首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twenty-five gram-negative bacteria and one gram-positive bacterium capable of growing on poly(3-hydroxyoctanoic acid) [P(3HO)] as the sole source of carbon and energy were isolated from various soils, lake water, and activated sludge. Most of the isolates degraded only P(3HO) and copolymers of medium-chain-length (MCL) hydroxyalkanoic acids (HA). Except for the gram-positive strain, which was able to hydrolyze P(3HO) and poly(3-hydroxybutyric acid) [P(3HB)], no isolate was able to degrade polymers of short-chain-length HA, such as P(3HB) or poly(3-hydroxyvalerate) [P(3HV)]. All strains utilized a large variety of monomeric substrates for growth. All gram-negative strains, but not the gram-positive strain, accumulated poly(hydroxyalkanoic acids) (PHA), consisting of MCL HA, if they were cultivated under accumulation conditions. One strain, which was identified as Pseudomonas fluorescens GK13 (biovar V), was selected and the extracellular P(3HO) depolymerase of this strain was purified from the culture medium of P(3HO)-grown cells by chromatography with Octyl-Sepharose CL4B and by gel filtration with Superose 12. The relative molecular weights of the native and sodium dodecyl sulfate-treated enzymes were 48,000 and 25,000, respectively. The purified enzyme hydrolyzed P(3HO), copolymers of MCL HA, and para-nitrophenyl esters of fatty acids. P(3HB), P(3HV), and characteristic substrates for lipases, such as Tween 80 or triolein, were not hydrolyzed. The P(3HO) depolymerase of P. fluorescens GK13 was insensitive to phenylmethylsulfonyl fluoride and dithioerythritol, unlike other PHA depolymerases. The dimeric ester of 3-hydroxyoctanoic acid was identified as the main product of enzymatic hydrolysis of P(3HO).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Abstract Mutational analysis of the poly(3-hydroxybutyrate) (PHB) depolymerase A of Pseudomonas lemoignei and of the poly(3-hydroxybutyrate) depolymerase of Alcaligenes faecalis revealed that S138 ( P. lemoignei ) and S139 ( A. faecalis ) are essential for activity. Both serines are part of a strictly conserved pentapeptide sequence which is present in all poly(3-hydroxybutyrate) depolymerases analyzed so far (G-L-S-S(A)-G) and which resembles the lipase box of lipases and other serine hydrolases (G-X-S-X-G). Mutation of another conserved serine, namely S195 ( P. lemoignei ) and S196 ( A. faecalis ), resulted in mutant proteinswith almost full activity and proved that S195 and S196 are not essential for activity. The results indicate the structural and functional relationship of poly(3-hydroxybutyrate) depolymerases to the family of serine hydrolases.  相似文献   

3.
Pseudomonas lemoignei is equipped with at least five polyhydroxyalkanoate (PHA) depolymerase structural genes (phaZ1 to phaZ5) which enable the bacterium to utilize extracellular poly(3-hydroxybutyrate) (PHB), poly(3-hydroxyvalerate) (PHV), and related polyesters consisting of short-chain-length hxdroxyalkanoates (PHA(SCL)) as the sole sources of carbon and energy. Four genes (phaZ1, phaZ2, phaZ3, and phaZ5) encode PHB depolymerases C, B, D, and A, respectively. It was speculated that the remaining gene, phaZ4, encodes the PHV depolymerase (D. Jendrossek, A. Frisse, A. Behrends, M. Andermann, H. D. Kratzin, T. Stanislawski, and H. G. Schlegel, J. Bacteriol. 177:596-607, 1995). However, in this study, we show that phaZ4 codes for another PHB depolymeraes (i) by disagreement of 5 out of 41 amino acids that had been determined by Edman degradation of the PHV depolymerase and of four endoproteinase GluC-generated internal peptides with the DNA-deduced sequence of phaZ4, (ii) by the lack of immunological reaction of purified recombinant PhaZ4 with PHV depolymerase-specific antibodies, and (iii) by the low activity of the PhaZ4 depolymerase with PHV as a substrate. The true PHV depolymerase-encoding structural gene, phaZ6, was identified by screening a genomic library of P. lemoignei in Escherichia coli for clearing zone formation on PHV agar. The DNA sequence of phaZ6 contained all 41 amino acids of the GluC-generated peptide fragments of the PHV depolymerase. PhaZ6 was expressed and purified from recombinant E. coli and showed immunological identity to the wild-type PHV depolymerase and had high specific activities with PHB and PHV as substrates. To our knowledge, this is the first report on a PHA(SCL) depolymerase gene that is expressed during growth on PHV or odd-numbered carbon sources and that encodes a protein with high PHV depolymerase activity. Amino acid analysis revealed that PhaZ6 (relative molecular mass [M(r)], 43,610 Da) resembles precursors of other extracellular PHA(SCL) depolymerases (28 to 50% identical amino acids). The mature protein (M(r), 41,048) is composed of (i) a large catalytic domain including a catalytic triad of S(136), D(211), and H(269) similar to serine hydrolases; (ii) a linker region highly enriched in threonine residues and other amino acids with hydroxylated or small side chains (Thr-rich region); and (iii) a C-terminal domain similar in sequence to the substrate-binding domain of PHA(SCL) depolymerases. Differences in the codon usage of phaZ6 for some codons from the average codon usage of P. lemoignei indicated that phaZ6 might be derived from other organisms by gene transfer. Multialignment of separate domains of bacterial PHA(SCL) depolymerases suggested that not only complete depolymerase genes but also individual domains might have been exchanged between bacteria during evolution of PHA(SCL) depolymerases.  相似文献   

4.
The recently discovered extracellular poly[(R)-3-hydroxybutyrate] (PHB) depolymerase PhaZ7 of Paucimonas lemoignei represents the first member of a new subgroup (EC 3.1.1.75) of serine hydrolases with no significant amino acid similarities to conventional PHB depolymerases, lipases or other hydrolases except for a potential lipase box-like motif (Ala-His-Ser136-Met-Gly) and potential candidates for catalytic triad and oxyanion pocket amino acids. In order to identify amino acids essential for activity 11 mutants of phaZ7 were generated by site-directed mutagenesis and expressed in recombinant protease-deficient Bacillus subtilis WB800. The wild-type depolymerase and 10 of the 11 mutant proteins (except for Ser136Cys) were expressed and efficiently secreted by B. subtilis as shown by Western blots of cell-free culture fluid proteins. No PHB depolymerase activity was detected in strains harbouring one of the following substitutions: His47Ala, Ser136Ala, Asp242Ala, Asp242Asn, His306Ala, indicating the importance of these amino acids for activity. Replacement of Ser136 by Thr resulted in a decrease of activity to about 20% of the wild-type level and suggested that the hydroxy group of the serine side chain is important for activity but can be partially replaced by the hydroxy function of threonine. Alterations of Asp256 to Ala or Asn or of the putative serine hydrolase pentapeptide motif (Ala-His-Ser136-Met-Gly) to a lipase box consensus sequence (Gly134-His-Ser136-Met-Gly) or to the PHB depolymerase box consensus sequence (Gly134-Leu135-Ser136-Met-Gly) had no significant effect on PHB depolymerase activity, indicating that these amino acids or sequence motifs were not essential for activity. In conclusion, the PHB depolymerase PhaZ7 is a serine hydrolase with a catalytic triad and oxyanion pocket consisting of His47, Ser136, Asp242 and His306.  相似文献   

5.
A novel intracellular poly(3-hydroxybutyrate) (PHB) depolymerase (PhaZd) of Wautersia eutropha (formerly Ralstonia eutropha) H16 which shows similarity with the catalytic domain of the extracellular PHB depolymerase in Ralstonia pickettii T1 was identified. The positions of the catalytic triad (Ser190-Asp266-His330) and oxyanion hole (His108) in the amino acid sequence of PhaZd deduced from the nucleotide sequence roughly accorded with those of the extracellular PHB depolymerase of R. pickettii T1, but a signal peptide, a linker domain, and a substrate binding domain were missing. The PhaZd gene was cloned and the gene product was purified from Escherichia coli. The specific activity of PhaZd toward artificial amorphous PHB granules was significantly greater than that of other known intracellular PHB depolymerase or 3-hydroxybutyrate (3HB) oligomer hydrolases of W. eutropha H16. The enzyme degraded artificial amorphous PHB granules and mainly released various 3-hydroxybutyrate oligomers. PhaZd distributed nearly equally between PHB inclusion bodies and the cytosolic fraction. The amount of PHB was greater in phaZd deletion mutant cells than the wild-type cells under various culture conditions. These results indicate that PhaZd is a novel intracellular PHB depolymerase which participates in the mobilization of PHB in W. eutropha H16 along with other PHB depolymerases.  相似文献   

6.
We previously reported purification and characterization of a 90k serine protease with pI 3.9 from Bacillus subtilis (natto) No. 16 [Kato et al. 1992 Biosci Biotechnol Biochem 56:1166]. The enzyme showed different and unique substrate specificity towards the oxidized B-chain of insulin from those of well-known bacterial serine proteases from Bacillus subtilisins. The structural gene, hspK, for the 90k serine protease was cloned and sequenced. The cloned DNA fragment contained a single open reading frame of 4302 bp coding a protein of 1433 amino acid residues. The deduced amino acid sequence of the 90k-protease indicated the presence of a typical signal sequence of the first 30 amino acids region and that there was a pro-sequence of 164 amino acid residues after the signal sequence. The mature region of the 90k-protease started from position 195 of amino acid residue, and the following peptide consisted of 1239 amino acid residues with a molecular weight of 133k. It might be a precursor protein of the 90k-protease, and the C-terminal region of 43k might be degraded to a mature protein from the precursor protein. The catalytic triad was thought to consist of Asp33, His81, and Ser259 from comparison of the amino acid sequence of the 90k-protease with those of the other bacterial serine proteases. The high-molecular-weight serine protease, the 90k-protease, may be an ancient form of bacterial serine proteases.  相似文献   

7.
The substrate specificities of extracellular lipases purified from Bacillus subtilis, Pseudomonas aeruginosa, Pseudomonas alcaligenes, Pseudomonas fluorescens, and Burkholderia cepacia (former Pseudomonas cepacia) and of extracellular polyhydroxyalkanoate (PHA) depolymerases purified from Comamonas sp., Pseudomonas lemoignei, and P. fluorescens GK13, as well as that of an esterase purified from P. fluorescens GK 13, to various polyesters and to lipase substrates were analyzed. All lipases and the esterase of P. fluorescens GK13 but none of the PHA depolymerases tested hydrolyzed triolein, thereby confirming a functional difference between lipases and PHA depolymerases. However, most lipases were able to hydrolyze polyesters consisting of an omega-hydroxyalkanoic acid such as poly(6-hydroxyhedxanoate) or poly(4-hydroxybutyrate). The dimeric ester of hydroxyhexanoate was the main product of enzymatic hydrolysis of polycaprolactone by P. aeruginosa lipase. Polyesters containing side chains in the polymer backbone such as poly (3-hydroxybutyrate) and other poly(3-hydroxyalkanoates) were not or were only slightly hydrolyzed by the lipases tested.  相似文献   

8.
An intracellular poly[D(-)-3-hydroxybutyrate] (PHB) depolymerase gene (phaZ) has been cloned from Ralstonia eutropha H16 by the shotgun method, sequenced, and characterized. Nucleotide sequence analysis of a 2.3-kbp DNA fragment revealed an open reading frame of 1,260 bp, encoding a protein of 419 amino acids with a predicted molecular mass of 47,316 Da. The crude extract of Escherichia coli containing the PHB depolymerase gene digested artificial amorphous PHB granules and released mainly oligomeric D(-)-3-hydroxybutyrate, with some monomer. The gene product did not hydrolyze crystalline PHB or freeze-dried artificial amorphous PHB granules. The deduced amino acid sequence lacked sequence corresponding to a classical lipase box, Gly-X-Ser-X-Gly. The gene product was expressed in R. eutropha cells concomitant with the synthesis of PHB and localized in PHB granules. Although a mutant of R. eutropha whose phaZ gene was disrupted showed a higher PHB content compared to the wild type in a nutrient-rich medium, it accumulated PHB as much as the wild type did in a nitrogen-free, carbon-rich medium. These results indicate that the cloned phaZ gene encodes an intracellular PHB depolymerase in R. eutropha.  相似文献   

9.
A novel type of hydrolase was purified from culture fluid of Paucimonas (formerly Pseudomonas) lemoignei. Biochemical characterization revealed an unusual substrate specificity of the purified enzyme for amorphous poly((R)-3-hydroxyalkanoates) (PHA) such as native granules of natural poly((R)-3-hydroxybutyrate) (PHB) or poly((R)-3-hydroxyvalerate) (PHV), artificial cholate-coated granules of natural PHB or PHV, atactic poly((R,S)-3-hydroxybutyrate), and oligomers of (R)-3-hydroxybutyrate (3HB) with six or more 3HB units. The enzyme has the unique property to recognize the physical state of the polymeric substrate by discrimination between amorphous PHA (good substrate) and denatured, partially crystalline PHA (no substrate). The pentamers of 3HB or 3HV were identified as the main products of enzymatic hydrolysis of native PHB or PHV, respectively. No activity was found with any denatured PHA, oligomers of (R)-3HB with five or less 3HB units, poly(6-hydroxyhexanoate), substrates of lipases such as tributyrin or triolein, substrates for amidases/nitrilases, DNA, RNA, casein, N-alpha-benzoyl-l-arginine-4-nitranilide, or starch. The purified enzyme (M(r) 36,209) was remarkably stable and active at high temperature (60 degrees C), high pH (up to 12.0), low ionic strength (distilled water), and in solvents (e.g. n-propyl alcohol). The depolymerase contained no essential SH groups or essential disulfide bridges and was insensitive to high concentrations of ionic (SDS) and nonionic (Triton and Tween) detergents. Characterization of the cloned structural gene (phaZ7) and the DNA-deduced amino acid sequence revealed no homologies to any PHB depolymerase or any other sequence of data banks except for a short sequence related to the active site serine of serine hydrolases. A classification of the enzyme into a new family (family 9) of carboxyesterases (Arpigny, J. L., and Jaeger, K.-E. (1999) Biochem. J. 343, 177-183) is suggested.  相似文献   

10.
Pseudomonas lemoignei is equipped with at least five polyhydroxyalkanoate (PHA) depolymerase structural genes (phaZ1 to phaZ5) which enable the bacterium to utilize extracellular poly(3-hydroxybutyrate) (PHB), poly(3-hydroxyvalerate) (PHV), and related polyesters consisting of short-chain-length hxdroxyalkanoates (PHASCL) as the sole sources of carbon and energy. Four genes (phaZ1, phaZ2, phaZ3, and phaZ5) encode PHB depolymerases C, B, D, and A, respectively. It was speculated that the remaining gene, phaZ4, encodes the PHV depolymerase (D. Jendrossek, A. Frisse, A. Behrends, M. Andermann, H. D. Kratzin, T. Stanislawski, and H. G. Schlegel, J. Bacteriol. 177:596–607, 1995). However, in this study, we show that phaZ4 codes for another PHB depolymeraes (i) by disagreement of 5 out of 41 amino acids that had been determined by Edman degradation of the PHV depolymerase and of four endoproteinase GluC-generated internal peptides with the DNA-deduced sequence of phaZ4, (ii) by the lack of immunological reaction of purified recombinant PhaZ4 with PHV depolymerase-specific antibodies, and (iii) by the low activity of the PhaZ4 depolymerase with PHV as a substrate. The true PHV depolymerase-encoding structural gene, phaZ6, was identified by screening a genomic library of P. lemoignei in Escherichia coli for clearing zone formation on PHV agar. The DNA sequence of phaZ6 contained all 41 amino acids of the GluC-generated peptide fragments of the PHV depolymerase. PhaZ6 was expressed and purified from recombinant E. coli and showed immunological identity to the wild-type PHV depolymerase and had high specific activities with PHB and PHV as substrates. To our knowledge, this is the first report on a PHASCL depolymerase gene that is expressed during growth on PHV or odd-numbered carbon sources and that encodes a protein with high PHV depolymerase activity. Amino acid analysis revealed that PhaZ6 (relative molecular mass [Mr], 43,610 Da) resembles precursors of other extracellular PHASCL depolymerases (28 to 50% identical amino acids). The mature protein (Mr, 41,048) is composed of (i) a large catalytic domain including a catalytic triad of S136, D211, and H269 similar to serine hydrolases; (ii) a linker region highly enriched in threonine residues and other amino acids with hydroxylated or small side chains (Thr-rich region); and (iii) a C-terminal domain similar in sequence to the substrate-binding domain of PHASCL depolymerases. Differences in the codon usage of phaZ6 for some codons from the average codon usage of P. lemoignei indicated that phaZ6 might be derived from other organisms by gene transfer. Multialignment of separate domains of bacterial PHASCL depolymerases suggested that not only complete depolymerase genes but also individual domains might have been exchanged between bacteria during evolution of PHASCL depolymerases.  相似文献   

11.
Jiang Y  Ye J  Wu H  Zhang H 《Biotechnology letters》2004,26(20):1585-1588
A polyhydroxyalkanote (PHA) depolymerase gene ( pha Z) was cloned by PCR from Pseudomonas putida and over-expressed in Escherichia coli as inclusion bodies. Nucleotide sequence analysis predicted an 852 bp open reading frame encoding a protein of 283 amino acids with a predicted molecular weight of 31283 Da. The deduced amino acid sequence had at least 80% homology to the PHA depolymerase from other Pseudomonas strains and consisted a conserved lipase box-like sequence (G-X-S(102)-X-G). The inclusion bodies were refolded and biochemically characterized. The depolymerase activity was optimal at 40 degrees C and pH 8.  相似文献   

12.
Sclerotinia sclerotiorum fungus has three endoxylanases induced by wheat bran. In the first part, a partial xylanase sequence gene (90 bp) was isolated by PCR corresponding to catalytic domains (β 5 and β 6 strands of this protein). The high homology of this sequence with xylanase of Botryotinia fuckeliana has permitted in the second part to amplify the XYN1 gene. Sequence analysis of DNA and cDNA revealed an ORF of 746 bp interrupted by a 65 bp intron, thus encoding a predicted protein of 226 amino acids. The mature enzyme (20.06 kDa), is coded by 188 amino acid (pI 9.26). XYN1 belongs to G/11 glycosyl hydrolases family with a conserved catalytic domain containing E(86) and E(178) residues. Bioinformatics analysis revealed that there was no Asn-X-Ser/Thr motif required for N-linked glycosylation in the deduced sequence however, five O-glycosylation sites could intervene in the different folding of xylanses isoforms and in their secretary pathway.  相似文献   

13.
A bacterial strain M4-7 capable of degrading various polyesters, such as poly(epsilon-caprolactone), poly(3-hydroxybutyrate-co-3-hydroxyvalerate), poly(3-hydroxyoctanoate), and poly(3-hydroxy-5-phenylvalerate), was isolated from a marine environment and identified as Pseudomonas alcaligenes. The relative molecular mass of a purified extracellular medium-chain-length poly(3-hydroxyalkanoate) (MCL-PHA) depolymerase (PhaZ(PalM4-7)) from P. alcaligenes M4-7 was 28.0 kDa, as determined by SDS-PAGE. The PhaZ(PalM4-7) was most active in 50 mM glycine-NaOH buffer (pH 9.0) at 35 degrees C. It was insensitive to dithiothreitol, sodium azide, and iodoacetamide, but susceptible to p-hydroxymercuribenzoic acid, N-bromosuccinimide, acetic anhydride, EDTA, diisopropyl fluorophosphate, phenylmethylsulfonyl fluoride, Tween 80, and Triton X-100. In this study, the genes encoding MCL-PHA depolymerase were cloned, sequenced, and characterized from a soil bacterium, P. alcaligenes LB19 (Kim et al., 2002, Biomacromolecules 3, 291-296) as well as P. alcaligenes M4-7. The structural gene (phaZ(PalLB19)) of MCL-PHA depolymerase of P. alcaligenes LB19 consisted of an 837 bp open reading frame (ORF) encoding a protein of 278 amino acids with a deduced M((r)) of 30,188 Da. However, the MCL-PHA depolymerase gene (phaZ(PalM4-7)) of P. alcaligenes M4-7 was composed of an 834 bp ORF encoding a protein of 277 amino acids with a deduced Mr of 30,323 Da. Amino acid sequence analyses showed that, in the two different polypeptides, a substrate-binding domain and a catalytic domain are located in the N-terminus and in the C-terminus, respectively. The PhaZ(PalLB19) and the PhaZ(PalM4-7) commonly share the lipase box, GISSG, in their catalytic domains, and utilize 111Asn and 110Ser residues, respectively, as oxyanions that play an important role in transition-state stabilization of hydrolytic reactions.  相似文献   

14.
The extracellular poly(3-hydroxybutyrate) depolymerase gene from Alcaligenes faecalis T1 was cloned into Escherichia coli DH1 by using the plasmid pUC8. An A. faecalis T1 genomic library was prepared in E. coli from a partial Sau3AI digest and screened with antibody against the depolymerase. Of the 29 antibody-positive clones, 1 (pDP14), containing about 4 kilobase pairs of A. faecalis T1 DNA, caused expression of a high level of depolymerase activity in E. coli. The enzyme purified from E. coli was not significantly different from the depolymerase of A. faecalis in molecular weight, immunological properties, peptide map, specific activity, or substrate specificity. Most of the expressed enzyme was found to be localized in the periplasmic space of E. coli, although about 10% of the total activity was found in the culture medium. Results of a deletion experiment with pDP14 showed that a large SalI fragment of about 2 kilobase pairs was responsible for expression of the enzyme in E. coli. The nucleotide sequence of the large SalI fragment has been determined. Comparison of the deduced amino terminus with that obtained from sequence analysis of the purified protein indicated that poly(3-hydroxybutyrate) depolymerase exists as a 488-amino-acid precursor with a signal peptide of 27 amino acids.  相似文献   

15.
The extracellular medium-chain-length polyhydroxyalkanoate (MCL-PHA) depolymerase of Pseudomonas fluorescens GK13 catalyzes the hydrolysis of poly(3-hydroxyoctanoic acid) [P(3HO)]. Based on the strong tendency of the enzyme to interact with hydrophobic materials, a low-cost method which allows the rapid and easy purification and immobilization of the enzyme has been developed. Thus, the extracellular P(3HO) depolymerase present in the culture broth of cells of P. fluorescens GK13 grown on mineral medium supplemented with P(3HO) as the sole carbon and energy source has been tightly adsorbed onto a commercially available polypropylene support (Accurel MP-1000) with high yield and specificity. The activity of the pure enzyme was enhanced by the presence of detergents and organic solvents, and it was retained after treatment with an SDS-denaturing cocktail under both reducing and nonreducing conditions. The time course of the P(3HO) hydrolysis catalyzed by the soluble and immobilized enzyme has been assessed, and the resulting products have been identified. After 24 h of hydrolysis, the dimeric ester of 3-HO [(R)-3-HO-HO] was obtained as the main product of the soluble enzyme. However, the immobilized enzyme catalyzes almost the complete hydrolysis of P(3HO) polymer to (R)-3-HO monomers under the same conditions.Polyhydroxyalkanoates (PHAs) are environmentally friendly polyesters that are biosynthesized by numerous microorganisms during unbalanced growth (3, 32). PHAs show material properties similar to those of conventional plastics, having important advantages such as biodegradability, apparent biocompatibility, and the ability to be manufactured from renewable resources (6, 38, 39). According to the number of carbon atoms of the side chain of the monomers, PHAs are classified as short-chain-length (SCL) PHAs (3 to 5 carbon atoms) and medium-chain-length (MCL) PHAs (6 to 14 carbon atoms) (16, 17, 32).The ability to degrade extracellular PHA in the environment and to use its degradation products as a source of carbon and energy depends on the release of specific extracellular PHA depolymerases (14, 15, 20). Depending on the depolymerase, as a result of enzymatic PHA degradation, the end products are only monomers, both monomers and dimers, or a mixture of oligomers (16). Enantiomer pure (R)-3-hydroxyalkanoic acid [(R)-3-HA] monomers are very attractive building blocks of interest not only in the biomedical and pharmaceutical fields (9, 10) but also for being used as starting materials to obtain other new polyesters (8). Thus, the development of a cost-effective industrial process for the production of both MCL-PHA depolymerase enzyme and (R)-3-HA monomers is of considerable interest.At present, few extracellular MCL-PHA depolymerases have been purified and characterized (11, 21-24, 33). Traditionally, the purification of microbial depolymerases is achieved by a conventional multistep chromatographic methodology, which includes hydrophobic interaction and size exclusion chromatographies (7, 21, 24, 37). The poly(3-hydroxyoctanoic acid) [P(3HO)] depolymerase from Pseudomonas fluorescens GK13 was the first enzyme purified (37) and characterized at the molecular level (36).Adsorption of lipases on polypropylene supports has been extensively used for large-scale lipase immobilization (18, 25, 28, 29) since it is a simple and economical method. Moreover, the immobilization of enzyme allows its reusability and increases its operational stability and ease of product recovery (1). Accurel MP-1000 is a commercially available hydrophobic, microporous, low-density polypropylene powder that presents a large surface area for adsorption because of its very small particle size (4). This support has been successfully used for adsorption of lipases and esterases with high yield directly from the fermentation broth (2, 13).As lipases, MCL-PHA depolymerases are hydrophobic proteins with a tendency to adsorb to hydrophobic supports. In this study we report a novel method for the purification of the P(3HO) depolymerase from P. fluorescens GK13 by adsorption to a polypropylene support as well as some relevant properties of the enzyme. Moreover, this protocol allows the immobilization of the enzyme directly from the culture broth. The immobilized enzyme degrades completely the P(3HO) polymer and releases 3-hydroxyoctanoic acid [(R)-3-HO]. This is the first report describing the immobilization of an extracellular MCL-PHA depolymerase and its potential use in the production of (R)-3-HO chiral monomers.  相似文献   

16.
K Kasuya  Y Inoue  T Tanaka  T Akehata  T Iwata  T Fukui    Y Doi 《Applied microbiology》1997,63(12):4844-4852
Comamonas acidovorans YM1609 secreted a polyhydroxybutyrate (PHB) depolymerase into the culture supernatant when it was cultivated on poly(3-hydroxybutyrate) [P(3HB)] or poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] as the sole carbon source. The PHB depolymerase was purified from culture supernatant of C. acidovorans by two chromatographic methods, and its molecular mass was determined as 45,000 Da by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The enzyme was stable at temperatures below 37 degrees C and at pH values of 6 to 10, and its activity was inhibited by diisopropyl fluorophosphonate. The liquid chromatography analysis of water-soluble products revealed that the primary product of enzymatic hydrolysis of P(3HB) was a dimer of 3-hydroxybutyric acid. Kinetics of enzymatic hydrolysis of P(3HB) film were studied. In addition, a gene encoding the PHB depolymerase was cloned from the C. acidovorans genomic library. The nucleotide sequence of this gene was found to encode a protein of 494 amino acids (M(r), 51,018 Da). Furthermore, by analysis of the N-terminal amino acid sequence of the purified enzyme, the molecular mass of the mature enzyme was calculated to be 48,628 Da. Analysis of the deduced amino acid sequence suggested a domain structure of the protein containing a catalytic domain, fibronectin type III module as linker, and a putative substrate-binding domain. Electron microscopic visualization of the mixture of P(3HB) single crystals and a fusion protein of putative substrate-binding domain with glutathione S-transferase demonstrated that the fusion protein adsorbed strongly and homogeneously to the surfaces of P(3HB) single crystals.  相似文献   

17.
The gene encoding a poly(DL-lactic acid) (PLA) depolymerase from Paenibacillus amylolyticus strain TB-13 was cloned and overexpressed in Escherichia coli. The purified recombinant PLA depolymerase, PlaA, exhibited degradation activities toward various biodegradable polyesters, such as poly(butylene succinate), poly(butylene succinate-co-adipate), poly(ethylene succinate), and poly(epsilon-caprolactone), as well as PLA. The monomeric lactic acid was detected as the degradation product of PLA. The substrate specificity toward triglycerides and p-nitrophenyl esters indicated that PlaA is a type of lipase. The gene encoded 201 amino acid residues, including the conserved pentapeptide Ala-His-Ser-Met-Gly, present in the lipases of mesophilic Bacillus species. The identity of the amino acid sequence of PlaA with Bacillus lipases was no more than 45 to 50%, and some of its properties were different from those of these lipases.  相似文献   

18.
Eighteen gram-negative thermotolerant poly(3-hydroxybutyrate) (PHB)-degrading bacterial isolates (T max60°C) were obtained from compost. Isolates produced clearing zones on opaque PHB agar, indicating the presence of extracellular PHB depolymerases. Comparison of physiological characteristics and determination of 16S rRNA gene sequences of four selected isolates revealed a close relatedness of three isolates (SA8, SA1, and KA1) to each other and to Schlegelella thermodepolymerans and Caenibacterium thermophilum. The fourth strain, isolate KB1a, showed reduced similarities to the above-mentioned isolates and species and might represent a new species of Schlegelella. Evidence is provided that S. thermodepolymerans and C. thermophilum are only one species. The PHB depolymerase gene, phaZ, of isolate KB1a was cloned and functionally expressed in Escherichia coli. Purified PHB depolymerase was most active around pH 10 and 76°C. The DNA-deduced amino acid sequence of the mature protein (49.4 kDa) shared significant homologies to other extracellular PHB depolymerases with a domain substructure: catalytic domain type 2—linker domain fibronectin type 3—substrate-binding domain type 1. A catalytic triad consisting of S20, D104, and H138 and a pentapeptide sequence (GLS20AG) characteristic for PHB depolymerases (PHB depolymerase box, GLSXG) and for other serine hydrolases (lipase box, GXSXG) were identified.This contribution is dedicated to Hans G. Schlegel in honor of his 80th birthday.Fabian Romen and Simone Reinhardt share first authorship.  相似文献   

19.
The gene encoding a 2,6-beta-D-fructan 6-levanbiohydrolase (LF2ase) (EC 3.2.1.64) that converts levan into levanbiose was cloned from the genomic DNA of Streptomyces exfoliatus F3-2. The gene encoded a signal peptide of 37 amino acids and a mature protein of 482 amino acids with a total length of 1560 bp and was successfully expressed in Escherichia coli. The similarities of primary structure were observed with levanases from Clostridium acetobutylicum, Bacillus subtilis, B. stearothermophilus (51.0-54.3%) and with LF2ase from Microbacterium levaniformans (53.9%). The enzyme from S. exfoliatus F3-2 shared the conserved six domains and the completely conserved five amino acid residues with family 32 glycosyl hydrolases, which include levanase, inulinase, and invertase. These observations led to the conclusion that the enzyme belongs to family 32 glycosyl hydrolases.  相似文献   

20.
The aspartase gene (aspA) of Pseudomonas fluorescens was cloned and the nucleotide sequence of the 2,066-base-pair DNA fragment containing the aspA gene was determined. The amino acid sequence of the protein deduced from the nucleotide sequence was confirmed by N- and C-terminal sequence analysis of the purified enzyme protein. The deduced amino acid composition also fitted the previous amino acid analysis results well (Takagi et al. (1984) J. Biochem. 96, 545-552). These results indicate that aspartase of P. fluorescens consists of four identical subunits with a molecular weight of 50,859, composed of 472 amino acid residues. The coding sequence of the gene was preceded by a potential Shine-Dalgarno sequence and by a few promoter-like structures. Following the stop codon there was a structure which is reminiscent of the Escherichia coli rho-independent terminator. The G + C content of the coding sequence was found to be 62.3%. Inspection of the codon usage for the aspA gene revealed as high as 80.0% preference for G or C at the third codon position. The deduced amino acid sequence was 56.3% homologous with that of the enzyme of E. coli W (Takagi et al. (1985) Nucl. Acids Res. 13, 2063-2074). Cys-140 and Cys-430 of the E. coli enzyme, which had been assigned as functionally essential (Ida & Tokushige (1985) J. Biochem. 98, 793-797), were substituted by Ala-140 and Ala-431, respectively, in the P. fluorescens enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号