首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
At the blastocyst stage of mammalian pre-implantation development, three distinct cell lineages have formed: trophectoderm, hypoblast (primitive endoderm) and epiblast. The inability to derive embryonic stem (ES) cell lines in a variety of species suggests divergence between species in the cell signaling pathways involved in early lineage specification. In mouse, segregation of the primitive endoderm lineage from the pluripotent epiblast lineage depends on FGF/MAP kinase signaling, but it is unknown whether this is conserved between species. Here we examined segregation of the hypoblast and epiblast lineages in bovine and human embryos through modulation of FGF/MAP kinase signaling pathways in cultured embryos. Bovine embryos stimulated with FGF4 and heparin form inner cell masses (ICMs) composed entirely of hypoblast cells and no epiblast cells. Inhibition of MEK in bovine embryos results in ICMs with increased epiblast precursors and decreased hypoblast precursors. The hypoblast precursor population was not fully ablated upon MEK inhibition, indicating that other factors are involved in hypoblast differentiation. Surprisingly, inhibition of FGF signaling upstream of MEK had no effects on epiblast and hypoblast precursor numbers in bovine development, suggesting that GATA6 expression is not dependent on FGF signaling. By contrast, in human embryos, inhibition of MEK did not significantly alter epiblast or hypoblast precursor numbers despite the ability of the MEK inhibitor to potently inhibit ERK phosphorylation in human ES cells. These findings demonstrate intrinsic differences in early mammalian development in the role of the FGF/MAP kinase signaling pathways in governing hypoblast versus epiblast lineage choices.  相似文献   

6.
In the areas of developmental biology and embryonic stem cell research, reliable molecular markers of pluripotency and early lineage commitment are sparse in large animal species. In this study, we present morphological and immunohistochemical findings on the porcine embryo in the period around gastrulation, days 8-17 postinsemination, introducing a stereomicroscopical staging system in this species. In embryos at the expanding hatched blastocyst stage, OCT4 is confined to the inner cell mass. Following detachment of the hypoblast, and formation of the embryonic disk, this marker of pluripotency was selectively observed in the epiblast. A prominent crescent-shaped thickening at the posterior region of the embryonic disk marked the first polarization within this structure reflecting incipient cell ingression. Following differentiation of the epiblast, clearance of OCT4 from the three germ layers was observed at defined stages, suggesting correlations to lineage specification. In the endoderm, clearance of OCT4 was apparent from early during its formation at the primitive streak stage. The endoderm harbored progenitors of the "fourth germ layer," the primordial germ cells (PGCs), the only cells maintaining expression of OCT4 at the end of gastrulation. In the ectodermal and mesodermal cell lineages, OCT4 became undetectable at the neural groove and somite stage, respectively. As in the mouse, PGCs showed onset of c-kit expression when located in extraembryonal compartments. They appeared to follow the endoderm during extraembryonal allocation and the mesoderm on return to the genital ridge.  相似文献   

7.

Background

The mouse anterior visceral endoderm (AVE) and the chick hypoblast are thought to have homologous roles in the early stages of neural induction and primitive streak formation. In mouse, many regulatory elements directing gene expression to the AVE have been identified. However, there is no technique to introduce DNA into the chick hypoblast that would enable a comparison of their activity and this has hampered a direct comparison of the regulation of gene expression in the mouse and chick extraembryonic endoderm.

Results

Here we describe a new method to introduce DNA into the chick hypoblast, using lipofectamine-mediated transfection. We show that the hypoblast can be easily transfected and that it starts to express a luciferase reporter within 2 hours of transfection. The validity of technique is tested by following the movement and fate of hypoblast cells, which reveals their translocation to the anterior germinal crescent. We then introduce a vector containing GFP driven by the mouse VEcis-Otx2 enhancer (which directs gene expression to the mouse AVE) and we detect activity in the hypoblast.

Conclusion

The new technique for delivering expression constructs to the chick hypoblast will enable studies on gene activity and regulation to be performed in this tissue, which has proved difficult to transfect by electroporation. Our findings also reveal that regulatory elements that direct gene expression to the mouse AVE are active in chick hypoblast, supporting the idea that these two tissues have homologous functions.  相似文献   

8.
The inner cell mass of the blastocyst has differentiated into epiblast and hypoblast (primitive endoderm) prior to implantation. Since endoderm cells extend beyond the epiblast, it can be considered that both parietal and visceral endoderm are present. At implantation, epiblast cells begin to show marked evidence of polarity. They form a spherical aggregate with their basal ends toward the basal lamina and apical ends toward the interior. The potential for an internal space is formed by this change in polarity of the cells. No cytological evidence of separation of those cells that will form amniotic epithelium from the rest of the epiblast is seen until a cavity begins to form. The amniotic epithelium is originally contiguous with overlying cytotrophoblast, and a diverticulum remains in this position during early development. Epiblast forms a pseudostratified columnar epithelium, but dividing cells are situated toward the amniotic cavity rather than basally. The first evidence of a trilaminar disc occurs when a strand of cells contiguous with epiblast is found extending toward visceral endoderm. These presumptive mesoderm cells are undifferentiated, whereas extraembryonic mesoderm cells are already a distinct population forming extracellular materials. After implantation, visceral endoderm cells proliferate forming an irregular layer one to three cells thick. Visceral endoderm cells have smooth apical surfaces, but very irregular basal surfaces, and no basal lamina. At the margins of the disc, visceral endoderm is continuous with parietal endoderm and reflects back over the apices of the marginal visceral endoderm cells. This sacculation by visceral endoderm cells precedes pinching off of the secondary yolk sac from the remaining primary yolk sac.  相似文献   

9.
The lower layer of the pre-gastrulating chick embryo is an extra-embryonic tissue made up of two different cell populations, the hypoblast and the endoblast. The hypoblast is characterized by the expression of inhibitory signalling molecules (e.g. Cerberus, Dickkopf1, Crescent) and others (e.g. Otx2, goosecoid, Hex, Hesx1/RPX, FGF8). However, no genes expressed in the endoblast have yet been found. We designed a differential screen to identify markers differentially expressed in these two cell populations. This only revealed one novel gene, Apolipoprotein A1 (APO A1) with restricted endodermal layer expression. Expression of APO A1 begins very early throughout the lower layer (both hypoblast and endoblast). At later stages it is also expressed in the endoderm and its derivatives, the anterior intestinal portal endoderm and the growing liver bud.  相似文献   

10.
11.
12.
13.
14.
15.
16.
A 100,000-Da glucose-regulated surface protein (100K-GRP) has previously been isolated from the cell surface and culture medium of human fibroblasts. A rabbit antiserum directed against this protein reacts with the cell surface of both human and murine cultured cells and with a broad spectrum of mammalian tissues. It is shown, via indirect immunofluorescence, that this protein is also present on cells of the developing mouse embryo and can be detected as early as the 4-cell stage. The 8-cell embryo and morula show positive surface labeling; the inner cell masses of both the pre- and postimplantation blastocysts are also positive but the trophectoderm is not. At the 6-day egg cylinder stage, the embryonic and extra-embryonic ectoderm label intensely with the antiserum and visceral endoderm shows faint labeling. No labeling can be detected on parietal endoderm or on the trophoblastic giant cells invading the uterine decidua. However, the internal cells of the ectoplacental cone exhibit bright fluorescence. The same pattern is observed on 7- to 8.5-day embryos, except that at this stage no label is associated with the visceral endoderm. In addition, mesodermal cells emerging from the primitive streak are also labeled.  相似文献   

17.
18.
19.
Summary The unincubated chick blastoderm, which consists of a complete upper epithelial layer of one cell thickness (epiblast) and an incomplete lower layer (hypoblast), was examined with the electron microscope in order to define the types of cell contact present. The terminal contacts between the cells of the epiblast invariably involved several focal tight junctions, but only occasionally involved tight junctions. Desmosomes were not observed in these areas, but were encountered in various phases of development in the deeper contact regions between epiblast cells. This deeper region also showed sporadic focal tight junctions and frequent micropapillae. These micropapillae were also common on the surfaces of hypoblast cells. Intercellular spaces between epiblast and hypoblast cells and within the hypoblast were often wide, narrowing to occasional focal tight junctions. Tight junctions and desmosomes were not observed in association with hypoblast cells. Gap junctions were not observed in any region of the embryo.These observations are discussed in relation to the morphogenetic movements occurring in the forming hypoblast and also the influence of this layer on the subsequent development of the embryo. Comparisons are drawn between the contact morphology in the unincubated blastoderm and that in later stages of development.Supported by the Medical Research Council of Canada.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号