首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Douglas  L. A.  Weaver  R. W. 《Plant and Soil》1993,(1):353-354
If the quality and quantity of yields from cowpea (Vigna unguiculata [L.] Walp.) are to be maximised, a complete understanding of the N nutrition of the plant must be achieved. The N requirement for developing pods of this species may come from mobilization of N in vegetative tissue, biological N fixation and uptake of N from soil. In this study, the fate of a pulse of fixed 15N2 or of 15NO3-given to different cowpea plants during pod development was determined. The plants were grown in vermiculite in plastic pots that were able to be sealed with silicone adhesive and equipped with a rubber septum so that 15N2 gas could be injected into the air space above the vermiculite, and gas losses would be eliminated. Nineteen days after injection of 15N2 the pods, leaves, nodules and roots contained 65%, 15%, 9%, and 4%, respectively of the quantity of 15N2 fixed. When 15NO3-15N was taken up by other plants during this period, these plant parts contained 40%, 26%, 3% and 19%, respectively, of the total plant 15N. The percentage 15N in roots was greater, and that of 15N in nodules was lower, when 15NO3-15N was applied than when 15N2 was utilised by plants. These results indicate that, while a high percentage of fixed-N or NO3-N given to cowpea plants moved to the developing pods, other sinks were competing for this newly-aquired N.  相似文献   

2.
A pot experiment was conducted in a greenhouse using the 15N isotope dilution method and two reference plants, Parkia biglobosa and Tamarindus indica to estimate nitrogen fixed in four Acacia species: A raddiana, A. senegal, A. seyal and Faidherbia albida (synonym Acacia albida). For the reference plants, the 15N enrichments in leaves, stems and roots were similar. With the fixing plants, leaves and stems had similar 15N enrichments; they were higher than the 15N enrichment of roots. The amounts of nitrogen fixed at 5 months after planting were similar using either reference plant. Estimates of the percentage of N derived from fixation (%Ndfa) for the above ground parts, in contrast to %Ndfa in roots, were similar to those for the whole plant. However, none of the individual plant parts estimated accurately total N fixed in the whole plant, and excluding the roots resulted in at least 30% underestimation of the amounts of N fixed. Between species, differences in N2 fixation were observed, both for %Ndfa and total N fixed. For %Ndfa, the best were A. seyal (average, 63%) and A. raddiana (average, 62%), being at least twice the %Ndfa in A. senegal and F. albida. Because of its very high N content, A. seyal was clearly the best in total N fixed, fixing 1.62 g N plant–1 compared to an average of 0.48 g N plant–1 for the other Acacia species. Our results show the wide variability existing between Acacia species in terms of both %Ndfa and total N fixed: A. seyal was classified as having a high N2 fixing potential (NFP) while the other Acacia species had a low NFP.  相似文献   

3.
Rhizodeposition has been proposed as one mechanism for the accumulation of significant amounts of N in soil during legume growth. The objective of this experiment was to directly quantify losses of symbiotically fixed N from living alfalfa (Medicago sativa L.) roots to the rhizosphere. We used 15N-labeled N2 gas to tag recently fixed N in three alfalfa lines [cv. Saranac, Ineffective Saranac (an ineffectively nodulated line), and an unnamed line in early stages of selection for apparent N excretion] growing in 1-m long polyvinylchloride drainage lysimeters in loamy sand soil in a greenhouse. Plants were in the late vegetative to flowering growth stage during the 2-day labelling period. We determined the fate of this fixed N in various plant organs and soil after a short equilibration period (2 to 4 days) and after one regrowth period (35 to 37 days). Extrapolated N2 fixation rates (46 to 77g plant–1 h–1) were similar to rates others have measured in the field. Although there was significant accretion of total N in rhizosphere compared to bulk soil, less than 1% was derived from newly fixed N and there were no differences between the excreting line and Saranac. Loss of N in percolate water was small. These results provide the first direct evidence that little net loss of symbiotically-fixed N occurs from living alfalfa roots into surrounding soil. In addition, these results confirm our earlier findings, which depended on indirect 15N labelling techniques. Net N accumulation in soil during alfalfa growth is likely due to other processes, such as decomposition of roots, nodules, and above ground litter, rather than to N excretion from living roots and nodules.  相似文献   

4.
Although the use of 15N fertilizers to measure nitrogen (N2) fixed in crops has increased substantially in recent years, some methodological uncertainties still remain unresolved. The results obtained from a greenhouse study of soybean [Glycine max. (L.) Merrill] inoculated by six different methods have been examined for potential errors arising from incorporating 15N labelled fertilizer into soil to estimate N2 fixed in pods or shoots or the whole plant at three growth stages (50% flowering, pod-initiation and physiological maturity) using as reference crops, an uninoculated soybean cultivar and a non-nodulating soybean isoline. At the first harvest when N2 fixed was very low, the estimates of N2 fixed by the two reference crops did not match. At this stage the uninoculated soybean estimated about four times as much N2 fixed in the symbiotic soybean as that measured using the non-nodulating soybean. For the second and third harvests, there were substantial increases in N2 fixed, and both the non-nodulating and uninoculated soybean were equally suitable as reference crops for assessing N2 fixed in the symbiotic soybean. These results indicate how critical and difficult the choice of the reference crop could be at early harvests, or when N2 fixed is low. Even though there were significant differences in 15N enrichments in different organs (generally nodules < pods < roots < shoots), the estimates of N2 fixed in soybean plants obtained by excluding roots and nodules did not differ much from those based on the whole plant. Of the above-ground organs, % N2 fixed in pods (containing seeds) was closest to that of the whole plant (similar at P<0.05 at physiological maturity). However, the total N2 fixed in pods or shoots was substantially lower than that fixed by the whole plant (P<0.05), although that for the pods and enclosed seeds once again was closer to N2 fixed in the whole plant than that in the shoots.  相似文献   

5.
Summary Remobilization of15N from vegetative tissue of mungbean (Vigna radiata (L.) Wilczek) into pods was measured during the reproductive phase of growth. Plant tissue was labelled with15N during vegetative development. Experiments were conducted in the field at two sites. At one site the soil provided cowpeas with most of their N but at the other site N fixation provided most of the N. Remobilized N from vegetative tissue to pods occurred soon after they began to develop. The quantity of the labelled N ultimately remobilized to the pods amounted to 50% for one cultivar (Tx33) at the high soil N site and 70% at the low N site. For the other cultivar (Tx13) the values were 25% and 30%, respectively. The two cultivars performed very differently with respect to partitioning of N into pods and the rate of N fixation. Even though more N was accumulated in the shoots of the high N fixing cultivar (Tx13) less total N was contained in the pods.  相似文献   

6.
A glasshouse study was made of the distribution of 15N among vegetative organs of sunflower and its later remobilization and redistribution to seeds, as influenced by the developmental stage at which 15N was provided, and by the N status of the plants. Plants of Hysun 30 sunflower were grown in sand culture and provided with K15NO3 for a 3-day period at: (a) 3 days before the end of floret initiation; (b) 3 days before anthesis; (c) the start of anthesis; (d) full anthesis; and (e) 8 days after full anthesis. The plants were grown on a range of N supply rates, from severely deficient to more than adequate for maximum growth. Nitrogen-15 was distributed to all parts of the plant at the end of the 15N uptake periods. With the exception of the most N-stressed plants, subsequent remobilization of 15N from roots, stems and leaves occurred irrespective of the time the 15N was taken up. However, the percentage redistribution to seeds of 15N taken up at the end of floret initiation was less than for 15N taken up at anthesis. Remobilization of 15N from leaves and roots was higher (70%) for 15N taken up during and after anthesis than for 15N taken up at the end of floret initiation (45%), except for plants grown on the lowest N supply. By contrast, remobilization of 15N from the stem was lower for 15N taken up after full anthesis (40%) than before or during anthesis (>70%). The proportion of 15N remobilized from the top third of the stem was less than that from the bottom third, and decreased with increasing plant N status. Nitrogen-15 taken up over the 3-day supply periods during anthesis contributed from 2 to 11% of the total seed N at maturity; the contribution to seeds was greatest for plants grown on the highest N supply. Nitrogen taken up just before and during anthesis contributed most of the N accumulated in mature seeds of plants grown on an adequate N supply, but N taken up between the end of floret initiation and just before anthesis, or after full anthesis seemed to make an equally important contribution to mature seeds as N taken up during anthesis for plants grown on a very low N supply. It was concluded that the development of florets and seeds of sunflower is supported by N taken up by the plant between the end of floret initiation and anthesis, and by N redistributed from vegetative organs. Unless soil N is so low as to impair early growth, split applications of N fertilizer would be best made just before the end of floret initiation (‘star stage’) and just before anthesis.  相似文献   

7.
The seasonal course of nitrogen uptake, incorporation and remobilization in different shoot components of winter oilseed rape (Brassica napus L.) was studied under field conditions including three rates of 15N labelled nitrogen application (0, 100 or 200 kg N ha-1) and two irrigation treatments (rainfed or watered at a deficit of 20 mm). The total amount of irrigation water applied was 260 mm, split over 13 occasions in a 7-week-period ranging from 1 week before onset of flowering until 4 weeks after flowering.Nitrogen application and irrigation increased plant growth and nitrogen accumulation. Irrespective of N and irrigation treatment more than 50% of total shoot N was present in the stem when flowering started. At the end of flowering, pod walls were the main N store containing about 30–40% of shoot N. The quantities of N remobilized from stems and pod walls amounted in all treatments to about 70% of the N present in these organs at mid-flowering. At harvest, stem and pod walls each contained about 10% of total shoot N, the remaining 80% being incorporated into seeds. The main component contributing to the response of seed N accumulation to nitrogen application and irrigation was pods in axillary racemes. Up to 20 kg N ha-1, corresponding to about 10% of final shoot N content, was lost from the plants by leaf drop.Irrigation increased the recovery at harvest of applied N from 30% to about 50%, while the level of N application did not affect the N recovery. 15N labelled (fertilizer derived) nitrogen constituted a greater proportion of the N content in old leaves than in young leaves and increased with age in the former, but not in the latter. Relative to soil N, fertilizer derived N also contributed more to the N content of vegetative than to that of reproductive shoot components. Small net changes in shoot N content after flowering reflected a balance between N import and export, leading to continuous dilution of 15N labelled N with unlabelled N.  相似文献   

8.
Cultivating dinitrogen-fixing legume trees with crops in agroforestry is a relatively common N management practice in the Neotropics. The objective of this study was to assess the N2 fixation potential of three important Neotropical agroforestry tree species, Erythrina poeppigiana, Erythrina fusca, and Inga edulis, under semi-controlled field conditions. The study was conducted in the humid tropical climate of the Caribbean coastal plain of Costa Rica. In 2002, seedlings of I. edulis and Vochysia guatemalensis were planted in one-meter-deep open-ended plastic cylinders buried in soil within hedgerows of the same species. Overall tree spacing was 1 × 4 m to simulate a typical alley-cropping design. The 15N was applied as (NH4)2SO4 at 10% 15N atom excess 15 days after planting at the rate of 20 kg [N] ha−1. In 2003, seedlings of E. poeppigiana, E. fusca, and V. guatemalensis were planted in the same field using the existing cylinders. The 15N application was repeated at the rate of 20 kg [N] ha−1 15 days after planting and 10 kg [N] ha−1 was added three months after planting. Trees were harvested 9 months after planting in both years. The 15N content of leaves, branches, stems, and roots was determined by mass spectrometry. The percentage of atmospheric N fixed out of total N (%Nf) was calculated based on 15N atom excess in leaves or total biomass. The difference between the two calculation methods was insignificant for all species. Sixty percent of I. edulis trees fixed N2; %Nf was 57% for the N2-fixing trees. Biomass production and N yield were similar in N2-fixing and non-N2-fixing I. edulis. No obvious cause was found for why not all I. edulis trees fixed N2. All E. poeppigiana and E. fusca trees fixed N2; %Nf was ca. 59% and 64%, respectively. These data were extrapolated to typical agroforestry systems using published data on N recycling by the studied species. Inga edulis may recycle ca. 100 kg ha−1 a−1 of N fixed from atmosphere to soil if only 60% of trees fix N2, E. poeppigiana 60–160 kg ha−1 a−1, and E. fusca ca. 80 kg ha−1 a−1.  相似文献   

9.
Solid-state 15N NMR spectroscopy was used to determine the chemical nature of nitrogen in 15N-enriched material from the roots and stems of wheat (Triticum aesitivum), field pea (Pisum sativum) and kikuyu grass (Pennisetum clandestinum) and from the roots, stems and leaves of a eucalyptus species (Eucalyptus globulus). Nitrogen-15 cross polarization (CP) spectra of the materials were all very similar, with 64–75% of total signal assigned to amide N. Spin counting analysis indicated that 37–80% of potential signal was accounted for in the CP spectra, and that NMR observability using the CP technique (N obs -CP) was higher for stems and leaves than for roots, and higher for wheat and eucalyptus than for peas and kikuyu. The 15N direct polarization (DP) spectra contained higher proportions of signal assigned to amine (up to 22%) and nitrate (up to 17%), and less assigned to amide N (50–72%) than the corresponding CP spectra. Spin counting analysis indicated that 68–93% of potential signal was accounted for in the DP spectra, confirming the DP technique to be more quantitatively reliable than CP.  相似文献   

10.
Summary The uptake and distribution of15NH 4 + ,15NO 3 and15N2 was studied in greenhouse-grown beans (Phaseolus vulgaris L.) with a commercial cultivar and 2 recombinant inbred backcross lines;15N was supplied in the nutrient solution at the R3 (50% bloom) stage. Plants were harvested 1, 5 and 10 days after treatment, and were separated into nodules, roots, stems, mature leaflets, immature leaflets, and flowers/fruits. All 3 lines showed rapid increases in the N content of flowers/fruits after the R3 stage. However, the percentage N in these tissues decreased after the R3 stage. One of the recombinant lines showed a greater uptake of NH 4 + than the other 2 lines. Rates of15N2 fixation and NO 3 uptake were similar for all 3 lines, N2 fixation estimated from total N content showed the 2 recombinant lines with 24 and 34 percent greater activity than the commercial cultivar. Distribution of15N at the whole plant level was similar for all 3 lines for a similar N source.15NO 3 was transported first to leaflets and the label then moved into flowers/fruits. Transport of fixed N2 was from the nodules to roots, stems and into flowers/fruits; usually less than 10 percent entered the leaflets. This indicates that N2 fixation furnishes N directly to flowers/fruits with over 50 percent of the fixed N being deposited into flowers/fruits within 5 days after treatment.  相似文献   

11.
Gorissen  A.  Cotrufo  M.F. 《Plant and Soil》2000,224(1):75-84
Leaf and root tissue of Lolium perenne L., Agrostis capillaris L. and Festuca ovina L. grown under ambient (350 μl l-1 CO2) and elevated (700 μl l-1) CO2 in a continuously 14C-labelled atmosphere and at two soil N levels, were incubated at 14°C for 222 days. Decomposition of leaf and root tissue grown in the low N treatment was not affected by elevated [CO2], whereas decomposition in the high N treatment was significantly reduced by 7% after 222 days. Despite the increased C/N ratio (g g-1) of tissue cultivated at elevated [CO2] when compared with the corresponding ambient tissue, there was no significant correlation between initial C/N ratio and 14C respired. This finding suggests that the CO2-induced changes in decomposition rates do not occur via CO2-induced changes in C/N ratios of plant materials. We combined the decomposition data with data on 14C uptake and allocation for the same plants, and give evidence that elevated [CO2] has the potential to increase soil C stores in grassland via increasing C uptake and shifting C allocation towards the roots, with an inherent slower decomposition rate than the leaves. An overall increase of 15% in 14C remaining after 222 days was estimated for the combined tissues, i.e., the whole plants; the leaves made a much smaller contribution to the C remaining (+6%) than the roots (+26%). This shows the importance of clarifying the contribution of roots and leaves with respect to the question whether grassland soils act as a sink or source for atmospheric CO2. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Plant material labeled with 15N is often used to determine recovery of N from green manure crops by subsequent crops. In this study, 15N enriched crimson clover (Trifolium incarnatum L.) was grown at a field site where it was to be utilized in a subsequent experiment. A foliar spray of (NH4)2SO4 (99 atom % excess 15N) was applied to a 1.2 m × 8.8 m plot of crimson clover at a rate of 10 kg N ha–1 in early March 1990, immediately prior to the period of rapid vegetative growth. Clover shoots harvested in April contained 1.72 atom % excess 15N. Total N concentration of enriched clover was similar to that in adjacent untreated clover. Clover shoots contained 20% of the applied 15N, and an additional 27% was recovered from the surface soil horizon (0 to 15 cm). A gradient was observed across the plot, with clover enrichment increasing from 1.3 to 2.2 atom % excess 15N. Recovery of applied 15N in soil was highest in the subplots with lowest clover enrichment. Variability in 15N enrichment was also observed among plant parts: leaves from the basal half of shoots had 2.2 atom % excess 15N; while leaves from the terminal half of shoots, terminal stems, and basal stems had between 1.1 and 1.4 atom % excess 15N.Abbreviation %Ndf source the percentage of the N atoms in a sample derived from a labeled source  相似文献   

13.
In the tropics, cowpea is often intercropped with maize. Little is known about the effect of the intercropped maize on N2-fixation by cowpea or how intercropping affects nitrogen fertilizer use effiency or soil N-uptake of both crops. Cowpea and maize were grown as a monocrop at row spacings of 40, 50, 60, 80, and 120 cm and intercropped at row spacing of 40, 50, and 60 cm. Plots were fertilized with 50 kg N as (NH4)2SO4; microplots within each plot received the same amount of15N-depleted (NH4)2SO4. Using the15N-dilution method, the percentage of N derived from N2-fixation by cowpea and the recovery of N-fertilizer and soil N-uptake was measured for both crops at 50 and 80 days after planting.Significant differences in yield and total N for cowpea and maize at both harvest periods were dependent on row spacing and cropping systems. Maize grown at the closer row spacing accumulated most of its N during the first 50 days after planting, whereas maize grown at the widest row spacing accumulated a significant portion of its N during the last 30 days before the final harvest, 80 days after planting.Overall, no significant differences in the percentage of N derived from N2-fixation for monocropped or intercropped cowpea was observed and between 30 and 50% of its N was derived from N2.At 50 DAP, fertilizer and soil N uptake was dependent on row spacing with maize grown at the narrowest row spacing having a higher fertilizer and soil N recovery than maize grown at wider spacings. At 50 and 80 DAP, intercropped maize/cowpea did not have a higher fertilizer and soil N uptake than monocropped cowpea or maize at the same row spacing. Monocropped maize and cowpea at the same row spacing took up about the same amount of fertilizer or soil N. When intercropped, maize took up twice as much soil and fertilizer N as cowpea. Apparently intercropped cowpea was not able to maintain its yield potential.Whereas significant differences in total N for maize was observed at 50 and 80 DAP, no significant differences in the atom %14N excess were observed. Therefore, in this study, the atom %14N excess of the reference crop was yield independent. Furthermore, the similarity in the atom %14N excess for intercropped and monocropped maize indicated that transfer of N from the legume to the non-legume was small or not detectable.  相似文献   

14.
N2 fixation in lines of Phaseolus vulgaris was measured by 15N-isotope dilution to determine whether a programme of crossing and recurrent selection had resulted in enhanced nitrogen fixation. In field experiments on an isohyperthermic Aquic Hapludoll soil the amount of N2 fixed by the different lines ranged from 18 to 36 kg ha–1 (32 to 47% of plant N) in 56 days. The quantity of N2 fixed and the proportion of plant N derived from fixation was not significantly greater in the lines selected for N2 fixation (RIZ lines) than parental lines. Total shoot N ranged from 53 to 77 kg ha–1 and partitioning of N to pods differed from 28 to 52% among the lines which all had similar growth habit and duration. Nodulation patterns were also distinct. Nodules formed early (10 to 15 plant–1 at 13 days) in many lines, and smallest amounts of fixation were observed in those lines which nodulated slowly and did not form substantial nodule mass until after 40 days. The screening criteria used in the selection of the RIZ lines had been largely indirect with other factors such as disease resistance also being included. Progress for increasing N2 fixation over good-fixing parental lines such as BAT76 was not significant and it is recommended that more attention be paid to early nodulation, to the use of soils with lower available N and to inter-crossing of lines having different good N2 fixation traits in order to further enhance the potential for N2 fixation in beans.  相似文献   

15.
Cissé  Madiama  Vlek  Paul L. G. 《Plant and Soil》2003,250(1):105-112
The N2 fixed by Azolla before and after urea application during the rice cycle, the mineralisation of Azolla-N as well as its availability to rice was studied in two greenhouse experiments conducted in 1996 and 1997 and in June 1998 in Goettingen (Germany). Dry matter production of the various rice parts of experiment 1 showed a clear positive synergism between treatment with Azolla and urea with a resulting apparent N recovery by rice increasing from 40% (without Azolla) to 57% in the presence of Azolla. Part of this increase may be due to N fixed biologically by Azolla and transferred to the rice. The second experiment shed some light on the role of BNF. Using an iterative method of estimation, the daily rate of N fixation was estimated at 0.6 – 0.7 kg N ha–1. The rate was not so much affected by the age of the Azolla crop. At this rate, the BNF would amount to up to 100 kg N ha–1 over a 130-day season. Assuming that BNF may be inhibited for a period of 5 – 10 days following urea application due to high levels of N in the floodwater, this might reduce the BNF by between 6 and 14 kg N ha over the season. Using the mean-pool-abundance concept, it was estimated that around 75 – 80% of the Azolla-N mineralized during the growth period was actually absorbed by the rice plants. Of the N taken up by rice around 28% was derived from the biologically fixed Azolla N, the remainder was urea N cycled through the Azolla. Azolla also seems to help sustain the soil N supply by returning N to the soil in quantities roughly equal to those extracted from the soil by the rice plant.  相似文献   

16.
A laboratory incubation experiment with 15N labeled root and leaf residues of 3 agroforestry species (Leucaena leucocephala, Dactyladenia barteri and Flemingia macrophylla) was conducted under controlled conditions (25 C) for 56 days to quantify residue C and N mineralization and its relationship with residue quality.No uniform relation was found between the chemical composition of the above and below residues. The leucaena and dactyladenia roots contained more lignin (8 and 26% respectively) and less N (2.0 and 1.0% respectively) than the respective leaves (2 and 13% lignin and 2.9 and 1.4% N, respectively), whereas the differences between the lignin and N contents of the flemingia leaves and roots were not significant (4.6 and 3.0% lignin and 2.63 and 2.68% N, respectively). The leucaena leaves contained more polyphenols than the roots (6.4 and 3.6%), while the polyphenol content of the leaves and roots of the other residues was similar (5.0 and 5.1% for dactyladenia and 4.0 and 3.5% for flemingia).Three patterns of N mineralization could be distinguished. A first pattern, followed by residues producing the highest amounts of CO2, showed an initial immobilization of soil derived N, followed by a net release of both soil and residue derived N after 7 days of incubation. A second pattern, followed by the flemingia leaf residues which produced intermediate amounts of CO2 and had an intermediate quality, showed no significant immobilization of soil derived N, and significant mineralization of residue N. A third pattern, followed by both low quality dactyladenia residues, showed a low release of residue derived N and a continued inmobilization of soil derived N.Residue C mineralization was significantly (p<0.05) correlated with the residue lignin content, C-to-N ratio, and polyphenol-to-N ratio. The proportion of residue N mineralized (immobilized) after 56 days of incubation was significantly correlated with the residue N content (p<0.01) and the C-to-N ratio (p<0.05). The relations were quadratic, rather than linear. The ratio of the proportion of residue N mineralized (immobilized) over the proportion of residue C mineralized after 56 days was highly significantly correlated with the lignin content (p<0.01) and C-to-N (p<0.001), lignin-to-N (p<0.01), polyphenol-to-N (p<0.01) and (lignin+polyphenol)-to-N ratios (p<0.01) in a linear way. This indicates that due to the low availability of the residue C, relatively less N is immobilized for the very low quality residues ((lignin+polyphenol)-to-N ratio: 29.7) than for the residues with a relatively higher quality ((lignin+polyphenol)-to-N ratios between 3.3 and 12.5).  相似文献   

17.
Clegg  S.  Gobran  G. R. 《Plant and Soil》1995,168(1):173-178
The impact of two constant non-toxic levels of Al stress (0.2 and 0.4 mM) on growth and 32P uptake capacity on sub-optimal (P-limited) Betula pendula seedlings grown in sand culture was examined.Seedling growth was under optimum controlled conditions in a growth chamber where nutrient additions were made at a predetermined relative addition rate (RA) of 10% day-1. Three treatment groups of seedlings 0, 0.2 and 0.4 mM Al were harvested at 15, 29 and 42 days. The excised roots were exposed to a 32P-labelled solution for 15 minutes to measure their capacity for P uptake. Growth was determined by weighing the roots, stems and leaves of the seedlings.Growth data showed that relative growth rate (RG) should equal the RA of P the most limiting nutrient, which was supplied at P/N 3% instead of an optimal 15%. Therefore, Ingestad's theory can also be used succesfully in sand culture and this may be particularly important for future studies of root and rhizosphere exudates. Low levels of Al (< 0.2 mM) in combination with low P supply significantly lowered the RG of the birch seedlings by further reducing P supply. However, previous studies of birch seedling growth and nutrient uptake using Ingestad's solution culture technique with optimumal P supply did not show any effect of Al on growth untill the Al was in excess of 3 mM. Aluminium was not directly toxic to the plants and therefore roots could respond to the 32P bioassay.  相似文献   

18.
Summary 11C which is cyclotron produced by14N(P, )11C(half-life 20.1M) was use as a tracer of bicarbonate to determine its movements from a nutrient solution through roots to stems and leaves of bush bean plants (Phaseolus vulgaris L. var. Improved Tendergreen). The short time involved and the high solution pH minimized the need for use of the Hederson Hasselbach equation for activity correction. Quantities of11C did move into roots, stems and leaves with a sharp decreasing gradient (root/stem=14.5, stems/leaves=11.7) More11C moved into plants with KHCO3 than with NaHCO3. The (NH4)2SO4 enhanced11C uptake and KNO3 than with competition indicated possibility of some uptake of HCO 3 . In an experiment withGalenia pubescens (Eckl. and Zeyh.) Druce, the11C was more readily moved to stems and leaves than in bush bean indicating substantial uptake of HCO 3 .  相似文献   

19.
Nitrogen fixation was measured in monocropped sweet-blue lupin (Lupinus angustifolius), lupin intercropped with two ryegrass (Lolium multiflorum) cultivars or with oats (Avena sativa) on an Andosol soil, using the 15N isotope dilution method. At 117 days after planting and at a mean temperature below 10°C, monocropped lupin derived an average of 92% or 195 kg N ha−1 of its N from N2 fixation. Intercropping lupin with cereals increased (p<0.05) the percentage of N derived from atmospheric N2 (% Ndfa) to a mean of 96%. Compared to the monocropped, total N fixed per hectare in intercropped lupin declined approximately 50%, in line with the decrease in seeding rate and dry matter yield. With these high values of N2 fixation, selection of the reference crop was not a problem; all the cereals, intercropped or grown singly produced similar estimates of N2 fixed in lupin. It was deduced from the 15N data that significant N transfer occurred from lupin to intercropped Italian ryegrass but not to intercropped Westerwoldian ryegrass or to oats. Doubling the 15N fertilizer rate from 30 to 60 kg N ha−1 decreased % Ndfa to 86% (p<0.05), but total N fixed was unaltered. These results indicate that lupin has a high potential for N2 fixation at low temperatures, and can maintain higher rates of N2 fixation in soils of high N than many other forage and pasture legumes.  相似文献   

20.
Sesbania sesban was evaluated as green manure crop for lowland rice in the Dry Zone of Sri Lanka. The legume was grown during a fallow period before lowland rice (Oryza sativa) and ploughed under just before transplanting. Weight loss and nitrogen content in litterbags containing leaves, stems and roots of the legume were monitored. Comparisons were made between rice yields from 20 m2 plots after green manuring in combination with different nitrogen fertilizer levels (0, 2.4, 4.8 and 7.2 gm−2) and nitrogen fertilizer (9.6 gm−2) alone. Above-ground biomass ofS. sesban was 440 gm−2 (dry wt) when ploughed under after 84 days growth. N-content in leaves, stems and roots was 3.76%, 0.41% and 0.73%, respectively. This gave a N-input fromS. sesban of 9.2 gm−2 (8.3 g from above-ground parts and 0.9 g from roots). The corresponding K and P inputs were 7.3 and 0.6 gm−2 respectively. The nitrogen rich leaves, which contained 88% of the nitrogen in the above-ground parts, decomposed and released its nitrogen much more rapidly than the stems and roots. After only four days the leaves had released 5.3 g Nm−2 and after 14 days they had released 6.4 g Nm−2. The highest rice yield (505 gm−2) was obtained usingS. sesban and 4.8 gm−2 of N-fertilizer. The yields with only N-fertilizer or onlyS. sesban were 442 gm−2 and 396 gm−2, respectively. Due to the rapid decomposition of the nitrogen rich leaves,S. sesban did not behave as a slow release fertilizer. Thus, it is not necessary to apply nitrogen fertilizers as a basal dose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号