首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The speed-torque relationship of the right knee extensor muscle group was investigated in eight untrained subjects (28 +/- 2 yr old). Torque was measured at a specific knee angle during isokinetic concentric or eccentric actions at nine angular velocities (0.17-3.66 rad/s) and during isometric actions. Activation was by "maximal" voluntary effort or by transcutaneous tetanic electrical stimulation that induced an isometric torque equal to 60% (STIM 1) or 45% (STIM 2) of the voluntary isometric value. Torque increased (P less than 0.05) to 1.4 times isometric as the speed of eccentric actions increased to 1.57 rad/s for STIM 1 and STIM 2. Thereafter, increases in eccentric speed did not further increase torque. Torque did not increase (P greater than 0.05) above isometric for voluntary eccentric actions. As the speed of concentric actions increased from 0.00 to 3.66 rad/s, torque decreased (P less than 0.05) more (P less than 0.05) for both STIM 1 and STIM 2 (two-thirds) than for voluntary activation (one-half). As a result of these responses, torque changed three times as much (P less than 0.05) across speeds of concentric and eccentric actions with artificial (3.4-fold) than voluntary (1.1-fold) activation. The results indicate that with artificial activation the normalized speed-torque relationship of the knee extensors in situ is remarkably similar to that of isolated muscle. The relationship for voluntary activation, in contrast, suggests that the ability of the central nervous system to activate the knee extensors during maximal efforts depends on the speed and type of muscle action performed.  相似文献   

2.
Determining the mechanisms of co-activation around the knee joint with respect to age and sex is important in terms of our greater understanding of strength development. The purpose of this study was to examine the effects of age, sex and muscle action on moment of force and electromyographic (EMG) activity of the agonist and antagonist muscle groups during isokinetic eccentric and concentric knee extension and flexion. The study comprised nine pubertal boys [mean age 12.6 (SD 0.5) years], nine girls [12.7 (SD 0.5) years] nine adult men [23.1 (SD 2.1) years] and nine adult women [23.7 (SD 3.1) years] who performed maximal isometric eccentric and concentric efforts of knee extensors and flexors on a dynamometer at 30 degrees x s(-1). The moment of force and surface EMG activity of vastus lateralis and biceps femoris muscles were recorded. The moment of force:agonist averaged EMG (aEMG) ratios were calculated. The antagonist aEMG values were expressed as a percentage of the aEMG activity of the same muscle, at the same angle, angular velocity and muscle action when the muscle was acting as agonist. Three-way analysis of variance (ANOVA) designs indicated no significant effects of age or sex on moment:aEMG ratios. Eccentric ratios were significantly higher than the corresponding concentric ones (P < 0.05). The results also indicated no significant effect of age and sex on the aEMG of the vastus lateralis and biceps femoris muscles when acting as antagonists. The antagonist aEMG was significantly greater during concentric agonist efforts compared with the corresponding eccentric ones (P < 0.05). These findings would suggest that the moment exerted per unit of agonist EMG and the antagonist activity are similar in children compared with adults and are not sex dependent. Future comparisons between eccentric and concentric moments of force and agonist ENG should take into consideration the antagonist effects, irrespective of age or sex.  相似文献   

3.
The purpose of this investigation was to compare children and adults of both genders with respect to torque-velocity, electromyogram (EMG)-velocity and torque-EMG relationships during maximal voluntary knee extensor muscle actions. Four groups of ten subjects each were studied comprising 11-year-old girls and boys and female and male physical education students (22–35 years). Maximal voluntary eccentric (lengthening) and concentric (shortening) actions of the knee extensors were performed at the constant velocities of 45, 90 and 180° · s–1. Average values for torque and EMG activity, recorded by surface electrodes from the quadriceps muscle, were taken for the mid 40° of the 80° range of motion. The overall shapes of the torque- and EMG-velocity relationships were similar for all four groups, showing effects of velocity under concentric (torque decrease and EMG increase) but not under eccentric conditions. Eccentric torques were always greater than velocity-matched concentric ones, whereas the eccentric EMG values were lower than the concentric ones at corresponding velocities. Torque output per unit EMG activity was clearly higher for eccentric than for concentric conditions and the difference was of similar magnitude for all groups. Thus, the torque-EMG-velocity relationships would appear to have been largely independent of gender and to be fully developed at a prepubertal age.  相似文献   

4.
Maximal eccentric loading has been associated with higher levels of spindle afferent activity but lower levels of integrated EMG as compared to maximal concentric loading. Elbow flexor EMG was recorded from 17 subjects during concentric (CONC) and eccentric (ECC) elbow flexion at 70° s−1 using a Kin-Com dynamometer. We hypothesized that peak EMG amplitude would be more sensitive to fluctuations in facilitation by the spindle primary afferents via the segmental stretch reflex pathway, and that the mean EMG would be more reflective of the ongoing level of muscle activation. A ratio of peak to mean EMG (P/M EMG ratio) was predicted to be larger during maximal eccentric loading than maximal concentric loading. The peak EMG (P<0.013) and the P/M EMG ratio (P<0.001) were significantly greater during the ECC condition than the CONC condition. In a subgroup of three subjects who underwent 3 weeks of eccentrically biased weight training, EMG, peak torque and torque variability were assessed before and after training. P/M EMG ratio decreased, while peak torque and torque variability increased following the training. Differences in the P/M EMG ratio appear to reflect differences in the way eccentric and concentric muscle actions are controlled and do not simply represent less control during the eccentric task.  相似文献   

5.
Neuromuscular adaptations of the plantar flexor muscles were assessed before and subsequent to short-term electromyostimulation (EMS) training. Eight subjects underwent 16 sessions of isometric EMS training over 4 wk. Surface electromyographic (EMG) activity and torque obtained under maximal voluntary and electrically evoked contractions were analyzed to distinguish neural adaptations from contractile changes. After training, plantar flexor voluntary torque significantly increased under isometric conditions at the training angle (+8.1%, P < 0.05) and at the two eccentric velocities considered (+10.8 and +13.1%, P < 0.05). Torque gains were accompanied by higher normalized soleus EMG activity and, in the case of eccentric contractions, also by higher gastrocnemii EMG (P < 0.05). There was an 11.9% significant increase in both plantar flexor maximal voluntary activation (P < 0.01) and postactivation potentiation (P < 0.05), whereas contractile properties did not change after training. In the absence of a change in the control group, it was concluded that an increase in neural activation likely mediates the voluntary torque gains observed after short-term EMS training.  相似文献   

6.
The purpose of this study was to compare different normalization methods of electromyographic (EMG) activity of antagonists during isokinetic eccentric and concentric knee movements. Twelve women performed three maximum knee extensions and flexions isometrically and at isokinetic concentric and eccentric angular velocities of 30 °·s−1, 90 °·s−1, 120 °·s−1 and 150 °·s−1. The EMG activity of the vastus lateralis, rectus femoris, vastus medialis and hamstrings was recorded. The antagonist integrated IEMG values were normalized relative to the EMG of the same muscle during an isometric maximal action (static method). The values were also expressed as a percentage of the EMG activity of the same muscle, at the same angle, angular velocity and muscle action (dynamic method) when the muscle was acting as an agonist. Three-way analysis of variance (ANOVA) designs indicated significantly greater IEMG normalized with the dynamic method compared to the EMG derived using the static method (P < 0.05). These differences were more evident at concentric angular velocities and at the first and last 20 ° of the movement. The present findings demonstrate that the method of normalization significantly influences the conclusions on antagonistic activity during isokinetic maximum voluntary efforts. The dynamic method of normalization is more appropriate because it considers the effects of muscle action, muscle length and angular velocity on antagonist IEMG.  相似文献   

7.
The influence of an eccentric training on torque/angular velocity relationships and coactivation level during maximal voluntary isokinetic elbow flexion was examined. Seventeen subjects divided into two groups (Eccentric Group EG, n = 9 Control Group CG, n = 8) performed on an isokinetic dynamometer, before and after training, maximal isokinetic elbow flexions at eight angular velocities (from - 120 degrees s(-1) under eccentric conditions to 240 degrees s(-1) under concentric conditions), and held maximal and submaximal isometric actions. Under all conditions, the myoelectric activities (EMG) of the biceps and the triceps brachii muscles were recorded and quantified as the RMS value. Eccentric training of the EG consisted of 5x6 eccentric muscle actions at 100 and 120% of one maximal repetition (IRM) for 21 sessions and lasted 7 weeks. In the EG after training, torque was significantly increased at all angular velocities tested (ranging from 11.4% at 30 degrees (s-1) to 45.5% at - 120 degrees s(-1)) (p < 0.05). These changes were accompanied by an increase in the RMS activities of the BB muscle under eccentric conditions (from - 120 to - 30 degrees (s-1)) and at the highest concentric angular velocities (180 and 24 degrees s(-1)) (p < 0.05). The RMS activity of the TB muscle was not affected by the angular velocity in either group for all action modes. The influence of eccentric training on the torque gains under eccentric conditions and for the highest velocities was attributed essentially to neural adaptations.  相似文献   

8.
The primary purpose of this investigation was to study the eccentric and concentric torque-velocity characteristics of the quadriceps femoris in man using a recently developed combined isometric, concentric and eccentric controlled velocity dynamometer (the SPARK System). A secondary purpose was to compare the method error associated with maximal voluntary concentric and eccentric torque output over a range of testing velocities. 21 males (21-32 years) performed on two separate days maximal voluntary isometric, concentric and eccentric contractions of the quadriceps femoris at 4 isokinetic lever arm velocities of 0 degree.s-1 (isometric), 30 degrees.s-1, 120 degrees.s-1 and 270 degrees.s-1. Eccentric peak torque and angle-specific torques (measured every 10 degrees from 30 degrees to 70 degrees) did not significantly change from 0 degrees.s-1 to 270 degrees.s-1 (p greater than 0.005) with the exception of angle-specific 40 degrees torque, which significantly increased; p less than 0.05). The mean method error was significantly higher for the eccentric tests (10.6% +/- 1.6%) than for the concentric tests (8.1% +/- 1.7%) (p less than 0.05). The mean method error decreased slightly with increasing concentric velocity (p greater than 0.05), and increased slightly with increasing eccentric velocity (p greater than 0.05). A tension restricting neural mechanism, if active during maximal eccentric contractions, could possibly account for the large difference seen between the present eccentric torque-velocity results and the classic results obtained from isolated animal muscle.  相似文献   

9.
The force exerted by a muscle is a function of the activation level and the maximum (tetanic) muscle force. In "maximum" voluntary knee extensions muscle activation is lower for eccentric muscle velocities than for concentric velocities. The aim of this study was to model this "differential activation" in order to calculate the maximum voluntary knee extensor torque as a function of knee angular velocity. Torque data were collected on two subjects during maximal eccentric-concentric knee extensions using an isovelocity dynamometer with crank angular velocities ranging from 50 to 450 degrees s(-1). The theoretical tetanic torque/angular velocity relationship was modelled using a four parameter function comprising two rectangular hyperbolas while the activation/angular velocity relationship was modelled using a three parameter function that rose from submaximal activation for eccentric velocities to full activation for high concentric velocities. The product of these two functions gave a seven parameter function which was fitted to the joint torque/angular velocity data, giving unbiased root mean square differences of 1.9% and 3.3% of the maximum torques achieved. Differential activation accounts for the non-hyperbolic behaviour of the torque/angular velocity data for low concentric velocities. The maximum voluntary knee extensor torque that can be exerted may be modelled accurately as the product of functions defining the maximum torque and the maximum voluntary activation level. Failure to include differential activation considerations when modelling maximal movements will lead to errors in the estimation of joint torque in the eccentric phase and low velocity concentric phase.  相似文献   

10.
This study aimed to investigate the motor unit firing property immediately after concentric or eccentric contraction exercise. Eighteen healthy men performed repetitive maximal isokinetic knee extension exercises with only concentric or eccentric contraction until they exerted less than 80% of the baseline strength. Before and after the fatiguing exercise, high-density surface electromyography of the vastus lateralis was recorded during submaximal ramp-up isometric contraction and individual motor units were identified. Only motor units that could be tracked before and after exercise were analyzed. Muscle cross-sectional area of the vastus lateralis was measured using ultrasound, and electrically evoked torque was recorded before and after the exercise. Sixty-five and fifty-three motor units were analyzed before and after the concentric and eccentric contractions, respectively. The results showed that motor units with moderate to high recruitment thresholds significantly decreased recruitment thresholds under both conditions, and the motor unit discharge rates significantly increased after concentric contraction compared to eccentric contraction. A greater muscle cross-sectional area was observed with concentric contraction. The evoked torque was significantly decreased under both conditions, but no difference between the conditions. These results suggest that fatiguing exercise with concentric contraction contributes to greater neural input to muscles and metabolic responses than eccentric contraction.  相似文献   

11.
Although activity of the rectus femoris (RF) differs from that of the other synergists in quadriceps femoris muscle group during physical activities in humans, it has been suggested that the activation pattern of the vastus intermedius (VI) is similar to that of the RF. The purpose of present study was to examine activation of the VI during isometric hip flexion. Ten healthy men performed isometric hip flexion contractions at 25%, 50%, 75%, and 100% of maximal voluntary contraction at hip joint angles of 90°, 110° and 130°. Surface electromyography (EMG) was used to record activity of the four quadriceps femoris muscles and EMG signals were root mean square processed and normalized to EMG amplitude during an isometric knee extension with maximal voluntary contraction. The normalized EMG was significantly higher for the VI than for the vastus medialis during hip flexion at 100% of maximal voluntary contraction at hip joint angles of 110° and 130° (P < 0.05). The onset of VI activation was 230–240 ms later than the onset of RF activation during hip flexion at each hip joint angle, which was significantly later than during knee extension at 100% of maximal voluntary contraction (P < 0.05). These results suggest that the VI is activated later than the RF during hip flexion. Activity of the VI during hip flexion might contribute to stabilize the knee joint as an antagonist and might help to smooth knee joint motion, such as in the transition from hip flexion to knee extension during walking, running and pedaling.  相似文献   

12.
Ten young men sustained an isometric contraction of the knee extensor muscles at 20% of the maximum voluntary contraction (MVC) torque on three separate occasions in a seated posture. Subjects performed an isometric knee extension contraction on a fourth occasion in a supine posture. The time to task failure for the seated posture was similar across sessions (291 +/- 84 s; P > 0.05), and the MVC torque was similarly reduced across sessions after the fatiguing contraction (42 +/- 12%). The rate of increase in electromyograph (EMG) activity (%MVC) and torque fluctuations during the fatiguing contractions were similar across sessions. However, the rate of increase in EMG differed among the knee extensor muscles: the rectus femoris began at a greater amplitude (31.5 +/- 11.0%) compared with the vastus lateralis and vastus medialis muscles (18.8 +/- 5.3%), but it ended at a similar value (45.4 +/- 3.1%). The time to task failure and increase in EMG activity were similar for the seated and supine tasks; however, the reduction in MVC torque was greater for the seated posture. These findings indicate that the time to task failure for the knee extensor muscles that have a common tendon insertion did not alter over repeat sessions as had been observed for the elbow flexor muscles (Hunter SK and Enoka RM. J Appl Physiol 94: 108-118, 2003).  相似文献   

13.
The aim of this study was to evaluate the Kin-Com II dynamometer in the study of the stretch-shortening cycle (a concentric muscle action preceded by an eccentric muscle action). Measurements were made of plantar flexion at different angular velocities (120 degrees.s-1 and 240 degrees.s-1) with the knee at two different angles (0 degree and 90 degrees). Ten healthy women ranging in age from 22 to 41 years were studied. Torque values were recorded simultaneously with surface electromyograms (EMG): maximal voluntary concentric torque values were recorded and, after a short rest, the torque values of the concentric action which followed immediately after an eccentric action of the same velocity, both with maximal effort. Mean values were taken at different ankle positions and also averaged over different ranges. A concentric action preceded by an eccentric action generated a torque value on an average about 100% larger than a concentric action alone. The EMG activity was lower or unchanged. It was concluded that the present method could be useful in the study of the stretch-shortening cycle in plantar flexion and in the testing of the behaviour of the elastic components in people with disabilities in the lower limbs.  相似文献   

14.
The objective of the present study was to examine the superficial quadriceps femoris (QF) muscle electromyogram (EMG) during dynamic sub-maximal knee extension exercise between young adult men and women. Thirty subjects completed, in a random order, 2 sub-maximal repetitions of single-leg knee extensions at 20-90% of their one-repetition maximum (1RM). Vastus medialis (VM), vastus lateralis (VL) and rectus femoris (RF) muscle integrated EMG (IEMG) during each sub-maximal lift was normalized to the respective 1RM for concentric, isometric and eccentric modes. The EMG median frequency (f(med)) was determined over the isometric mode. Men attained a significantly (p<0.05) greater knee angular velocity than the women during the concentric mode (83.6+/-19.1 degrees /s and 67.4+/-19.8 degrees /s, respectively). RF IEMG was significantly lesser than the VM (p=0.014) and VL (p<0.001) muscles, when collapsed across all contraction modes, loads, and sex. Overall IEMG was significantly greater during the concentric (p<0.001) and isometric (p<0.001) modes, than the eccentric mode. Men generated significantly (p=0.03) greater VL muscle IEMG than the women, while the opposite pattern emerged for the RF muscle. VM f(med) (105.1+/-11.1Hz) was significantly lesser than the VL (180.3+/-19.5Hz) and RF (127.7+/-13.9Hz) muscles across all lifting intensities, while the men (137.7+/-10.7Hz) generated greater values than the women (129.0+/-11.4Hz). The findings demonstrate a reduction in QF muscle activation across the concentric to eccentric transition, which may be related to the mode-specific velocity pattern.  相似文献   

15.
The relationships between ground reaction forces, electromyographic activity (EMG), elasticity and running velocity were investigated at five speeds from submaximal to supramaximal levels in 11 male and 8 female sprinters. Supramaximal running was performed by a towing system. Reaction forces were measured on a force platform. EMGs were recorded telemetrically with surface electrodes from the vastus lateralis and gastrocnemius muscles, and elasticity of the contact leg was evaluated with spring constant values measured by film analysis. Data showed increases in most of the parameters studied with increasing running speed. At supramaximal velocity (10.36 +/- 0.31 m X s-1; 108.4 +/- 3.8%) the relative increase in running velocity correlated significantly (P less than 0.01) with the relative increase in stride rate of all subjects. In male subjects the relative change in stride rate correlated with the relative change of IEMG in the eccentric phase (P less than 0.05) between maximal and supramaximal runs. Running with the towing system caused a decrease in elasticity during the impact phase but this was significant (P less than 0.05) only in the female sprinters. The average net resultant force in the eccentric and concentric phases correlated significantly (P less than 0.05-0.001) with running velocity and stride length in the maximal run. It is concluded that increased neural activation in supramaximal effort positively affects stride rate and that average net resultant force as a specific force indicator is primarily related to stride length and that the values in this indicator may explain the difference in running velocity between men and women.  相似文献   

16.
The purpose of this study was to compare pure eccentric and concentric isokinetic training with respect to their possible specificity in the adaptation of strength and morphology of the knee extensor muscles. Ten moderately trained male physical education students were divided into groups undertaking eccentric (ETG) and concentric (CTG) training. They performed 10 weeks of maximal isokinetic (90 degrees x s(-1)) training of the left leg, 4x10 repetitions - three times a week, followed by a second 10-week period of similar training of the right-leg. Mean eccentric and concentric peak torques increased by 18% and 2% for ETG and by 10% and 14% for CTG, respectively. The highest increase in peak torque occurred in the eccentric 90 degrees x s(-1) test for ETG (35%) whereas in CTG strength gains ranged 8%-15% at velocities equal or lower than the training velocity. Significant increases in strength were observed in the untrained contra-lateral leg only at the velocity and mode used in ipsilateral training. Cross-sectional area of the quadriceps muscle increased 3%-4% with training in both groups, reaching statistical significance only in ETG. No major changes in muscle fibre composition or areas were detected in biopsies from the vastus lateralis muscle for either leg or training group. In conclusion, effects of eccentric training on muscle strength appeared to be more mode and speed specific than corresponding concentric training. Only minor adaptations in gross muscle morphology indicated that other factors, such as changes in neural activation patterns, were causing the specific training-induced gains in muscle strength.  相似文献   

17.
The objective of this study was to examine the superficial quadriceps femoris (QF) muscle electromyogram (EMG) during fatiguing knee extensions. Thirty young adults were evaluated for their one-repetition maximum (1RM) during a seated, right-leg, inertial knee extension. All subjects then completed a single set of repeated knee extensions at 50% 1RM, to failure. Subjects performed a knee extension (concentric phase), held the weight with the knee extended for 2s (isometric phase), and lowered the weight in a controlled manner (eccentric phase). Raw EMG of the vastus medialis (VM), vastus lateralis (VL) and rectus femoris (RF) muscles were full-wave rectified, integrated and normalized to the 1RM EMG, for each respective phase and repetition. The EMG median frequency (f(med)) was computed during the isometric phase. An increase in QF muscle EMG was observed during the concentric phase across the exercise duration. VL EMG was greater than the VM and RF muscles during the isometric phase, in which no significant changes occurred in any of the muscles across the exercise duration. A significant decrease in EMG across the exercise duration was observed during the eccentric phase, with the VL EMG greater than the VM and RF muscles. A greater decrease in VL and RF muscle f(med) during the isometric phase, than the VM muscle, was observed with no gender differences. The findings demonstrated differential recruitment of the superficial QF muscle, depending on the contraction mode during dynamic knee extension exercise, where VL muscle dominance appears to manifest across the concentric-isometric-eccentric transition.  相似文献   

18.
Training can improve muscle strength and endurance in 78- to 84-yr-old men.   总被引:1,自引:0,他引:1  
Nine men, 78-84 yr of age, participated in a dynamometer training program 2-3 times/wk, totaling 25 sessions, using voluntary maximal isometric, concentric, and eccentric right knee-extension actions (30 and 180 degrees/s). Measurements of muscle strength with a Kin-Com dynamometer and simultaneous electromyograms (EMG) were performed of both sides before and after the training period. Muscle biopsies were taken from the right vastus lateralis muscle. The total quadriceps cross-sectional area was measured with computerized tomography. Training led to an increase in maximal torque for concentric (10% at 30 degrees/s) and eccentric (13-19%) actions in the trained leg. The EMG activity increased at maximal eccentric activities. The total cross-sectional quadriceps area of the trained leg increased by 3%, but no changes were recorded in muscle fiber areas in these subjects, who already had large mean fiber areas (5.15 microns 2 x 10(3)). The fatigue index measured from 50 consecutive concentric contractions at 180 degrees/s decreased and the citrate synthase activity increased in all but one subject. The results demonstrate that increased neural activation accompanies an increase in muscle strength at least during eccentric action in already rather active elderly men and that muscle endurance may also be improved with training.  相似文献   

19.
We investigated the capacity for torque development and muscle activation at the onset of fast voluntary isometric knee extensions at 30, 60, and 90 degrees knee angle. Experiments were performed in subjects (n = 7) who had high levels (>90%) of activation at the plateau of maximal voluntary contractions. During maximal electrical nerve stimulation (8 pulses at 300 Hz), the maximal rate of torque development (MRTD) and torque time integral over the first 40 ms (TTI40) changed in proportion with torque at the different knee angles (highest values at 60 degrees ). At each knee angle, voluntary MRTD and stimulated MRTD were similar (P < 0.05), but time to voluntary MRTD was significantly longer. Voluntary TTI40 was independent (P > 0.05) of knee angle and on average (all subjects and angles) only 40% of stimulated TTI40. However, among subjects, the averaged (across knee angles) values ranged from 10.3 +/- 3.1 to 83.3 +/- 3.2% and were positively related (r2 = 0.75, P < 0.05) to the knee-extensor surface EMG at the start of torque development. It was concluded that, although all subjects had high levels of voluntary activation at the plateau of maximal voluntary contraction, among subjects and independent of knee angle, the capacity for fast muscle activation varied substantially. Moreover, in all subjects, torque developed considerably faster during maximal electrical stimulation than during maximal voluntary effort. At different knee angles, stimulated MRTD and TTI40 changed in proportion with stimulated torque, but voluntary MRTD and TTI40 changed less than maximal voluntary torque.  相似文献   

20.
This study aimed to clarify the influence of the intensity of a conditioning contraction on subsequent isometric twitch and maximal voluntary concentric torques. Subjects (n=12men) performed voluntary isometric plantar flexion for six seconds as a conditioning contraction, at intensities of 40%, 60%, 80% and 100% of a maximal voluntary isometric contraction (MVIC). Before and immediately after the conditioning contraction, isometric twitch and maximal voluntary concentric (180°/s) plantar flexion torques were determined. Surface electromyograms were recorded from the triceps surae muscles and M-wave amplitudes and root-mean-square values of the electromyographic signals (RMS(EMG)) were calculated. The isometric twitch torque increased significantly after conditioning contraction at all intensities (P<0.05), whereas maximal voluntary concentric torque increased significantly only at 80% and 100% MVIC conditions (P<0.05). It is concluded that during a six second conditioning contraction, the effect of the intensity of a conditioning contraction on subsequent torque development is different between an isometric twitch and maximal voluntary concentric contractions, with the latter being less affected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号