首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The immunobiological effect of electromagnetic microwaves applied to parietotemporal area was studied. It was shown that the exposure of parietotemporal area to microwaves produced an immunodepressive effect manifested in the decreased number of natural (background) antibody-forming cells. The exposure of parietotemporal area to microwaves was accompanied by glucocorticoid function stimulation in the adrenal cortex and thyroid function depression.  相似文献   

3.
Adult rats anesthesized with pentobarbital and injected intravenously with a mixture of [14C]sucrose and [3H]inulin were exposed for 30 min to an environment at an ambient temperature of 22, 30, or 40 °C, or were exposed at 22 °C to 2450-MHz CW microwave radiation at power densities of 0, 10, 20, or 30 mW/cm2. Following exposure, the brain was perfused and sectioned into eight regions, and the radioactivity in each region was counted. The data were analyzed by two methods. First, the data for each of the eight regions and for each of the two radioactive tracers were analyzed by regression analysis for a total of 16 analyses and Bonferroni's Inequality was applied to prevent false positive results from numerous analyses. By this conservative test, no statistically significant increase in permeation was found for either tracer in any brain region of rats exposed to microwaves. Second, a profile analysis was used to test for a general change in tracer uptake across all brain regions. Using this statistical method, a significant increase in permeation was found for sucrose but not for inulin. A correction factor was then derived from the warm-air experiments to correct for the increase in permeation of the brain associated with change in body temperature. This correction factor was applied to the data for the irradiated animals. After correcting the data for thermal effects of the microwave radiation, no significant increase in permeation was found.  相似文献   

4.
Long-Evans male adult rats were intermittently exposed for 14 weeks to continuous wave (CW) 2450-MHz microwaves at an average power density of 2.5 mW/cm2. The mean specific absorption rate was 0.70 W/kg (+/- 0.02 SEM). The rats were exposed 7 h/day, 7 days/week in a radiation chamber with a monopole above ground, while housed in Plexiglas cages. Weekly measures of body mass and food intake did not indicate statistically significant effects of microwave irradiation. Assessments of threshold for electric-footshock detection revealed a significant difference between microwave and sham-exposed animals. Assessments of cholinesterase and sulfhydryl groups in blood and 17-ketosteroids in urine did not distinguish the two groups of rats. Behavioral measures made at the end of the 14-week exposure included an open-field test, shuttlebox avoidance performance, and schedule-controlled lever-pressing for food pellets. Statistically significant differences between microwave- and sham-exposed rats were observed for these measures. Examination of adrenal tissue, plasma electrolytes, and organ masses after 14 weeks of exposure revealed no difference between the two groups of rats.  相似文献   

5.
We have previously reported that a single exposure to immobilization (IMO) in rats causes a long-term desensitization of the hypothalamic-pituitary-adrenal (HPA) response to the same (homotypic) stressor. Since there are reports showing that a single exposure to other stressors causes sensitization of the HPA response to heterotypic stressors and increases anxiety-like behavior, we studied in the present work the long-term effects of IMO on behavioral and HPA response to mild superimposed stressors. In Experiments 1 and 2, adult male Sprague–Dawley rats were subjected to 2 h of IMO and then exposed for 5 min to the elevated plus-maze (EPM) at 1, 3 or 7 days after IMO. Blood samples were taken at 15 min after initial exposure to the EPM. Increases in anxiety-like behavior and HPA responsiveness to the EPM were found at all times post-IMO. Changes in the resting levels of HPA hormones did not explain the enhanced HPA responsiveness to the EPM (Experiment 3). In Experiments 4 and 5, we studied the effects of a single exposure to a shorter session of IMO (1 h) on behavioral and HPA responses to a brief and mild session of foot-shocks done 10 days after IMO. Neither previous IMO nor exposure to shocks in control rats modified behavior in the EPM. However, a brief session of shocks in previously IMO-exposed rats dramatically increased anxiety in the EPM. HPA and freezing responses to shocks were similar in control and previous IMO groups. Therefore, a single exposure to IMO appears to induce long-lasting HPA and behavioral sensitization to mild superimposed stressors, although the two responses are likely to be at least partially independent. Long-term effects of IMO on the susceptibility to stress-induced endocrine and emotional disturbances may be relevant to the characterization of animal models of post-traumatic stress.  相似文献   

6.
《Hormones and behavior》2009,55(5):654-661
We have previously reported that a single exposure to immobilization (IMO) in rats causes a long-term desensitization of the hypothalamic-pituitary-adrenal (HPA) response to the same (homotypic) stressor. Since there are reports showing that a single exposure to other stressors causes sensitization of the HPA response to heterotypic stressors and increases anxiety-like behavior, we studied in the present work the long-term effects of IMO on behavioral and HPA response to mild superimposed stressors. In Experiments 1 and 2, adult male Sprague–Dawley rats were subjected to 2 h of IMO and then exposed for 5 min to the elevated plus-maze (EPM) at 1, 3 or 7 days after IMO. Blood samples were taken at 15 min after initial exposure to the EPM. Increases in anxiety-like behavior and HPA responsiveness to the EPM were found at all times post-IMO. Changes in the resting levels of HPA hormones did not explain the enhanced HPA responsiveness to the EPM (Experiment 3). In Experiments 4 and 5, we studied the effects of a single exposure to a shorter session of IMO (1 h) on behavioral and HPA responses to a brief and mild session of foot-shocks done 10 days after IMO. Neither previous IMO nor exposure to shocks in control rats modified behavior in the EPM. However, a brief session of shocks in previously IMO-exposed rats dramatically increased anxiety in the EPM. HPA and freezing responses to shocks were similar in control and previous IMO groups. Therefore, a single exposure to IMO appears to induce long-lasting HPA and behavioral sensitization to mild superimposed stressors, although the two responses are likely to be at least partially independent. Long-term effects of IMO on the susceptibility to stress-induced endocrine and emotional disturbances may be relevant to the characterization of animal models of post-traumatic stress.  相似文献   

7.
Inter-beat intervals of aggregated cardiac cells from chicken embryos were studied during 190 s exposures to 2.45 GHz microwaves in an open-ended coaxial device. Averaged specific-absorption rates (SARs) and modulation conditions were 1.2–86.9 W/kg continuous-wave (CW). 1.2–12.2 W/kg pulse modulation (PW, duty cycle ∽ 11%). and 12.0–43.5 W/kg square-wave modulation (duty cycle = 50%). The inter-beat interval decreased during microwave exposures at 42.0 W/kg and higher when CW or square-wave modulation was used, which is consistent with established effects of elevated temperatures. However, increases in the inter-beat interval during CW exposures at 1.2–12.2 W/kg, and decreases in the inter-beat interval after PW exposures at 8.4–12.2 W/kg. are not consistent with simple thermal effects. Analysis of variance indicated that SAR. modulation, and the modulation-SAR interaction were all significant factors in altering the interbeat interval. The latter two factors indicated that the cardiac cells were affected by athermal as well as thermal effects of microwave exposure. © 1993 Wiley-Liss. Inc.  相似文献   

8.
S Ray  J Behari 《Radiation research》1990,123(2):199-202
The effects of exposure to sublethal levels of microwaves were studied. Young albino rats of both sexes were exposed for 60 days to 7.5-GHz microwaves (1.0-KHz square wave modulation, average power 0.6 mW/cm2) for 3 h daily. During and after microwave exposure several physiological parameters were measured in both control and exposed animals. It was found that the animals exposed to microwaves tended to eat and drink less and thus showed a smaller gain in body weight. Some of the hematological parameters and organ weights were also significantly different. It is proposed that a nonspecific stress response due to microwave exposure and mediated through the central nervous system is responsible for the observed physiological changes.  相似文献   

9.
Heat stroke is a life threatening illness characterized by a core body temperature of >40 °C, delirium and convulsions, and often results in multi-organ dysfunction, due to the release of endotoxin through the intestinal wall into the circulation. While playing a major role in the gastrointestinal tract permeability changes seen in Crohn's disease, it is not clear whether tumor necrosis factor alpha (TNF-α) mediates the increase in intestinal permeability and the release of endotoxin into the circulation in heat stroke. The aim of the present study was to determine the acute effects of a single dose of TNF-α antibody on gut permeability in rats during heat stress. Fifty-five Sprague-Dawley rats (28 male and 27 female) were treated with either saline or infliximab (a monoclonal antibody to TNF-α), anesthetized with pentobarbitone (50 mg kg−1) and then exposed to either normothermic conditions or an ambient temperature of between 41 and 42 °C for 70 min. Fluorescent isothiocyanate labeled dextrans (FITC-dextrans) were administered intragastrically as a marker of intestinal permeability. Liver enzymes, endotoxin and TNF-α were analyzed in the blood. Exposure to a heat stress significantly increased intestinal permeability to FITC-dextrans compared to the controls (P<0.05). Infliximab did not have an effect on the intestinal permeability to the FITC-dextrans. Heat stress had no significant effect on liver enzymes or endotoxin concentration versus controls (P>0.05). TNF-α was not detectable in any of the samples. TNF-α did not mediate the release of endotoxin into the circulation after an acute bout of heat stroke.  相似文献   

10.
Rats were trained in six sessions to locate a submerged platform in a circular water maze. They were exposed to pulsed 2450-MHz microwaves (pulse width 2 micros, 500 128;pulses/s, average power density 2 mW/cm(2), average whole body specific absorption rate 1.2 W/kg) for 1 h in a circular waveguide system immediately before each training session. One hour after the last training session, they were tested in a probe trial during which the platform was removed and the time spent in the quadrant of the maze in which the platform had been located during the 1-min trial was scored. Three groups of animals, microwave-exposed, sham-exposed, and cage control, were studied. Microwave-exposed rats were slower than sham-exposed and cage control rats in learning to locate the platform. However, there was no significant difference in swim speed among the three groups of animals, indicating that the difference in learning was not due to a change in motor functions or motivation. During the probe trial, microwave-exposed animals spent significantly less time in the quadrant that had contained the platform, and their swim patterns were different from those of the sham-exposed and cage control animals. The latter observation indicates that microwave-exposed rats used a different strategy in learning the location of the platform. These results show that acute exposure to pulsed microwaves caused a deficit in spatial "reference" memory in the rat.  相似文献   

11.
Microwaves (pulsed, 2,450 MHz) at an average power density of 3 W/cm2 were applied directly to the head for 5, 10, or 20 min, producing a peak specific absorption rate of 240 W/kg in the brain, which, after a 10-min exposure, resulted in brain temperatures in excess of 43°C. A bolus of 86Rb in isotonic saline was injected intravenously and an arterial sample was collected for 20 s to determine cardiac output. Compared with unexposed controls, uptake of 86Rb increased most in those regions directly in the path of the irradiation, namely, the occipital and parietal cortex, as well as the dorsal hippocampus, midbrain, and basal ganglia. In a separate group of animals, regional brain-vascular spaces were found to increase with brain temperature. These results support previous observations indicating that reliably demonstrable increases of blood-brain barrier permeability are associated with intense, microwave-induced hyperthermia, and that the observed changes are not due to field-specific interaction.  相似文献   

12.
This study was undertaken for observation of early changes in glutathione concentration and the activity of carboxypeptidase A and aminopeptidase in the cortex and core of the lens as well as for determination of the cumulating effect of microwave energy after repeated exposures to microwaves. Experiments were carried out on New Zealand rabbits. The control group was compared to experimental groups exposed every day for 5 minutes to microwave irradiation of the eyeballs at power densities of 5 X 10(-3) W/cm2 and 10 X 10(-3) W/cm2 during 10, 20 and 30 days. Differences were found between the control group and the groups of animals exposed to microwaves in which the glutathione concentration in the cortex and core of the lens was decreasing with time in proportion to the number of exposures. Parallelly to the number of days of exposure to microwaves the enzymatic activity of carboxypeptidase A and aminopeptidase increased in the cortex of the lens. The observed changes demonstrate cumulation of the absorbed microwave energy leading to changes in the permeability of the capsule and membranes of lenticular fibres which lead to secondary metabolic disturbances in the lens of the eye.  相似文献   

13.
14.
Repeated treatment with psychostimulant drugs induces enduring behavioral sensitization and neuroadaptations which may play an important role in the development of drug addiction. However, different number and time course in drug administration and various lengths of drug withdrawal were employed in the literature, and there were inconsistent findings in the profile of extracellular dopamine level related to behavioral sensitization. Therefore, the effects of the number of drug exposure and the length of drug withdrawal period on the sensitized behavioral response were investigated in this study. Various lengths of amphetamine (AMPH) withdrawal (1, 3 and 5 days) after a single local administration of AMPH to bilateral ventral tegmental area (VTA) were used to observe the locomotor activity response. Besides, different amounts of administration of intra-VTA AMPH were given (1, 2 and 3 times of injection) to monitor the profile of travel distance and stereotypic movements of rats after 7 days of drug withdrawal. An early and short-lived behavioral sensitization to the single intra-VTA AMPH administration was induced. In the repeated treatment group, more drug exposures were associated with escalating and robust levels of travel distance after 7 days of drug withdrawal. The authors speculated that the transient and, a later augmented locomotor activity response might represent respective phases in the development of behavioral sensitization, which in turn contributed to the formation of more lasting behavioral and neuroplastic changes associated with drug addiction.  相似文献   

15.
We have previously demonstrated that microwave fields, amplitude modulated (AM) by an extremely low-frequency (ELF) sine wave, can induce a nearly twofold enhancement in the activity of ornithine decarboxylase (ODC) in L929 cells at SAR levels of the order of 2.5 W/kg. Similar, although less pronounced, effects were also observed from exposure to a typical digital cellular phone test signal of the same power level, burst modulated at 50 Hz. We have also shown that ODC enhancement in L929 cells produced by exposure to ELF fields can be inhibited by superposition of ELF noise. In the present study, we explore the possibility that similar inhibition techniques can be used to suppress the microwave response. We concurrently exposed L929 cells to 60 Hz AM microwave fields or a 50 Hz burst-modulated DAMPS (Digital Advanced Mobile Phone System) digital cellular phone field at levels known to produce ODC enhancement, together with band-limited 30–100 Hz ELF noise with root mean square amplitude of up to 10 μT. All exposures were carried out for 8 h, which was previously found to yield the peak microwave response. In both cases, the ODC enhancement was found to decrease exponentially as a function of the noise root mean square amplitude. With 60 Hz AM microwaves, complete inhibition was obtained with noise levels at or above 2 μT. With the DAMPS digital cellular phone signal, complete inhibition occurred with noise levels at or above 5 μT. These results suggest a possible practical means to inhibit biological effects from exposure to both ELF and microwave fields. Bioelectromagnetics 18:422–430, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

16.
The objective of this study was to investigate the effects of radiofrequency radiation emitted from cellular phones on the lipid composition, malondialdehyde concentration, p53 immune reactivity, sperm count, morphology, histological structure of testes, and on rectal temperature of rats exposed to microwave radiation emitted from cellular phones. Sixteen Spraque-Dawley rats were separated into two groups of eight, sham exposed (control) and experimental. The rats were confined in plexiglas cages specially designed for this study, and cellular phones were placed 0.5 cm under the cages. For the experimental group, cellular phones were activated 20 min per day (7 days a week) for 1 month. For the control group, the cellular phones were placed beneath the cages for 20 min a day, but the phones were turned off. Rectal temperatures were measured weekly. For 250 mW radiated power, the whole body average SAR (rms) is 0.52 W/kg and 1 g averaged peak SAR (rms) is 3.13 W/kg. The Mann-Whitney U-test was used for statistical comparisons of groups. No statistically significant alteration in any of the endpoints was noted. This study found no evidence suggesting an adverse effect of cell phone exposure on measures of testicular function or structure.  相似文献   

17.
18.
Cats were kept in the electromagnetic field (2375 mHz, 500 microW/cm2) for 200 h. A functional disorder was noted in the neuronal activity of the studied brain formations associated with a physical injury to axo-dendritic synapses involved in the promotion of the morphological relationship between the brain departments.  相似文献   

19.
The goal of the present work was to explore the influence of commercially available cell phone irradiation on the single neuron excitability and memory processes. A Transverse Electromagnetic Cell (TEM Cell) was used to expose single neurons of mollusk to the electromagnetic field. Finite-Difference Time-Domain (FDTD) method was used for modeling the TEM Cell and the electromagnetic field interactions with living nerve ganglion and neurons. Neuron electrophysiology was investigated using standard microelectrode technique. The specific absorption rate (SAR) deposited into the single neuron was calculated to be 0.63?W/kg with a temperature increment of 0.1°C. After acute exposure, average firing threshold of the action potentials was not changed. However, the average latent period was significantly decreased. This indicates that together with latent period the threshold and the time of habituation might be altered during exposure. However, these alterations are transient and only latent period remains on the changed level.  相似文献   

20.
The ionizing irradiation of rat fetuses during the last third of intrauterine development increased blood corticosterone level adulthood and decreased the open field locomotion of their adult offsprings of the next first nonirradiated generation. Treatment of the pregnant rats with glucocorticoids also decreased the offspring locomotion. Irradiation of fetuses in the middle of embryogenesis decreased blood corticosterone level in adulthood and shortened the open-field freezing reaction of their adult offsprings of the next first nonirradiated generation. Adrenalectomy of females before mating decreasing the blood corticosterone level had a similar effect on freezing duration of their adult offsprings. Irradiation of the ancestors within the last third of their intrauterine development had no effect on blood corticosterone level of their adult offsprings of the first generation and produced no behavioral alterations in their descendants of the next second nonirradiated generation. Irradiation of the ancestors in the middle of their embryogenesis decreased the stress-induced corticosterone response in their adult offsprings of the first generation and increased rearings and locomotion in their descendants of the next second nonirradiated generation. The data suggest that a single noxious treatment may have behavioral effects throughout two consequent generations of rats. Mother's glucocorticoid hormones may be one of the factors which transmit the effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号