首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nachman RJ  Teal PE  Strey A 《Peptides》2002,23(11):2035-2043
The peptide bond between active core residues Pro and Arg is the primary site of susceptibility for the pyrokinin/PBAN neuropeptides to insect tissue-bound peptidases, and incorporation of modified Pro residues can enhance resistance to peptidase hydrolysis. An Hyp-containing amphiphilic analog (Hex-FT[Hyp]RLa) is shown to operate as a topically active tissue-bound peptidase-resistant analog of the pyrokinin/PBAN class of insect neuropeptides in adult Heliothis virescens moths. An Oic amphiphilic analog (Hex-FT[Oic]RLa) is ineffective topically, but proves to be a superior tissue-bound, peptidase-resistant pyrokinin/PBAN analog for oral administration; outperforming both the Hyp analog and the orally inactive natural hormone PBAN in the moths. The Oic analog is effective in penetrating an isolated, ligated foregut preparation, but less successful in transmigrating an isolated midgut preparation; whereas the opposite behavior is observed for the Hyp analog. The success of the Oic analog via oral administration may be related to its ability to effectively penetrate the foregut, thereby bypassing the hostile environment of the midgut region.  相似文献   

2.
A linear pyrokinin (PK)/pheromone biosynthesis activating neuropeptide (PBAN) antagonist lead (RYF[dF]PRLa) was structurally modified to impart amphiphilic properties to enhance its ability to transmigrate the hydrophobic cuticle of noctuid moth species and yet retain aqueous solubility in the hemolymph to reach target PK/PBAN receptors within the internal insect environment. The resulting novel PK/PBAN analog, Hex-Suc-A[dF]PRLa (PPK-AA), was synthesized and evaluated as an antagonist in a pheromonotropic assay in Heliothis peltigera against 4 natural PK/PBAN peptide elicitors (PBAN; pheromonotropin, PT; myotropin, MT; leucopyrokinin, LPK) and in a melanotropic assay in Spodoptera littoralis against 3 natural PK/PBAN peptide elicitors (PBAN, PT, LPK). The analog proved to be a potent and efficacious inhibitor of sex pheromone biosynthesis elicited by PBAN (84% at 100 pmol) and PT (54% at 100 pmol), but not by MT and LPK. PPK-AA is a selective pure antagonist (i.e., does not exhibit any agonistic activity) as it failed to inhibit melanization elicited by any of the natural PK/PBAN peptides. The analog was shown to transmigrate isolated cuticle dissected from adult female Heliothis virescens moths to a high extent of 25-30% (130-150 pmol), representing physiologically significant quantities. PPK-AA represents a significant addition to the arsenal of tools available to arthropod endocrinologists studying the endogenous mechanisms of PK/PBAN regulated processes, and a prototype for the development of environmentally friendly pest management agents capable of disrupting the critical process of reproduction.  相似文献   

3.
The pyrokinin/pheromone biosynthesis activating neuropeptide (PK/PBAN) family plays a multifunctional role in an array of important physiological processes in insects, including regulation of sex pheromone biosynthesis in moths. A cyclic PK/PBAN analog (cyclo[NTSFTPRL]) retains significant activity on the pheromonotropic HevPBANR receptor from the tobacco budworm Heliothis virescens expressed in CHO-K1 cells. Previous studies indicate that this rigid, cyclic analog adopts a type I β-turn with a transPro over residues TPRL within the core PK/PBAN region. An analog containing an (E)-alkene, trans-Pro mimetic motif was synthesized, and upon evaluation on the HevPBANR receptor found to have an EC50 value that is not statistically different from a parent C-terminal PK/PBAN hexapeptide sequence. The results, in aggregate, provide strong evidence for the orientation of Pro and the core conformation of PK/PBAN neuropeptides during interaction with the expressed PBAN receptor. The work further identifies a novel scaffold with which to design mimetic PBAN analogs as potential leads in the development of environmentally favorable pest management agents capable of disrupting PK/PBAN-regulated pheromone signaling systems.  相似文献   

4.
Role of neuropeptides in sex pheromone production in moths   总被引:2,自引:0,他引:2  
Altstein M 《Peptides》2004,25(9):1491-1501
Sex pheromone biosynthesis in many moth species is controlled by a cerebral neuropeptide, termed pheromone biosynthesis activating neuropeptide (PBAN). PBAN is a 33 amino acid C-terminally amidated neuropeptide that is produced by neuroendocrine cells of the subesophageal ganglion (SEG). Studies of the regulation of sex pheromone biosynthesis in moths have revealed that this function can be elicited by additional neuropeptides all of which share the common C-terminal pentapeptide FXPRL-amide (X = S, T, G, V). In the past two decades extensive studies were carried out on the chemical, cellular and molecular aspects of PBAN and the other peptides (termed the pyrokinin (PK)/PBAN family) aiming to understand the mode of their action on sex pheromone biosynthesis. In the present review we focus on a few of these aspects, specifically on the: (i) structure-activity relationship (SAR) of the PK/PBAN family, (ii) characterization of the PK/PBAN receptor and (iii) development of a novel strategy for the generation of PK/PBAN antagonists and their employment in studying the mode of action of the PK/PBAN peptides.  相似文献   

5.
Nachman RJ  Teal PE  Ujvary I 《Peptides》2001,22(2):279-285
This study presents a comparison of the topical pheromonotropic activity in the tobacco budworm moth of a series of amphiphilic pseudopeptide analogs of the insect pyrokinin/PBAN peptide class incorporating fatty acids of varying chain lengths. While the C16 analog fails to penetrate the moth cuticle, and the C12 only moderately so, shorter chain analogs transmigrate the moth cuticle readily with decreasing cuticle-retention properties. A cholic acid analog topically induces twice the maximal pheromone titer of injected native hormone. From a pest management perspective, these non-aromatic hydrophobic components are expected to be more environmentally benign than benzenoid components previously used in topical insect peptide analogs.  相似文献   

6.
7.
Zheng L  Lytle C  Njauw CN  Altstein M  Martins-Green M 《Gene》2007,393(1-2):20-30
In noctuid moths cuticular pigmentation is regulated by the pyrokinin/pheromone biosynthesis activating neuropeptide (PK/PBAN) family, which also mediates a variety of other functions in moths and other insects. Numerous studies have shown that these neuropeptides exert their functions through activation of the PBAN receptor (PBAN-R), with subsequent Ca(2+) influx, followed by either activation of cAMP or direct activation of downstream kinases. Recently, several PBAN-Rs have been identified, all of which are from the pheromone gland of adult female moths, but evidence shows that functional PK/PBAN-Rs can also be expressed in insect larvae, where they mediate melanization and possibly other functions (e.g., diapause). Here, we identified a gene encoding a G-protein-coupled receptor from the 5th instar larval tissue of the moth Spodoptera littoralis. The cDNA of this gene contains an open reading frame with a length of 1050 nucleotides, which translates to a 350-amino acid, 42-kDa protein that shares 92% amino acid identity with Helicoverpa zea and Helicoverpa armigera PBAN-R, 81% with Bombyx mori PBAN-R and 72% with Plutella xylostella PBAN-R. The S. littoralis PBAN-R gene was stably expressed in NIH3T3 cells and transiently in HEK293 cells. We show that it mediates the dose-dependent PBAN-induced intracellular Ca(2+) response and activation of the MAP kinase via a PKC-dependent but Galphai-independent signaling mechanism. Other PK/PBAN family peptides (pheromonotropin and a C-terminally PBAN-derived peptide PBAN(28-33)NH(2)) also triggered MAP kinase activation. This receptor, together with the previously cloned PBAN-R, may facilitate our understanding of the cell-specific responses and functional diversities of this diverse neuropeptide family.  相似文献   

8.
Peptides from the pyrokinin (PK) family are a large, structurally and functionally diverse group of the insect neuropeptides produced by neurosecretory cells of the insect nervous system. This family contains short and long peptides which share C-terminal -FXPRLa amino acid sequence. Pyrokinins regulate the visceral muscle contractions, pheromone biosynthesis, pupariation and diapause duration in insects. They are encoded by two genes PBAN and capa, which are mainly expressed in the suboesophageal ganglion. Peptides are then transported to the retrocerebral complex and released into haemolymph. Recent studies are focused on application of pyrokinins as biopesticides in the regulation of insect pests growth and development.  相似文献   

9.
10.
Altstein M 《Biopolymers》2001,60(6):460-473
The development of a new integrated approach to the generation of a novel type of insect neuropeptide (Np) antagonists and putative insect control agents based on backbone cyclic compounds is described. The approach, termed the backbone cyclic neuropeptide-based antagonist (BBC-NBA), was applied to the insect pyrokinin (PK)/pheromone biosynthesis activating neuropeptide (PBAN) family as a model, and led to the discovery of a potent linear lead antagonist and several highly potent, metabolically stable BBC antagonists, devoid of agonistic activity, which inhibited PBAN-mediated activities in moths in vivo. This review briefly summarizes our knowledge of insect Nps, describes the PK/PBAN Np family, presents the basic concepts behind the BBC-NBA approach, and introduces the advantages of this method for generation of Np agonists, antagonists and insecticide prototype molecules.  相似文献   

11.
Altstein M  Ben-Aziz O  Daniel S  Zeltser I  Gilon C 《Peptides》2001,22(9):1379-1389
A radio-receptor assay (RRA) for the insect pyrokinin/PBAN family has been developed. The development involved examination of the ligand (3H-tyrosyl-PBAN28-33NH2)-receptor interaction under various incubation conditions and variations on sex pheromone gland membrane preparation. Application of the RRA for a partial characterization of the putative pyrokinin/PBAN receptor in the pheromone gland of H. peltigera revealed age-dependence of its expression. Pharmacological characterization revealed a high correlation between the binding-affinity to the receptor of various PBAN-derived peptides and their in vivo pheromonotropic bioactivity, and shed light on the interaction of backbone cyclic and linear ([Arg27,D-Phe30]PBAN28-33NH2) PBAN antagonists with the receptor.  相似文献   

12.
The PBAN/Pyrokinin peptide family is a major neuropeptide family characterized with a common FXPRLamide in the C‐termini. These peptides are ubiquitously distributed in the Insecta and are involved in many essential endocrinal functions, e.g., pheromone production. Previous work demonstrated the localization of PBAN in the fire ant central nervous system, and identified a new family of PBAN from the red imported fire ant, Solenopsis invicta. In this study, we identified five more PBAN/Pyrokinin genes from S. geminata, S. richteri, S. pergandii, S. carolinensis, and a hybrid of S. invicta and S. richteri. The gene sequences were used to determine the phylogenetic relationships of these species and hybrid, which compared well to the morphologically defined fire ant subgroup complexes. The putative PBAN and other peptides were determined from the amino acid sequences of the PBAN/pyrokinin genes. We summarized all known insect PBAN family neuropeptides, and for the first time constructed a phylogenetic tree based on the full amino acid sequences translated from representative PBAN cDNAs. The PBAN/pyrokinin gene is well conserved in Insecta and probably extends into the Arthropod phylum; however, translated pre‐propeptides may vary and functional diversity may be retained, lost, or modified during the evolutionary process. Published 2010 Wiley Periodicals, Inc.  相似文献   

13.
There is an active process by which sex pheromone reserves of female cabbage looper moths, Trichoplusia ni, are transported to the gland's surface during the nocturnal period of calling. We hypothesized that this mobilization was controlled by a head factor, possibly related to the pheromone biosynthesis activating neuropeptides (PBAN) that in other species stimulate pheromone synthesis. We evaluated the impact of head extracts of T. ni on pheromone emission and glandular content of pheromone. During the photophase injected head extracts stimulated an increased pheromone emission rate in females, but glandular content of pheromone was not affected. Head extracts of H. virescens, a species with known PBAN activity, and synthetic PBAN stimulated an increased pheromone emission rate in T. ni. There was some specificity of the response of female T. ni to PBAN, in that several other unrelated polypeptides did not stimulate this type of response. Previously it had been determined that brain factors do not play a role in stimulating pheromone biosynthesis in T. ni. Our results indicate that there may be additional avenues by which PBAN or related neuropeptides control pheromone emission, including transport of pheromone reserves to the surface of the sex pheromone gland.  相似文献   

14.
In most female moths, pheromone biosynthesis activating neuropeptide (PBAN) regulates sex pheromone production by stimulating an influx of extracellular Ca(2+). Little is known about the plasma membrane channel or how the PBAN stimulus is communicated to the channel. Fluorescent Ca(2+) imaging techniques confirmed PBAN-induced Ca(2+) influx in the silkworm, Bombyx mori, and showed that the PBAN response is reduced with repeated stimulation. Compounds known to impact Ca(2+) signaling were examined for their effects on sex pheromone production. These experiments demonstrated that the PBAN signal is likely mediated by a store-operated channel (SOC). SOC blockers, SKF-96365 and 2-aminoethoxydiphenyl borate, abolished sex pheromone production, as did flufenamic acid, a blocker of transient receptor potential (TRP) channels. Thapsigargin mimicked the pheromonotropic effects of PBAN. Similar results were seen when PBAN-induced lipase activity was assayed. Conversely, 1-oleoyl-2-acetyl-sn-glycerol and arachidonic acid, activators of diacylglycerol-dependent Ca(2+) channels, had no effect on bombykol production.  相似文献   

15.
Zeltser I  Gilon C  Ben-Aziz O  Schefler I  Altstein M 《Peptides》2000,21(10):1457-1465
We report the discovery of a linear lead antagonist for the insect pheromone biosynthesis activating neuropeptide (PBAN) which inhibits sex pheromone biosynthesis in the female moth Heliothis peltigera. Two approaches have been used in attempting to convert PBAN agonists into antagonists. The first involved omission of the C-terminal amide and reduction of the sequence from the N-terminus in a linear library based on PBAN 1-33NH(2.) The second involved replacement of L amino-acids by the D hydrophobic amino acid D-Phe in a linear library based on PBAN28-33NH(2.) Screening of the two libraries for pheromonotropic antagonists resulted in the disclosure of one compound out of the D-Phe library (Arg-Tyr-Phe-D-Phe-Pro-Arg-Leu-NH(2)) which inhibited sex pheromone production by 79 and 64% at 100 pmol in two moth colonies and exhibited low agonistic activity. Omission of the C-terminal amide in PBAN 1-33NH(2) and its shorter analogs did not lead to the discovery of an antagonistic compound.  相似文献   

16.
We report our approach for the generation of a novel type of putative insecticides based on backbone cyclic peptidomimetic antagonists of insect neuropeptides using pheromone biosynthesis activating neuropeptide (PBAN) as a model. This approach, called the backbone cyclic neuropeptide based antagonist (BBC-NBA), includes the following steps: (i) elucidation of the active sequence of the chosen insect neuropeptide; (ii) disclosure of a lead antagonist based on the sequence found in step (i); (iii) design and synthesis of backbone cyclic peptide libraries (cycloscan) based on the sequence of the lead antagonist; and (iv) design and synthesis of a peptidomimetic prototype insecticide. The BBC-NBA approach was applied to PBAN and led to the discovery of a potent linear lead antagonist and a potent backbone cyclic antagonist devoid of agnoistic activity which inhibited sex pheromone biosynthesis inHeliothis peltigera female moths.  相似文献   

17.
The pyrokinin/pheromone-biosynthesis-activating neuropeptide (PBAN) family of peptides found in insects is characterized by a 5-amino-acid C-terminal sequence, FXPRLamide. The pentapeptide is the active core required for diverse physiological functions, including the stimulation of pheromone biosynthesis in female moths, muscle contraction, induction of embryonic diapause, melanization, acceleration of puparium formation, and termination of pupal diapause. We have used immunocytochemical techniques to demonstrate the presence of pyrokinin/PBAN-like peptides in the central nervous system of the fire ant, Solenopsis invicta. Polyclonal antisera against the C-terminal end of PBAN have revealed the location of the peptide-producing cell bodies and axons in the central nervous system. Immunoreactive material is detectable in at least three groups of neurons in the subesophageal ganglion and corpora cardiaca of all adult sexual forms. The ventral nerve cord of adults consists of two segmented thoracic ganglia and four segmented abdominal ganglia. Two immunoreactive pairs of neurons are present in the thoracic ganglia, and three neuron pairs in each of the first three abdominal ganglia. The terminal abdominal ganglion has no immunoreactive neurons. PBAN immunoreactive material found in abdominal neurons appears to be projected to perisympathetic organs connected to the abdominal ganglia. These results indicate that the fire ant nervous system contains pyrokinin/PBAN-like peptides, and that these peptides are released into the hemolymph. In support of our immunocytochemical results, significant pheromonotropic activity is found in fire ant brain-subesophageal ganglion extracts from all adult fire ant forms (queens, female and male alates, and workers) when extracts are injected into decapitated females of Helicoverpa zea. This is the first demonstration of the presence of pyrokinin/PBAN-like peptides and pheromonotropic activity in an ant species. This research was supported in part by a US-Israel Binational Science Foundation Grant (no. 2003367).  相似文献   

18.
A number of analogs of the C-terminal hexapeptide of PBAN were prepared and tested in vivo for pheromonotropic activity in Helicoverpa zea. Peptides prepared with longer-chain ω-aminocarboxylic acids (Tyr-6-aminocaproyl-Leu-NH2 and Tyr-7-aminoheptanoyl-NH2) were active at 25 and 2.5 nmol. Acetyl-Pro-Arg-Leu-NH2 was active at 1,000 pmol and represents a new minimum active fragment in the PBAN system. Addition of a bulky, hydrophobic tail (4-octylphenoxyacetyl) to the C-terminal hexapeptide of PBAN gave an analog that was active at all concentrations tested from 1 to 1,000 pmol when injected, had slight oral activity, but had no activity when applied topically. Glu-Tyr-Phe-Ser-Pro-Arg-Leu-NH2was active at 1,000, but not at 100 pmol; at the latter dose it synergised the activity of 5 pmol of PBAN. Arch. Insect Biochem. Physiol. 35:315–322, 1997.© 1997 Wiley-Liss, Inc.  相似文献   

19.
The pyrokinin/pheromone biosynthesis activating neuropeptide (PBAN) family of peptides found in insects is characterized by a 5-amino-acid C-terminal sequence, FXPRLamide. The pentapeptide is the active core required for diverse physiological functions, including stimulation of pheromone biosynthesis in female moths, stimulation of muscle contraction, induction of embryonic diapause in Bombyx mori, and stimulation of melanization in some larval moths. Recently, this family of peptides has been implicated in accelerating the formation of the puparium in a dipteran. Using bioassay and immunocytochemical techniques, we demonstrate the presence of pyrokinin/PBAN-like peptides in the central nervous system of Drosophila melanogaster. Pheromonotropic activity was shown in the moths Helicoverpa zeaand Helicoverpa armigera by using dissected larval nervous systems and adult heads and bodies of D. melanogaster. Polyclonal antisera against the C-terminal ending of PBAN revealed the location of cell bodies and axons in the central nervous systems of larval and adult flies. Immunoreactive material was detected in at least three groups of neurons in the subesophageal ganglion of 3rd instar larvae, pupae, and adults. The ring gland of both larvae and adults contained immunoreactivity. Adult brain-subesophageal ganglion complex possessed additional neurons. The fused ventral ganglia of both larvae and adults contained three pairs of neurons that sent their axons to a neurohemal organ connected to the abdominal nervous system. These results indicate that the D. melanogasternervous system contains pyrokinin/PBAN-like peptides and that these peptides could be released into the hemolymph.  相似文献   

20.
The adrenergic agonists octopamine, tyramine and clonidine inhibited the normal pheromonotropic action due to PBAN (pheromone biosynthesis activating neuropeptide) in incubations of intersegmental tissues that are situated between the 8th and 9th abdominal segments of the moth ovipositor tip. This inhibition was reversed in the presence of the adrenergic antagonists phentolamine, yohimbine and chlorpromazine. Incubations of 8th segments alone, which do not produce pheromone, resulted in elevated levels of intracellular cAMP in the presence of octopamine. The physiological significance of this phenomenon is unclear. However, clonidine (an alpha(2) selective agonist) did not duplicate octopamine stimulation of intracellular cAMP in 8th segment cultures. In intersegmental membrane cultures clonidine successfully duplicated the octopamine inhibition of both pheromone and intracellular cAMP production. The physiological significance of octopaminergic receptors mediating the inhibitory response of intersegments was investigated by experiments in vivo. When PBAN was injected into photophase females the normal pheromonotropic activity due to the injected PBAN dropped after 2h. In the presence of clonidine, normal peak stimulatory levels were never attained and a faster decline was observed. Clonidine also inhibited the pheromonotropic response of 24h-decapitated females to PBAN. Adrenergic antagonists successfully reversed the inhibitory effect of clonidine in decapitated females, but did not reverse the effect of clonidine in photophase females. In addition, when clonidine was injected into female moths during the scotophase normal peak pheromone titers were reduced although no effect on calling behavior was observed. Copyright 1997 Elsevier Science Ltd. All rights reserved  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号