共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhi-Hua Chen Yin-Fang Wu Ping-Li Wang Yan-Ping Wu Zhou-Yang Li Yun Zhao 《Autophagy》2016,12(2):297-311
Environmental ultrafine particulate matter (PM) is capable of inducing airway injury, while the detailed molecular mechanisms remain largely unclear. Here, we demonstrate pivotal roles of autophagy in regulation of inflammation and mucus hyperproduction induced by PM containing environmentally persistent free radicals in human bronchial epithelial (HBE) cells and in mouse airways. PM was endocytosed by HBE cells and simultaneously triggered autophagosomes, which then engulfed the invading particles to form amphisomes and subsequent autolysosomes. Genetic blockage of autophagy markedly reduced PM-induced expression of inflammatory cytokines, e.g. IL8 and IL6, and MUC5AC in HBE cells. Mice with impaired autophagy due to knockdown of autophagy-related gene Becn1 or Lc3b displayed significantly reduced airway inflammation and mucus hyperproduction in response to PM exposure in vivo. Interference of the autophagic flux by lysosomal inhibition resulted in accumulated autophagosomes/amphisomes, and intriguingly, this process significantly aggravated the IL8 production through NFKB1, and markedly attenuated MUC5AC expression via activator protein 1. These data indicate that autophagy is required for PM-induced airway epithelial injury, and that inhibition of autophagy exerts therapeutic benefits for PM-induced airway inflammation and mucus hyperproduction, although they are differentially orchestrated by the autophagic flux. 相似文献
2.
3.
The airway epithelium in asthma 总被引:1,自引:0,他引:1
Asthma is a T lymphocyte-controlled disease of the airway wall caused by inflammation, overproduction of mucus and airway wall remodeling leading to bronchial hyperreactivity and airway obstruction. The airway epithelium is considered an essential controller of inflammatory, immune and regenerative responses to allergens, viruses and environmental pollutants that contribute to asthma pathogenesis. Epithelial cells express pattern recognition receptors that detect environmental stimuli and secrete endogenous danger signals, thereby activating dendritic cells and bridging innate and adaptive immunity. Improved understanding of the epithelium's function in maintaining the integrity of the airways and its dysfunction in asthma has provided important mechanistic insight into how asthma is initiated and perpetuated and could provide a framework by which to select new therapeutic strategies that prevent exacerbations and alter the natural course of the disease. 相似文献
4.
Won-II Choi Olga Syrkina Kun Young Kwon Deborah A Quinn Charles A Hales 《Respiratory research》2010,11(1):172
Background
Increased mucus secretion is one of the important characteristics of the response to smoke inhalation injuries. We hypothesized that gel-forming mucins may contribute to the increased mucus production in a smoke inhalation injury. We investigated the role of c-Jun N-terminal kinase (JNK) in modulating smoke-induced mucus secretion.Methods
We intubated mice and exposed them to smoke from burning cotton for 15 min. Their lungs were then isolated 4 and 24 h after inhalation injury. Three groups of mice were subjected to the smoke inhalation injury: (1) wild-type (WT) mice, (2) mice lacking JNK1 (JNK1-/- mice), and (3) WT mice administered a JNK inhibitor. The JNK inhibitor (SP-600125) was injected into the mice 1 h after injury.Results
Smoke exposure caused an increase in the production of mucus in the airway epithelium of the mice along with an increase in MUC5AC gene and protein expression, while the expression of MUC5B was not increased compared with control. We found increased MUC5AC protein expression in the airway epithelium of the WT mice groups both 4 and 24 h after smoke inhalation injury. However, overproduction of mucus and increased MUC5AC protein expression induced by smoke inhalation was suppressed in the JNK inhibitor-treated mice and the JNK1 knockout mice. Smoke exposure did not alter the expression of MUC1 and MUC4 proteins in all 3 groups compared with control.Conclusion
An increase in epithelial MUC5AC protein expression is associated with the overproduction of mucus in smoke inhalation injury, and that its expression is related on JNK1 signaling. 相似文献5.
CXCR2 regulates respiratory syncytial virus-induced airway hyperreactivity and mucus overproduction 总被引:4,自引:0,他引:4
Miller AL Strieter RM Gruber AD Ho SB Lukacs NW 《Journal of immunology (Baltimore, Md. : 1950)》2003,170(6):3348-3356
Severe inflammation and mucus overproduction are partially responsible for respiratory syncytial virus (RSV)-induced disease in infants. Using a murine model, we characterized the virally induced chemokine receptors responsible for mediating the pathophysiological response to RSV infection, we found that CXCR2 mRNA was induced at 4 days after RSV infection. Immunohistochemical staining demonstrated that CXCR2 protein was expressed on alveolar macrophages. Immunoneutralization of CXCR2 resulted in decreased airway hyperreactivity relative to the RSV-infected controls. In addition, there was decreased mucus in the bronchoalveolar lavage fluid, decreased periodic-acid Schiff staining, and significantly less mucus-associated gob-5 mRNA and protein in anti-CXCR2-treated mice. The effects of anti-CXCR2 treatment were not a result of differences in viral clearance or neutrophil influx, as these parameters were comparable in both groups of animals. To confirm our immunoneutralization studies, we performed experiments in CXCR2(-/-) mice. Results in CXCR2(-/-) mice recapitulated results from our immunoneutralization studies. However, CXCR2(-/-) mice also showed a statistically significant decrease in muc5ac, relative to RSV-infected wild-type animals. Thus, CXCR2 may be a relevant target in the pathogenesis of RSV bronchiolitis, since it contributes to mucus production and airway hyperreactivity in our model of RSV infection. 相似文献
6.
7.
8.
The retinal pigment epithelium (RPE) plays numerous critical roles in maintaining vision and this is underscored by the prevalence of degenerative blinding diseases like age-related macular degeneration (AMD), in which visual impairment is caused by progressive loss of RPE cells. In contrast to mammals, zebrafish possess the ability to intrinsically regenerate a functional RPE layer after severe injury. The molecular underpinnings of this regenerative process remain largely unknown yet hold tremendous potential for developing treatment strategies to stimulate endogenous regeneration in the human eye. In this study, we demonstrate that the mTOR pathway is activated in RPE cells post-genetic ablation. Pharmacological and genetic inhibition of mTOR activity impaired RPE regeneration, while mTOR activation enhanced RPE recovery post-injury, demonstrating that mTOR activity is essential for RPE regeneration in zebrafish. RNA-seq of RPE isolated from mTOR-inhibited larvae identified a number of genes and pathways dependent on mTOR activity at early and late stages of regeneration; amongst these were components of the immune system, which is emerging as a key regulator of regenerative responses across various tissue and model systems. Our results identify crosstalk between macrophages/microglia and the RPE, wherein mTOR activity is required for recruitment of macrophages/microglia to the RPE injury site. Macrophages/microglia then reinforce mTOR activity in regenerating RPE cells. Interestingly, the function of macrophages/microglia in maintaining mTOR activity in the RPE appeared to be inflammation-independent. Taken together, these data identify mTOR activity as a key regulator of RPE regeneration and link the mTOR pathway to immune responses in facilitating RPE regeneration. 相似文献
9.
Tumor necrosis factor-alpha triggers mucus production in airway epithelium through an IkappaB kinase beta-dependent mechanism 总被引:1,自引:0,他引:1
Lora JM Zhang DM Liao SM Burwell T King AM Barker PA Singh L Keaveney M Morgenstern J Gutiérrez-Ramos JC Coyle AJ Fraser CC 《The Journal of biological chemistry》2005,280(43):36510-36517
Excessive mucus production by airway epithelium is a major characteristic of a number of respiratory diseases, including asthma, chronic bronchitis, and cystic fibrosis. However, the signal transduction pathways leading to mucus production are poorly understood. Here we examined the potential role of IkappaB kinase beta (IKKbeta) in mucus synthesis in vitro and in vivo. Tumor necrosis factor-alpha (TNF-alpha) or transforming growth factor-alpha stimulation of human epithelial cells resulted in mucus secretion as measured by MUC5AC mRNA and protein. TNF-alpha stimulation induced IKKbeta-dependent p65 nuclear translocation, mucus synthesis, and production of cytokines from epithelial cells. TNF-alpha, but not transforming growth factor-alpha, induced mucus production dependent on IKKbeta-mediated NF-kappaB activation. In vivo, TNF-alpha induced NF-kappaB as determined by whole mouse body bioluminescence. This activation was localized to the epithelium as revealed by LacZ staining in NF-kappaB-LacZ transgenic mice. TNF-alpha-induced mucus production in vivo could also be inhibited by administration into the epithelium of an IKKbeta dominant negative adenovirus. Taken together, our results demonstrated the important role of IKKbeta in TNF-alpha-mediated mucus production in airway epithelium in vitro and in vivo. 相似文献
10.
The Drosophila melanogaster tracheal system and the mammalian lung are branching networks of tubular epithelia that convert during late embryogenesis from liquid- to air-filling. Little is known about how respiratory-tube size and physiology are coordinated. Here, we show that the Drosophila wurst gene encodes a unique J-domain transmembrane protein highly conserved in metazoa. In wurst mutants, respiratory-tube length is increased and lumen clearance is abolished, preventing gas filling of the airways. Wurst is essential for clathrin-mediated endocytosis, which is required for size determination and lumen clearance of the airways. wurst recruits heat shock cognate protein 70-4 and clathrin to the apical membrane of epithelial cells. The sequence conservation of the single Wurst orthologues in mice and humans offer new opportunities for genetic studies of clinically relevant lung syndromes caused by the failure of liquid clearance and respiratory-tube size control. 相似文献
11.
12.
The olfactory epithelium (OE) is derived from the olfactory placode (OP) during mouse development. At embryonic day (E) 10.0-E10.5, “early neurogenesis” occurs in the OE, which includes production of pioneer neurons that emigrate out of the OE and other early-differentiated neurons. Around E12.5, the OE becomes organized into mature pseudostratified epithelium and shows “established neurogenesis,” in which olfactory receptor neurons (ORNs) are differentiated from basal progenitors. Little is known about the molecular pathway of early neurogenesis. The homeodomain protein Six1 is expressed in all OP cells and neurogenic precursors in the OE. Here we show that early neurogenesis is severely disturbed despite the unaltered expression of Mash1 at E10.5 in the Six1-deficient mice (Six1−/−). Expression levels of neurogenin1 (Ngn1) and NeuroD are reduced and those of Hes1 and Hes5 are augmented in the OE of Six1−/− at E10.5. Pioneer neurons and cellular aggregates, which are derived from the OP/OE and situated in the mesenchyme between the OE and forebrain, are completely absent in Six1−/−. Moreover, ORN axons and the gonadotropin-releasing hormone-positive neurons fail to extend and migrate to the forebrain, respectively. Our study indicates that Six1 plays critical roles in early neurogenesis by regulating Ngn1, NeuroD, Hes1, and Hes5. 相似文献
13.
Mucus accumulation is a feature of inflammatory airway disease in the horse and has been associated with reduced performance in racehorses. In this study, we have analysed the two major airways gel-forming mucins Muc5b and Muc5ac in respect of their site of synthesis, their biochemical properties, and their amounts in mucus from healthy horses and from horses with signs of airway mucus accumulation. Polyclonal antisera directed against equine Muc5b and Muc5ac were raised and characterised. Immunohistochemical staining of normal equine trachea showed that Muc5ac and Muc5b are produced by cells in the submucosal glands, as well as surface epithelial goblet cells. Western blotting after agarose gel electrophoresis of airway mucus from healthy horses, and horses with mucus accumulation, was used to determine the amounts of these two mucins in tracheal wash samples. The results showed that in healthy horses Muc5b was the predominant mucin with small amounts of Muc5ac. The amounts of Muc5b and Muc5ac were both dramatically increased in samples collected from horses with high mucus scores as determined visually at the time of endoscopy and that this increase also correlated with increase number of bacteria present in the sample. The change in amount of Muc5b and Muc5ac indicates that Muc5b remains the most abundant mucin in mucus. In summary, we have developed mucin specific polyclonal antibodies, which have allowed us to show that there is a significant increase in Muc5b and Muc5ac in mucus accumulated in equine airways and these increases correlated with the numbers of bacteria. 相似文献
14.
Sathish Venkataramanappa Dagmar Schütz Friederike Saaber Praveen Ashok Kumar Philipp Abe Stefan Schulz Ralf Stumm 《PLoS genetics》2021,17(3)
Biallelic mutations in DONSON, an essential gene encoding for a replication fork protection factor, were linked to skeletal abnormalities and microcephaly. To better understand DONSON function in corticogenesis, we characterized Donson expression and consequences of conditional Donson deletion in the mouse telencephalon. Donson was widely expressed in the proliferation and differentiation zones of the embryonic dorsal and ventral telencephalon, which was followed by a postnatal expression decrease. Emx1-Cre-mediated Donson deletion in progenitors of cortical glutamatergic neurons caused extensive apoptosis in the early dorsomedial neuroepithelium, thus preventing formation of the neocortex and hippocampus. At the place of the missing lateral neocortex, these mutants exhibited a dorsal extension of an early-generated paleocortex. Targeting cortical neurons at the intermediate progenitor stage using Tbr2-Cre evoked no apparent malformations, whereas Nkx2.1-Cre-mediated Donson deletion in subpallial progenitors ablated 75% of Nkx2.1-derived cortical GABAergic neurons. Thus, the early telencephalic neuroepithelium depends critically on Donson function. Our findings help explain why the neocortex is most severely affected in individuals with DONSON mutations and suggest that DONSON-dependent microcephaly might be associated with so far unrecognized defects in cortical GABAergic neurons. Targeting Donson using an appropriate recombinase is proposed as a feasible strategy to ablate proliferating and nascent cells in experimental research. 相似文献
15.
Neuraminidase is important for the initiation of influenza virus infection in human airway epithelium 总被引:11,自引:0,他引:11
Matrosovich MN Matrosovich TY Gray T Roberts NA Klenk HD 《Journal of virology》2004,78(22):12665-12667
Influenza virus neuraminidase (NA) plays an essential role in release and spread of progeny virions, following the intracellular viral replication cycle. To test whether NA could also facilitate virus entry into cell, we infected cultures of human airway epithelium with human and avian influenza viruses in the presence of the NA inhibitor oseltamivir carboxylate. Twenty- to 500-fold less cells became infected in drug-treated versus nontreated cultures (P < 0.0001) 7 h after virus application, indicating that the drug suppressed the initiation of infection. These data demonstrate that viral NA plays a role early in infection, and they provide further rationale for the prophylactic use of NA inhibitors. 相似文献
16.
17.
18.
19.
Pezzulo AA Gutiérrez J Duschner KS McConnell KS Taft PJ Ernst SE Yahr TL Rahmouni K Klesney-Tait J Stoltz DA Zabner J 《PloS one》2011,6(1):e16166
Diabetes mellitus predisposes the host to bacterial infections. Moreover, hyperglycemia has been shown to be an independent risk factor for respiratory infections. The luminal surface of airway epithelia is covered by a thin layer of airway surface liquid (ASL) and is normally sterile despite constant exposure to bacteria. The balance between bacterial growth and killing in the airway determines the outcome of exposure to inhaled or aspirated bacteria: infection or sterility. We hypothesized that restriction of carbon sources--including glucose--in the ASL is required for sterility of the lungs. We found that airway epithelia deplete glucose from the ASL via a novel mechanism involving polarized expression of GLUT-1 and GLUT-10, intracellular glucose phosphorylation, and low relative paracellular glucose permeability in well-differentiated cultures of human airway epithelia and in segments of airway epithelia excised from human tracheas. Moreover, we found that increased glucose concentration in the ASL augments growth of P. aeruginosa in vitro and in the lungs of hyperglycemic ob/ob and db/db mice in vivo. In contrast, hyperglycemia had no effect on intrapulmonary bacterial growth of a P. aeruginosa mutant that is unable to utilize glucose as a carbon source. Our data suggest that depletion of glucose in the airway epithelial surface is a novel mechanism for innate immunity. This mechanism is important for sterility of the airways and has implications in hyperglycemia and conditions that result in disruption of the epithelial barrier in the lung. 相似文献
20.