermingling extracellular matrix (ECM) strands that support the neural folds. During neurulation, the cranial mesenchyme undergoes stereotypical rearrangements resulting in its expansion and these movements are believed to provide a driving force for neural fold elevation. However, the pathways and cellular behaviors that drive cranial mesenchyme morphogenesis remain poorly studied. Interactions between the ECM and the cells of the cranial mesenchyme underly these cell behaviors. Here we describe a simple ex vivo explant assay devised to characterize the behaviors of these cells. This assay is amendable to pharmacological manipulations to dissect the signaling pathways involved and live imaging analyses to further characterize the behavior of these cells. We present a representative experiment demonstrating the utility of this assay in characterizing the migratory properties of the cranial mesenchyme on a variety of ECM components.  相似文献   

12.
Mechanisms of neurulation: traditional viewpoint and recent advances   总被引:14,自引:0,他引:14  
In this review article, the traditional viewpoint of how neurulation occurs is evaluated in light of recent advances. This has led to the formulation of the following fundamentals: (1) neurulation, specifically neural plate shaping and bending, is a multifactorial process resulting from forces both intrinsic and extrinsic to the neural plate; (2) neurulation is driven by both changes in neuroepithelial cell shape and other form-shaping events; and (3) forces for cell shape changes are generated by both the cytoskeleton and other factors. Several cell behaviors within the neural plate have been elucidated. Future challenges include identifying cell behaviors within non-neuroepithelial tissues, determining how intrinsic and extrinsic cell behaviors are orchestrated into coordinated morphogenetic movements and elucidating the molecular mechanisms underlying such behaviors.  相似文献   

13.
14.
In Xenopus, Dishevelled (Xdsh) signaling is required for both neural tube closure and neural convergent extension, but the connection between these two morphogenetic processes remains unclear. Indeed normal neurulation requires several different cell polarity decisions, any of which may require Xdsh signaling. In this paper we address two issues: (1) which aspects of normal neurulation require Xdsh function; and (2) what role convergent extension plays in the closure of the neural tube. We show that Xdsh signaling is not required for neural fold elevation, medial movement or fusion. Disruption of Xdsh signaling therefore provides a specific tool for uncoupling convergent extension from other processes of neurulation. Using disruption of Xdsh signaling, we demonstrate that convergent extension is crucial to tube closure. Targeted injection revealed that Xdsh function was required specifically in the midline for normal neural tube closure. We suggest that the inherent movement of the neural folds can accomplish only a finite amount of medial progress and that convergent extension of the midline is necessary to reduce the distance between the nascent neural folds, allowing them to meet and fuse. Similar results with Xenopus strabismus implicate the planar cell polarity (PCP) signaling cascade in neural convergent extension and tube closure. Together, these data demonstrate that PCP-mediated convergent extension movements are crucial to proper vertebrate neurulation.  相似文献   

15.
Separation of neural induction and neurulation in Xenopus   总被引:3,自引:0,他引:3  
  相似文献   

16.

Background

The neural tube is formed by morphogenetic movements largely dependent on cytoskeletal dynamics. Actin and many of its associated proteins have been proposed as important mediators of neurulation. For instance, mice deficient in MARCKS, an actin cross-linking membrane-associated protein that is regulated by PKC and other kinases, present severe developmental defects, including failure of cranial neural tube closure.

Results

To determine the distribution of MARCKS, and its possible relationships with actin during neurulation, chick embryos were transversely sectioned and double labeled with an anti-MARCKS polyclonal antibody and phalloidin. In the neural plate, MARCKS was found ubiquitously distributed at the periphery of the cells, being conspicuously accumulated in the apical cell region, in close proximity to the apical actin meshwork. This asymmetric distribution was particularly noticeable during the bending process. After the closure of the neural tube, the apically accumulated MARCKS disappeared, and this cell region became analogous to the other peripheral cell zones in its MARCKS content. Actin did not display analogous variations, remaining highly concentrated at the cell subapical territory. The transient apical accumulation of MARCKS was found throughout the neural tube axis. The analysis of another epithelial bending movement, during the formation of the lens vesicle, revealed an identical phenomenon.

Conclusions

MARCKS is transiently accumulated at the apical region of neural plate and lens placode cells during processes of bending. This asymmetric subcellular distribution of MARCKS starts before the onset of neural plate bending. These results suggest possible upstream regulatory actions of MARCKS on some functions of the actin subapical meshwork.  相似文献   

17.
18.
19.
The dynamic embryonic expression of germ cell nuclear factor (GCNF), an orphan nuclear receptor, suggests that it may play an important role during early development. To determine the physiological role of GCNF, we have generated a targeted mutation of the GCNF gene in mice. Germ line mutation of the GCNF gene proves that the orphan nuclear receptor is essential for embryonic survival and normal development. GCNF(-/-) embryos cannot survive beyond 10.5 days postcoitum (dpc), probably due to cardiovascular failure. Prior to death, GCNF(-/-) embryos suffer significant defects in posterior development. Unlike GCNF(+/+) embryos, GCNF(-/-) embryos do not turn and remain in a lordotic position, the majority of the neural tube remains open, and the hindgut fails to close. GCNF(-/-) embryos also suffer serious defects in trunk development, specifically in somitogenesis, which terminates by 8.75 dpc. The maximum number of somites in GCNF(-/-) embryos is 13 instead of 25 as in the GCNF(+/+) embryos. Interestingly, the tailbud of GCNF(-/-) embryos develops ectopically outside the yolk sac. Indeed, alterations in expression of multiple marker genes were identified in the posterior of GCNF(-/-) embryos, including the primitive streak, the node, and the presomitic mesoderm. These results suggest that GCNF is required for maintenance of somitogenesis and posterior development and is essential for embryonic survival. These results suggest that GCNF regulates a novel and critical developmental pathway involved in normal anteroposterior development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号