共查询到20条相似文献,搜索用时 0 毫秒
1.
Although fibroblast growth factor 2 (FGF2) and fibroblast growth factor receptor 3 (FGFR3) both inhibit longitudinal bone growth, little is known about the relationship between FGF2 and FGFR3. Accordingly, the current study examined the expression of FGFR3 mRNA after the administration of FGF2 using cultured chondrocytes from day 17 chick embryos to evaluate the relationship between FGF2 and FGFR3. The chondrocytes were isolated from the caudal one-third portion (LS) of sterna, peripheral regions (USP) and central core regions (USC) of the cephalic portion of the sterna, and lower portion of the proximal tibial growth plate (Ti) of day 17 chick embryo. The expression of FGFR1, FGFR3, and type II and X collagen mRNA in the chondrocytes from the LS, USP, USC, and Ti was determined. FGFR1 was not expressed in the LS and USP chondrocytes, yet strongly expressed in the USC and Ti chondrocytes. With a treatment of FGF2, the expression of FGFR1 slightly increased in the USC chondrocytes and was not related with the concentration of FGF2 in the Ti chondrocytes. FGFR3 was expressed in all the chondrocyte types, yet strongly increased in the LS, USC, USP, and Ti in that order according to the concentration of FGF2. For the LS and USP chondrocytes, the expression of FGFR3 with FGF2 increased in a 4-day culture, yet decreased in a 6-day culture, whereas for the USC chondrocytes, the expression of FGFR3 mRNA with FGF2 increased in a 2-day culture, yet decreased in a 4-day culture, suggesting that the hypertrophic chondrocytes were more numerous and sensitive compared to the proliferative chondrocytes. For all the chondrocyte types, FGF2 appeared to be up-regulated to FGFR3, as the expression of FGFR3 mRNA increased with a higher concentration of FGF2 until a peak level. In conclusion, FGF2 was found to up-regulate to FGFR3 until the peak level of FGFR3 mRNA expression, while in hypertrophic chondrocytes, FGFR3 appeared to cause the differentiaton of chondrocytes, resulting in the inhibition of longitudinal bone growth after the peak level of FGFR3 mRNA expression. 相似文献
2.
3.
Signaling within a caveolae-like membrane microdomain in human neuroblastoma cells in response to fibroblast growth factor 总被引:2,自引:0,他引:2
It is now clear that the plasma membrane is not homogeneous but contains specific subcompartments characterized by their unique lipid and protein composition. Based on their enrichment in various signaling molecules, these microcompartments are now recognized to be sites of localized signal transduction for several extracellular stimuli. At least two different types of microdomains can be identified, largely based on the presence or absence of the caveolin proteins. The generic name of caveolae-like domains is commonly used to refer to both domains indistinguishably. Although caveolin proteins were long thought to be absent from the brain, we have shown that the human neuroblastoma cell line LAN-1 expresses both caveolin-1 and caveolin-2. Basic fibroblast growth factor (FGF)-2 induced a specific signaling response within the caveolae-like domain of LAN-1 cells, characterized by the tyrosine phosphorylation of a 75-80-kDa protein. This protein present in the caveolae-like domains has properties suggesting that it is a member of the SNT family of adapter proteins. The signaling event originating in the caveolae-like domains in response to FGF-2 appeared to require the activation of at least Fyn and Lyn, two members of the Src family of tyrosine kinases. This work suggests that compartmentalized signaling within caveolae-like domains may create a level of specificity for certain growth factors such as FGF. 相似文献
4.
Francesca Belleudi Laura Leone Maria Rosaria Torrisi 《Experimental cell research》2009,315(13):2181-4976
The keratinocyte growth factor receptor or fibroblast growth factor receptor 2b (KGFR/FGFR2b) is activated by the specific interaction with the keratinocyte growth factor (KGF/FGF7), which targets the receptor to the degradative pathway, and the fibroblast growth factor 10 (FGF10/KGF2), which drives the receptor to the juxtanuclear recycling route. Hrs plays a key role in the regulation of the endocytic degradative transport of ubiquitinated receptor tyrosine kinases, but the direct involvement of this protein in the regulation of FGFR endocytosis has not been investigated yet. We investigated here the possible role of Hrs in the alternative endocytic pathways of KGFR. Quantitative immunofluorescence microscopy and biochemical analysis showed that both overexpression and siRNA interference of Hrs inhibit the KGF-triggered KGFR degradation, blocking receptor transport to lysosomes and causing its rapid reapparance at the plasma membrane. In contrast, the FGF10-induced KGFR targeting to the recycling compartment is not affected by Hrs overexpression or depletion. Coimmunoprecipitation approaches indicated that Hrs is recruited to KGFR only after KGF treatment, although it is not tyrosine phosphorylated by the ligand. In conclusion, Hrs regulates the KGFR degradative pathway, but not its juxtanuclear recycling transport. In addition, the results suggest that Hrs recruitment to the receptor, but not its ligand-induced phosphorylation, could be required for its function. 相似文献
5.
Kosman J Carmean N Leaf EM Dyamenahalli K Bassuk JA 《Journal of cellular biochemistry》2007,102(3):769-785
Fibroblast growth factor-10 (FGF-10), a mitogen for the epithelial cells lining the lower urinary tract, has been identified inside urothelial cells, despite its acknowledged role as an extracellular signaling ligand. Recombinant (r)FGF-10 was determined by fluorescence microscopy optical sectioning to localize strongly to nuclei inside cultured urothelial cells. To clarify the possible role of a nuclear localization signal (NLS) in this translocation, a variant of rFGF-10 was constructed which lacked this sequence. rFGF-10(no NLS) was found in cytoplasm to a far greater degree than rFGF-10, identifying this motif as a possible NLS. Furthermore, this variant displayed poor or non-existent bioactivity compared to the wild-type protein in triggering mitogenesis in quiescent urothelial cells. The presence of rFGF-10(no NLS) in the nucleus suggested that additional interactions were also responsible for the nuclear accumulation of rFGF-10. The FGF-10 receptor was observed in cell nuclei regardless of the presence or concentration of exogenous rFGF-10 ligand. Co-localization studies between rFGF-10 and the FGF-10 receptor revealed a strong intracellular relationship between the two. This co-localization was seen in nuclei for both rFGF-10 and for rFGF-10(no NLS), although the correlation was weaker for rFGF-10(no NLS). These data show that an NLS-like motif of rFGF-10 is a partial determinant of its intracellular distribution and is necessary for its mitogenic activity. These advancements in the understanding of the activity of FGF-10 present an opportunity to engineer the growth factor as a therapeutic agent for the healing of damaged urothelial tissue. 相似文献
6.
Ceccarelli S Cardinali G Aspite N Picardo M Marchese C Torrisi MR Mancini P 《Experimental cell research》2007,313(9):1758-1777
Keratinocyte growth factor (KGF/FGF7) and fibroblast growth factor 10 (FGF10/KGF2) regulate keratinocyte proliferation and differentiation by binding to the tyrosine kinase KGF receptor (KGFR). KGF induces keratinocyte motility and cytoskeletal rearrangement, whereas a direct role of FGF10 on keratinocyte migration is not clearly established. Here we analyzed the motogenic activity of FGF10 and KGF on human keratinocytes. Migration assays and immunofluorescence of actin cytoskeleton revealed that FGF10 is less efficient than KGF in promoting migration and exerts a delayed effect in inducing lamellipodia and ruffles formation. Both growth factors promoted phosphorylation and subsequent membrane translocation of cortactin, an F-actin binding protein involved in cell migration; however, FGF10-induced cortactin phosphorylation was reduced, more transient and delayed with respect to that promoted by KGF. Cortactin phosphorylation induced by both growth factors was Src-dependent, while its membrane translocation and cell migration were blocked by either Src and PI3K inhibitors, suggesting that both pathways are involved in KGF- and FGF10-dependent motility. Furthermore, siRNA-mediated downregulation of cortactin inhibited KGF- and FGF10-induced migration. These results indicate that cortactin is involved in keratinocyte migration promoted by both KGF and FGF10. 相似文献
7.
Noriko Koyama Toru Hayashi Kenji Ohno Larry Siu Edward W. Gresik Masanori Kashimata 《Development, growth & differentiation》2008,50(7):565-576
Although growth factor signaling is required for embryonic development of organs, individual signaling mechanisms regulating these organotypic processes are just beginning to be defined. We compared signaling activated in fetal mouse submandibular glands (SMGs) by three growth factors, epidermal growth factor (EGF), fibroblast growth factor (FGF) 7, or FGF10, and correlated it with specific events of branching morphogenesis. Immunoblotting showed that EGF strongly stimulated phosphorylation of extracellular signal-regulated kinase-1/2 (ERK-1/2) and weakly stimulated phosphorylation of phospholipase C γ 1 (PLC γ 1) and phosphatidylinositol-3 kinase (PI3K) in cultured E14 SMG. However, FGF7 and FGF10 stimulated phosphorylation of both PLC γ 1 and PI3K, but elicited only minimal phosphorylation of ERK-1/2. Morphological study of mesenchyme-free SMG epithelium cultured in Matrigel revealed that EGF induced cleft formation of endpieces, that FGF7 stimulated both cleft formation and stalk elongation, but that FGF10 induced only stalk elongation. In mesenchyme-free SMG epithelium cultured with EGF, FGF7 and FGF10, U0126 (MEK inhibitor) completely blocked cleft formation, whereas U73122 (PLC γ 1 inhibitor) suppressed stalk elongation. These finding suggest that EGF stimulates cleft formation and drives branch formation via ERK-1/2, and that FGF7 stimulates both cleft formation and stalk elongation via PLC γ 1 and partly via ERK-1/2, but that FGF10 stimulates stalk elongation mainly via PLC γ 1. 相似文献
8.
Guang Liang Gaozhi Chen Xiaoyan Wei Yunjie Zhao Xiaokun Li 《Cytokine & growth factor reviews》2013,24(5):467-475
Fibroblast growth factors (FGFs) signal through FGF receptors (FGFRs), which are a sub-family of the superfamily of receptor tyrosine kinases, to regulate human development and metabolism. Uncontrolled FGF signaling is responsible for diverse array of developmental disorders, most notably skeletal syndromes due to FGFR gain-of-function mutations. Studies in the last few years have provided significant evidence for the importance of FGF signaling in the pathogenesis of diverse cancers, including endometrial and bladder cancers. FGFs are both potent mitogenic and angiogenic factors and can contribute to carcinogenesis by stimulating cell proliferation and tumor angiogenesis. Gene knockout and pharmacological inhibition of FGFRs in in vivo and in vitro models validate FGFRs as a target for cancer treatment. Considerable efforts are being expended to develop specific, small-molecule inhibitors for treating FGFR-driven cancers. Recent reviews on the FGF/FGFR system have focused primarily on signaling, pathophysiology, and functions in cancer. In this article, we review the key roles of FGFR in cancer, provide an update on the status of clinical trials with small-molecule FGFR inhibitors, and discuss how the current structural data on FGFR kinases guide the design and characterization of new FGFR inhibitors. 相似文献
9.
To determine the importance of fibroblast growth factor receptors (fgfrs) 1 and 2 in the metanephric mesenchyme, we generated conditional knockout mice (fgfr(Mes-/-)). Fgfr1(Mes-/-) and fgfr2(Mes-/-) mice develop normal-appearing kidneys. Deletion of both receptors (fgfr1/2(Mes-/-)) results in renal aplasia. Fgfr1/2(Mes-/-) mice develop a ureteric bud (and occasionally an ectopic bud) that does not elongate or branch, and the mice do not develop an obvious metanephric mesenchyme. By in situ hybridization, regions of mutant mesenchyme near the ureteric bud(s) express Eya1 and Six1, but not Six2, Sall1, or Pax2, while the ureteric bud expresses Ret and Pax2 normally. Abnormally high rates of apoptosis and relatively low rates of proliferation are present in mutant mesenchyme dorsal to the mutant ureteric bud at embryonic day (E) 10.5, while mutant ureteric bud tissues undergo high rates of apoptosis by E11.5. Thus, fgfr1 and fgfr2 together are critical for normal formation of metanephric mesenchyme. While the ureteric bud(s) initiates, it does not elongate or branch infgfr1/2(Mes-/-) mice. In metanephric mesenchymal rudiments, fgfr1 and fgfr2 appear to function downstream of Eya1 and Six1, but upstream of Six2, Sall1, and Pax2. Finally, this is the first example of renal aplasia in a conditional knockout model. 相似文献
10.
A tumor is defined as a group of cancer cells and ‘surrounding’ stromal bio-entities. Alongside the extracellular matrix (ECM) in the tumor microenvironment (TME), the stromal cells play key roles in cancer affliction and progression. Carcinoma-associated fibroblasts (CAFs) in the area of the tumor, whether activated or not, dictate the future of tumor cells. The CAFs and corresponding secreted growth factors (GFs), which mediate the crosstalk within the TME, can be targeted in therapies directed at the stroma. The impact of the fibroblast growth factor-fibroblast growth factor receptor (FGF-FGFR) signaling pathway in different kinds of tumors has been explored. Several tyrosine kinase inhibitors (TKIs), monoclonal antibodies (mAbs), and ligand traps targeting the formation of FGF-FGFR complex are in preclinical or early development phases. Moreover, there are numerous studies in the literature reporting the application of phage display technology for the development of peptides and proteins capable of functioning as FGF mimetics or traps, which are able to modulate FGF-related signaling pathways. In this review, prominent research in relation to phage display-assisted ligand identification for the FGF/FGFR system is discussed. 相似文献
11.
Antoine M Wirz W Tag CG Gressner AM Marvituna M Wycislo M Hellerbrand C Kiefer P 《Biochemical and biophysical research communications》2007,361(2):335-341
Hepatic injury and regeneration of the liver are associated with activation of hepatic stellate cells (HSC). Fibroblast growth factors (FGFs) and their receptors are important regulators of repair in various tissues. HSC express FGFR3IIIc as well as FGFGR4 and different spliced FGFR1IIIc and FGFR2IIIc isoforms which differ in the presence or absence of the acid box and of the first Ig-like domain. Expression of FGF9, known to be capable to activate the HSC FGFR2/3-isoforms, was increased in HSC in liver slice cultures after exposition to carbon tetrachloride, as an acute liver injury model. FGF9 significantly stimulated 3-H thymidine incorporation of hepatocytes, but failed to induce DNA synthesis in HSC despite the fact that FGF9 induced a sustained activation of extracellular signal-related kinases (ERK) 1/2. FGF9 induced an increased phosphorylation of Tyr436 of the fibroblast growth factor receptor substrate (FRS) 2, while phosphorylation of Tyr196 which is required for efficient Grb2 recruitment remained unchanged. Our findings suggest that HSC FGF9 provide a paracrine mitogenic signal to hepatocytes during acute liver injury, while the autocrine FGF9 signaling appears to be not sufficient to induce cell proliferation. 相似文献
12.
13.
Masanori Ito Kazuhiro Yoshida Eikai Kyo Ayse Ayhan Hirofumi Nakayama Wataru Yasui Hisao Ito Eiichi Tahara 《Virchows Archiv. B, Cell pathology including molecular pathology》1990,59(1):173-178
We have examined the expression of mRNAs for epidermal growth factor (EGF), transforming growth factor-alpha (TGF-α), EGF
receptor (EGFR), PDGF-A chain (PDGFA), PDGF-B chain (PDGFB) and PDGF receptor (PDGFR) genes in seven human colorectal carcinoma
cell lines and 18 human colorectal carcinomas.
In surgically resected specimens of the 18 colorectal tumors, TGF-α, EGFR, PDGFA, PDGFB and PDGFR mRNAs were detected at various
levels in 15 (83%), 9 (50%), 18 (100%), 8 (44%) and 12 (67%), respectively. They were also detected in normal tissues. Interestingly,
EGF mRNA was detected in only five (28%) of the tumors, but not in normal mucosa. Expression of EGF was also confirmed immunohistochemically
in tumor cells. Of the five tumors expressing EGF, four expressed EGFR mRNA and showed a tendency to invade veins and lymphatics.
All the colorectal carcinoma cell lines expressed TGF-α mRNA, and five cell lines expressed EGFR mRNA simultaneously. Production
of TGF-α protein by DLD-1 and CoLo320DM cells was confirmed by TGF-α specific monoclonal antibody binding assay. The spontaneous3H-thymidine uptake by DLD-1 was suppressed by an anti-TGF-α monoclonal antibody. PDGFA and PDGFB mRNA were also expressed
in four cell lines, but PDGFR and EGF mRNA was not detected. These results suggest that human colorectal carcinomas express
multi-loops of growth factors and that TGF-α produced by tumor cells functions as an autocrine growth factor in human colonic
carcinoma. 相似文献
14.
Hisataka Kobayashi Harumi Sakahara Makoto Hosono Makoto Shirato Junji Konishi Jun A Takahashi Yoshifumi Oda Haruhiko Kikuchi Keigo Endo Yoshio Kozai Masakazu Hatanaka 《Cancer immunology, immunotherapy : CII》1993,37(5):281-285
A murine monoclonal antibody 3H3 recognizes the basic fibroblast growth factor (FGF) and inhibits the growth of human glioblastoma cells both in vitro and in vivo. We studied the potential of a scintigraphic technique using the 3H3 antibody to detect tumors that produce basic FGF.125I- and111In-labeled 3H3 bound to U87MG human glioblastoma cells in vitro. U87MG cells were inoculated subcutaneously into nude mice. After development of the tumor, radiolabeled 3H3 was injected into the subcutaneous space surrounding the tumor. A high level of radioactivity from 3H3 was retained at the tumor, whereas an irrelevant antibody cleared rapidly from the injected site. Radiolabeled 3H3 was not retained in tumors that did not produce basic FGF. Scintigraphic detection of tumors expressing basic FGF would be valuable for the therapeutic application of the antibody. 相似文献
15.
16.
Poulin Matthew L. Botelho Mary Jane Chiu Ing-Ming 《Molecular and cellular biochemistry》1997,175(1-2):11-19
We report the nucleotide sequences of two fibroblast growth factor receptor (FGFR) cDNAs, FGFR1 and FGFR3, from the newt species Notophthalmus viridescens. These two cDNA sequences and a previously published newt FGFR cDNA, FGFR2, were used to derive the amino acid sequences which were then compared with their homologues from other species. This comparison shows that the intracellular tyrosine kinase domain is highly conserved across the species examined with the second half of the domain slightly more conserved than the first half. The 3 portion of the carboxyl terminal tail is not very highly conserved. The comparison of the extracellular portion of FGFR2 shows a high degree of conservation among the Ig-like domains and a low degree of conservation in the region that links the third Ig-like domain with the transmembrane domain. (Mol Cell Biochem 175: 11–19, 1997) 相似文献
17.
《Reproductive biology》2014,14(1):16-24
Prostate cancer is a very common malignancy among Western males. Although most tumors are indolent and grow slowly, some grow and metastasize aggressively. Because prostate cancer growth is usually androgen-dependent, androgen ablation offers a therapeutic option to treat post-resection tumor recurrence or primarily metastasized prostate cancer. However, patients often relapse after the primary response to androgen ablation therapy, and there is no effective cure for cases of castration-resistant prostate cancer (CRPC). The mechanisms of tumor growth in CRPC are poorly understood. Although the androgen receptors (ARs) remain functional in CRPC, other mechanisms are clearly activated (e.g., disturbed growth factor signaling). Results from our laboratory and others have shown that dysregulation of fibroblast growth factor (FGF) signaling, including FGF receptor 1 (FGFR1) activation and FGF8b overexpression, has an important role in prostate cancer growth and progression. Several experimental models have been developed for prostate tumorigenesis and various stages of tumor progression. These models include genetically engineered mice and rats, as well as induced tumors and xenografts in immunodeficient mice. The latter was created using parental and genetically modified cell lines. All of these models greatly helped to elucidate the roles of different genes in prostate carcinogenesis and tumor progression. Recently, patient-derived xenografts have been studied for possible use in testing individual, specific responses of tumor tissue to different treatment options. Feasible and functional CRPC models for drug responsiveness analysis and the development of effective therapies targeting the FGF signaling pathway and other pathways in prostate cancer are being actively investigated. 相似文献
18.
Hinsby AM Lundfald L Ditlevsen DK Korshunova I Juhl L Meakin SO Berezin V Bock E 《Journal of neurochemistry》2004,91(3):694-703
Homophilic binding in trans of the neural cell adhesion molecule (NCAM) mediates adhesion between cells and leads, via activation of intracellular signaling cascades, to neurite outgrowth in primary neurons as well as in the neuronal cell line PC12. NCAM mediates neurite extension in PC12 cells by two principal routes of signaling: NCAM/Fyn and NCAM/fibroblast growth factor receptor (FGFR), respectively. Previous studies have shown that activation of mitogen-activated protein kinases is a pivotal point of convergence in NCAM signaling, but the mechanisms behind this activation are not clear. Here, we investigated the involvement of adaptor proteins in NCAM and fibroblast growth factor 2 (FGF2)-mediated neurite outgrowth in the PC12-E2 cell line. We found that both FGFR substrate-2 and Grb2 play important roles in NCAM as well as in FGF2-stimulated events. In contrast, the docking protein ShcA was pivotal to neurite outgrowth induced by NCAM, but not by FGF2, in PC12 cells. Moreover, in rat cerebellar granule neurons, phosphorylation of ShcA was stimulated by an NCAM mimicking peptide, but not by FGF2. This activation was blocked by inhibitors of both FGFR and Fyn, indicating that NCAM activates FGFR signaling in a manner distinct from FGF2 stimulation, and regulates ShcA phosphorylation by the concerted efforts of the NCAM/FGFR as well as the NCAM/Fyn signaling pathway. 相似文献
19.
The neural cell adhesion molecule (NCAM) can bind to and activate fibroblast growth factor receptor 1 (FGFR1). However, there are four major FGFR isoforms (FGFR1-FGFR4), and it is not known whether NCAM also interacts directly with the other three FGFR isoforms. In this study, we show by surface plasmon resonance analysis that NCAM can bind to FGFR2 with an affinity similar to that for the NCAM-FGFR1 interaction. However, the kinetic parameters for the NCAM-FGFR2 binding are different from those of the NCAM-FGFR1 binding. Both receptors were shown to cycle relatively fast between the NCAM bound and unbound states, although FGFR2 cycling was clearly faster (13 times) than the FGFR1 cycling. Moreover, ATP was more effective in inhibiting the binding of NCAM to FGFR1 than to FGFR2, indicating that the binding sites in NCAM for the two receptors are similar, but not identical. 相似文献
20.
Leadbeater WE Gonzalez AM Logaras N Berry M Turnbull JE Logan A 《Journal of neurochemistry》2006,96(4):1189-1200
The potent gliogenic and neurotrophic fibroblast growth factor (FGF)-2 signals through a receptor complex comprising high-affinity FGF receptor (FGFR)1 with heparan sulphate proteoglycans (HSPGs) as co-receptors. We examined the intracellular dynamics of FGF-2, FGFR1 and the HSPGs syndecan-2 and -3, glypican-1 and -2, and perlecan in neurones and glia in and around adult rat cerebral wounds. In the intact cerebral cortex, FGF-2 and FGFR1 mRNA and protein were constitutively expressed in astrocytes and neurones respectively. FGF-2 protein was localized exclusively to astrocyte nuclei. After injury, expression of FGF-2 mRNA was up-regulated only in astrocytes, whereas FGFR1 mRNA expression was increased in both glia and neurones, a disparity indicating that FGF-2 may act as a paracrine and autocrine factor for neurones and glia respectively. FGF-2 protein localized to both cytoplasm and nuclei of injury-responsive neurones and glia. There was weak or no staining of HSPGs in the normal cerebral neuropil and glia nuclei, with a few immunopositive neurones. Specific HSPGs responded to injury by differentially co-localizing with trafficked intracellular FGF-2 and FGFR1. The spatiotemporal dynamics of FGF-2-FGFR1-HSPG complex formation implies a role for individual HSPGs in regulating FGF-2 storage, nuclear trafficking and cell-specific injury responses in CNS wounds. 相似文献