首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A microtubule-associated protein composed of a 200 kDa polypeptide (MAP200) was isolated from tobacco-cultured BY-2 cells. Analysis of the partial amino acid sequence showed that MAP200 was identical to TMBP200, the tobacco MOR1/XMAP215 homolog. Although several homolog proteins in animal and yeast cells have been reported to promote MT dynamics in vitro, no such function has been reported for plant homologs. Turbidity measurements of tubulin solution suggested that MAP200 promoted tubulin polymerization, and analysis by dark-field microscopy revealed that this MAP increased both the number and length of microtubules (MTs). Electron microscopy and experiments using a chemical crosslinker demonstrated that MAP200 forms a complex with tubulin. Throughout the cell cycle, some MAP200 colocalized with MT structures, including cortical MTs, the preprophase band, spindle and phragmoplast, while some MAP200 was localized in areas lacking MTs. Based on our biochemical and immunofluorescence findings, the function of MAP200 in MT polymerization is discussed.  相似文献   

2.
Clonal cells (N18) of the mouse neuroblastoma C-1300 can be induced to undergo a morphological differentiation characterized by the outgrowth of very long neurites (> 150 microns) that contain many microtubules. Because the marked increase in the number and length of microtubules is apparently not due to an increase in the concentration of tubulin subunits, the possible role of additional macromolecules in the regulation of tubulin polymerization during neurite formation by N18 cells was examined. Using an in vitro system where the polymerization of low concentrations (< 4 mg/ml) of purified brain tubulin requires microtubule-associated proteins (MAPs), high-speed supernates (250,000 g) from neuroblastoma and glioma cells were assayed for their ability to replace MAPs in the polymerization of brain tubulin. Only the supernates from "differentiated" N18 cells were polymerization competent. Electron microscope observations of these supernates failed to demonstrate the presence of nucleation structures (rings or disks). The active factor(s) sedimented at approximately 7S on sucrose gradient centrifugation and eluted from 4B Sepharose in the region of 170,000 mol wt proteins. Furthermore, the inactive supernates from other cells did not inhibit polymerization when tested in the presence of limiting MAPs. Thus, microtubule formation accompanying neurite outgrowth in neuroblastoma cells appears to be regulated by the presence of additional macromolecular factor(s) that may be functionally equivalent to the MAPs found with brain microtubules.  相似文献   

3.
M F Carlier  D Pantaloni 《Biochemistry》1983,22(20):4814-4822
Taxol has been used as a tool to investigate the relationship between microtubule assembly and guanosine 5'-triphosphate (GTP) hydrolysis. The data support the model previously proposed [Carlier, M.-F., & Pantaloni, D. (1981) Biochemistry 20, 1918] that GTP hydrolysis is not tightly coupled to the polymerization process but takes place as a monomolecular process following polymerization. The results further indicate that the energy liberated by GTP hydrolysis is not responsible for the subsequent blockage of GDP on polymerized tubulin. When tubulin is polymerized in the presence of 10-100 microM taxol, the rapid formation of a large number of very short microtubules (l less than 1 micron) is accompanied by the development of turbidity to a lesser extent than what is observed when the same weight amount of longer microtubules (l = 5 microns) is formed. A slower subsequent turbidity increase corresponds to the length redistribution of these short microtubules into 3-5-fold longer ones without any change in the weight amount of polymer. The evolution of the rate of length redistribution with the concentration of taxol suggests a model within which taxol would bind to dimeric tubulin and to tubulin present at the ends of microtubules with a somewhat 10-fold lower affinity than to polymerized tubulin embedded in the bulk of microtubules. In agreement with this model, binding of taxol to the tubulin-colchicine complex in the dimeric form could be measured from the increase in the GTPase activity of the tubulin-colchicine complex accompanying taxol binding.  相似文献   

4.
About 10--20% of the total protein in the outer fiber fraction was solubilized by sonication in a solution containing 5 mM MES, 0.5 mM MgSO4, 1.0 mM EGTA, 1.0 mM GTP, and 0 or 50 mM KC1 at pH 6.7. The sonicated extract was shown by analytical centrifugation to consist largely of a 6 S component (tubulin dimer), having a molecular weight of 103,000, as determined by gel filtration, and possessing a colchicine-binding activity of 0.8 mole per tubulin dimer. The tubulin fraction failed to polymerize into microtubules by itself. Addition of a small amount of the ciliary outer fiber fragments or reconstituted short brain microtubules, however, induced polymerization, as demonstrated by viscosity of flow birefringence changes as well as light or electron microscopic observations. The growth of heterogeneous microtubules upon mixing outer fiber tubulin with DEAE-dextran-decorated brain microtubules was observed by electron microscopy. Microtubules were reconstituted from outer fiber tubulin without addition of any nuclei fraction when a concentrated tubulin fraction was warmed at 35degree. A few doublet-like microtubules or pairs of parallel singlet microtubules that were closely aligned longitudinally could be observed among many singlet microtubules. Unlike other fiber microtubules, the reconstituted polymers were depolymerized by exposure to Ca2+ ions, high or low ionic strength, colchicine, low temperature or SH reagents. No microtubules were assembled under these conditions.  相似文献   

5.
The process of microtubule elongation is thought to consist of two stages—formation of a tubulin sheet structure and its closure into a tube. However, real-time observation of this process has been difficult. Here, by utilizing phospho-tau binding protein Gas7 (growth-arrest-specific protein 7), we visualized the polymer transformation process by dark-field microscopy. Upon elongation, thin and flexible structures, often similar to a curved hook, appeared at the end of microtubules. Electron microscopic observations supported the idea that these flexible structures are tubulin sheets. They maintained their length until they gradually became thick and rigid beginning in the central portion, resulting in straight microtubules. In the absence of Gas7, the sheet-like structure was rarely observed; moreover, when observed, it was fragile and engaged in typical dynamic instability. With Gas7, no catastrophe was observed. These results suggest that Gas7 enhances microtubule polymerization by stabilizing sheet intermediates and is a useful tool for analyzing microtubule transformation.  相似文献   

6.
HPC-1/syntaxin 1A (HPC-1), which has been identified as a presynaptic membrane protein, is believed to regulate the synaptic exocytosis as a component of t-SNARE. The distribution of the protein, however, is not restricted to the synaptic terminal, but it has been found to locate on the axonal membrane. When the expression of HPC-1 was suppressed, neurite sprouting was enhanced in cultured neurons. These findings suggest that HPC-1 possesses other functions than the regulation of the membrane fusion in neurotransmitter release. Rather it may also participate in the morphogenesis of neurons through membrane fusion, and possibly through cytoskeleton. HPC-1 has a sequence resemble to the assembly promoting sequence of heat stable MAPs in residues 89-106, suggesting that it can bind tubulin and be involved in microtubule system. Thus, both the tubulin binding property and the effect on microtubule assembly of HPC-1 were examined in vitro using a mutated HPC-1 lacking the C-terminal transmembrane region (HPC-deltaTM), which was overexpressed in E. coli. Affinity column chromatography showed that tubulin was found to bind HPC-1 directly. Synthetic peptide which corresponds to the residues 89-106 competitively inhibited the tubulin-HPC-1 binding, indicating that the sequence is responsible for the tubulin binding. In addition, chemical cross-linking with EDC revealed that one HPC-1 molecule can bind per one monomeric tubulin molecule. Light scattering measurement of microtubule polymerization showed that HPC-1 decreased the rate of the pure tubulin polymerization. Direct observation of single microtubules under dark-field microscopy showed that the growth rate of microtubule decreased by HPC-1. After shortening stopped, microtubules often spent attenuate phases, in which neither growing nor shortening was detected. When another mutant HPC-1 which is composed of residues 1-97 and lacks tubulin binding activity was used, however, the suppression of microtubule polymerization was not observed. These results suggest that HPC-1 is a potent regulator of microtubule polymerization, which directly bind tubulin subunit and decrease the polymerization activity.  相似文献   

7.
The initial rate and final extent of polymerization of both bovine brain tubulin and sea urchin egg tubulin were enhanced in the presence of 2H2O. The yields were increased in association with the elevation of the 2H2O concentration. 2H2O also reduced the critical concentration for polymerization of brain tubulin. Thermodynamic analysis was attempted using the temperature dependence of the critical concentration for polymerization in the presence of 2H2O. We obtained linear van 't Hoff plots and calculated thermodynamic parameters which were positive and were increased with the elevation of the 2H2O concentration. The enhancement of the polymerization of tubulin by 2H2O could, therefore, be the result of the strengthening of intra- and/or inter-molecular hydrophobic interactions of the tubulin molecules. We believe that the increase in length and number of microtubules of the mitotic spindles in the dividing cells of the eukaryotes with 2H2O may be caused by the direct involvement of 2H2O in the polymerization of tubulin.  相似文献   

8.
Microtubule-nucleation sites on nuclei of higher plant cells   总被引:9,自引:0,他引:9  
K. Mizuno 《Protoplasma》1993,173(1-2):77-85
Summary The nucleation and the elongation of microtubules from isolated nuclei of higher plant cells were investigated. Isolated intact nuclei failed to nucleate microtubules at their surface when they were incubated with purified tubulin from plant or animal sources. However, frozen and thawed nuclei or nuclear particles obtained by gentle nuclei homogenization nucleated microtubules and nucleated microtubules elongated radially from the surface of nuclei or from the nuclear particles. Microtubules radiating from the nuclear particles were very much shorter than those radiating from frozen and thawed nuclei. The washing of the nuclear particles diminished the ability of the particles to nucleate microtubules. The ability of the washed nuclear particles to nucleate microtubules was restored by the addition of the soluble fraction of a nuclear homogenate. The complexes of radiating microtubules could easily be observed under a phasecontrast microscope. Electron microscopy demonstrated that microtubules in the complexes formed bundles. The staining with a monoclonal antibody specific for plant tubulin of the complexes of radiating microtubules, prepared by successive polymerization of animal tubulin and plant tubulin, revealed that microtubules in the complex incorporated tubulin at their proximal ends. This result indicates that the mode of incorporation of tubulin onto frozen and thawed nuclei or onto the nuclear particles is different from that in pericentriolar bodies in animal cells. Mg2+ seems to participate in the regulatory mechanism that determines the length of microtubules on the complexes.Abbreviations MTOC microtubule-organizing center - MES 2-(N-morpholino) ethane-sulfonic acid - PIPES piperazine-N,N-bis(2-ethanesulfonic acid) - PMSF phenylmethyl sulfonyl fluoride - EDTA ethylenediaminetetraacetic acid - EGTA ethylene glycol bis (-aminoethylether)-N,N,N,N-tetraacetic acid - GTP guanosine triphosphate - NP-40 Nonidet P-40 - DMSO dimethylsulfoxide - EPC ethyl N-phenylcarbamate - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - DAPI 4,6-diamidiho-2-phenylindole  相似文献   

9.
M A Jordan  L Wilson 《Biochemistry》1990,29(11):2730-2739
We have investigated the effects of vinblastine at micromolar concentrations and below on the dynamics of tubulin exchange at the ends of microtubule-associated-protein-rich bovine brain microtubules. The predominant behavior of these microtubules at polymer-mass steady state under the conditions examined was tubulin flux, i.e., net addition of tubulin at one end of each microtubule, operationally defined as the assembly or A end, and balanced net loss at the opposite (disassembly or D) end. No dynamic instability behavior could be detected by video-enhanced dark-field microscopy. Addition of vinblastine to the microtubules at polymer-mass steady state resulted in an initial concentration-dependent depolymerization predominantly at the A ends, until a new steady-state plateau at an elevated critical concentration was established. Microtubules ultimately attained the same stable polymer-mass plateau when vinblastine was added prior to initiation of polymerization as when the drug was added to already polymerized microtubules. Vinblastine inhibited tubulin exchange at the ends of the microtubules at polymer-mass steady state, as determined by using microtubules differentially radiolabeled at their opposite ends. Inhibition of tubulin exchange occurred at concentrations of vinblastine that had very little effect on polymer mass. Both the initial burst of incorporation that occurs in control microtubule suspensions following a pulse of labeled GTP and the relatively slower linear incorporation of label that follows the initial burst were inhibited in a concentration-dependent manner by vinblastine. Both processes were inhibited to the same extent at all vinblastine concentrations examined. If the initial burst of label incorporation represents a low degree of dynamic instability (very short excursions of growth and shortening of the microtubules at one or both ends), then vinblastine inhibits both dynamic instability and flux to similar extents. The ability of vinblastine to inhibit tubulin exchange at microtubule ends in the micromolar concentration range appeared to be mediated by the reversible binding of vinblastine to tubulin binding sites exposed at the polymer ends. Determination by dilution analysis of the effects of vinblastine on the apparent dissociation rate constants for tubulin loss at opposite microtubule ends indicated that a principal effect of vinblastine is to decrease the dissociation rate constant at A ends (i.e., it produces a kinetic cap at A ends), whereas it has no effect on the D-end dissociation rate constant.  相似文献   

10.
We have reviewed recent progress in the dynamic features of microtubules in vitro as visualized by dark-field light microscopy using high intensity illumination. Observations of individual microtubules in real-time have made it possible to analyze the unique characteristics of microtubules exactly. The following three topics have been discussed: (1) treadmilling, i.e., the simultaneous assembly of tubulin at one end and disassembly at the other end on a single microtubule at a steady state. (2) Dynamic instability, i.e., the very unusual phenomenon in which two populations of microtubules coexist: those in one population elongating while those in the other shortening in the absence of MAPs. Both ends of the microtubules exist either in the growing or the shortening phase, and alternate between the two phases in a stochastic manner. (3) Morphogenesis of liposomes by microtubule growth. Tubulin is encapsulated into model membrane vesicles, liposomes. Polymerization of the encapsulated tubulin causes a change in shape of the spherical liposomes to form bipolar or multipolar vesicles, suggesting that microtubules have an active function in the morphogenesis of membranous organelles and cells.  相似文献   

11.
Role of tubulin-associated proteins in microtubule nucleation and elongation   总被引:29,自引:0,他引:29  
Previous experiments have shown that a fraction of microtubule-associated proteins is essential for the self-assembly of microtubules in vitro. When tubulin was titrated with increasing concentrations of these non-tubulin accessory factors, both the rate and extent of polymerization increased in a sigmoidal as opposed to a stoichiometric fashion. The non-tubulin proteins promoted the nucleation of microtubules as determined from the analysis of the kinetics of tubulin selfassembly and the examination of the microtubule length distribution following polymerization. The effect of the non-tubulin factors on microtubule elongation was determined by kinetic experiments in which purified tubulin subunits were added to microtubule seeds and the initial rate of polymerization was measured under conditions where spontaneous self-assembly was below detectable levels. In addition, microtubule growth was also observed when isolated flagellar axonemes were incubated with purified tubulin subunits indicating that the non-tubulin factors were not an absolute requirement for elongation. Analysis of the data in terms of the condensation mechanism of microtubule assembly indicated that the non-tubulin proteins stimulated the growth of microtubules not by increasing the rate of polymerization but by decreasing the rate of depolyerization. The mechanism by which these accessory factors promote tubulin assembly may be summarized as follows: under the conditions employed, they are required for tubulin initiation but not for elongation; the factors affect the extent and net rate at which polymer is formed by binding to the polymer, thereby stabilizing the formed microtubules and consequently shifting the equilibrium to favor assembly.  相似文献   

12.
Mao T  Jin L  Li H  Liu B  Yuan M 《Plant physiology》2005,138(2):654-662
The organization and dynamics of microtubules are regulated by microtubule-associated proteins, or MAPs. In Arabidopsis (Arabidopsis thaliana), nine genes encode proteins of the evolutionarily conserved MAP65 family. We proposed that different MAP65s might have distinct roles in the interaction with microtubules. In this study, two AtMAP65 proteins, AtMAP65-1 and AtMAP65-6, were chosen to test this hypothesis in vitro. Although both fusion proteins were able to cosediment with microtubules in vitro, different properties on tubulin polymerization and microtubule bundling were observed. AtMAP65-1 was able to promote tubulin polymerization, enhance microtubule nucleation, and decrease the critical concentration for tubulin polymerization. It also induced the formation of large microtubule bundles by forming cross-bridges between microtubules evenly along the whole length of microtubules. In the presence of AtMAP65-1, microtubule bundles were more resistant to cold and dilution treatments. AtMAP65-6, however, demonstrated no activity in promoting tubulin polymerization and stabilizing preformed microtubules. AtMAP65-6 induced microtubules to form a mesh-like network with individual microtubules. Cross-bridge-like interactions were only found at regional sites between microtubules. The microtubule network induced by AtMAP65-6 was more resistant to high concentration of NaCl than the bundles induced by AtMAP65-1. Purified monospecific anti-AtMAP65-6 antibodies revealed that AtMAP65-6 was associated with mitochondria in Arabidopsis cells. It was concluded that these two MAP65 proteins were targeted to distinct sites, thus performing distinct functions in Arabidopsis cells.  相似文献   

13.
A heat-stable microtubule-associated protein (MAP) with molecular weight of 190,000, termed 190-kD MAP, was purified from bovine adrenal cortex. This MAP showed the same level of ability to promote tubulin polymerization as did MAP2 and tau from mammalian brains. Relatively high amounts of 190-kD MAP could bind to microtubules reconstituted in the presence of taxol. At maximum 1 mol of 190-kD MAP could bind to 2.3 mol of tubulin. 190-kD MAP was phosphorylated by a cAMP-dependent protein kinase prepared from sea urchin spermatozoa and by protein kinase(s) present in the microtubule protein fraction prepared from mammalian brains. The maximal numbers of incorporated phosphate were approximately 0.2 and approximately 0.4 mol per mole of 190-kD MAP, respectively. These values were lower than that of MAP2, which could be heavily phosphorylated by the endogenous protein kinase(s) up to 5 mol per mole of MAP2 under the same assay condition. 190-kD MAP had no effects on the low-shear viscosity of actin and did not induce an increase in turbidity of the actin solution. It was also revealed that 190-kD MAP does not cosediment with actin filaments. These data clearly show that, distinct from MAP2 and tau, this MAP does not interact with actin. Electron microscopic observation of the rotary-shadowed images of 190-kD MAP showed the molecular shape to be a long, thin, flexible rod with a contour length of approximately 100 nm. Quick-freeze, deep-etch replicas of the microtubules reconstituted from 190-kD MAP and brain tubulin revealed many cross-bridges connecting microtubules with each other.  相似文献   

14.
Using turbidometry, electron microscopy and immunofluorescent microscopy experiments we studied the effect of captan, a widely used pesticide on mammalian microtubules and microfilaments. Turbidometry at 350 nm showed a dose-dependent inhibition of tubulin assembly incubated with captan. The pesticide, given at equimolar concentration with tubulin (30 microM), caused the total inhibition of microtubule formation, while at lower concentrations (5-20 microM) the inhibition of tubulin polymerization was less extensive. At the same concentration range (5-30 microM), captan also promoted the disassembly of performed microtubules. The results of the in vitro effects of captan with microtubules were confirmed in parallel by electron microscopic studies. In vivo, captan caused also depolymerization of microtubules in cultured mouse fibroblasts as shown by indirect immunofluorescent staining of tubulin. The extent of microtubules disassembly was concentration- and time-dependent. While incubation of the cells with 10 microM captan for 3 h disturbs totally the microtubular structures, incubation with 5 microM captan needs 12 h for the same effect. Recovery of microtubules was observed, when preincubated cells were extensively washed. No interaction of this drug with equimolar concentration of G- or F-actin could be observed in vitro, as shown by polymerization experiments. In line with this, the fluorescent actin pattern in mouse fibroblasts incubated with 10 mM captan for up to 12 h did not seem to be altered. From these results it is concluded that captan interacts in equimolar concentrations with tubulin affecting the assembly and disassembly of microtubules in vitro and in cultures of mammalian cells.  相似文献   

15.
Gupta K  Bishop J  Peck A  Brown J  Wilson L  Panda D 《Biochemistry》2004,43(21):6645-6655
The antifungal agent benomyl [methyl-1-(butylcarbamoyl)-2-benzimidazolecarbamate] is used throughout the world against a wide range of agricultural fungal diseases. In this paper, we investigated the interaction of benomyl with mammalian brain tubulin and microtubules. Using the hydrophobic fluorescent probe 1-anilinonaphthalene-8-sulfonic acid, benomyl was found to bind to brain tubulin with a dissociation constant of 11.9 +/- 1.2 microM. Further, benomyl bound to at a novel site, distinct from the well-characterized colchicine and vinblastine binding sites. Benomyl altered the far-UV circular dichroism spectrum of tubulin and reduced the accessibility of its cysteine residues to modification by 5,5'-dithiobis-2-nitrobenzoic acid, indicating that benomyl binding to tubulin induces a conformational change in the tubulin. Benomyl inhibited the polymerization of brain tubulin into microtubules, with 50% inhibition occurring at a concentration of 70-75 microM. Furthermore, it strongly suppressed the dynamic instability behavior of individual brain microtubules in vitro as determined by video microscopy. It reduced the growing and shortening rates of the microtubules but did not alter the catastrophe or rescue frequencies. The unexpected potency of benomyl against mammalian microtubule polymerization and dynamics prompted us to investigate the effects of benomyl on HeLa cell proliferation and mitosis. Benomyl inhibited proliferation of the cells with an IC(50) of 5 microM, and it blocked mitotic spindle function by perturbing microtubule and chromosome organization. The greater than expected actions of benomyl on mammalian microtubules and mitosis together with its relatively low toxicity suggest that it might be useful as an adjuvant in cancer chemotherapy.  相似文献   

16.
By use of dark-field light microscopy, secretory granules isolated from the anglerfish endocrine pancreas were observed to attach to and release from microtubules assembled in vitro from brain homogenates. Secretory granules only bound to microtubules assembled in the presence of microtubule-associated proteins (MAPs) and not to microtubules assembled from purified tubulin. The addition of a MAP fraction to purified tubulin restored secretory granule binding. The secretory granules were released from MAP-containing microtubules by the addition of Mg-ATP but not by other nucleotides. The number of secretory granules bound to MAP-containing microtubules was increased in the presence of cyclic AMP. In addition to the associations of secretory granules with microtubules, MAP-containing microtubules also associated with each other. These laterally associated microtubules were dispersed by the addition of Mg-ATP. Electron micrographs confirmed that the associations between MAP-containing microtubules and secretory granules as well as the associations of microtubules with one another were mediated by the high molecular weight MAPs known to project from the surface of in-vitro-assembled microtubules.  相似文献   

17.
A nondestructive method to determine viscoelastic properties of gels and fluids involves an oscillating glass fiber serving as a sensor for the viscosity of the surrounding fluid. Extremely small displacements (typically 1-100 nm) are caused by the glass rod oscillating at its resonance frequency. These displacements are analyzed using a phase-sensitive acoustic microscope. Alterations of the elastic modulus of a fluid or gel change the propagation speed of a longitudinal acoustic wave. The system allows to study quantities as small as 10 microliters with temporal resolution >1 Hz. For 2-100 microM f-actin gels a final viscosity of 1.3-9.4 mPa s and a final elastic modulus of 2.229-2.254 GPa (corresponding to 1493-1501 m/s sound velocity) have been determined. For 10- to 100-microM microtubule gels (native, without stabilization by taxol), a final viscosity of 1.5-124 mPa s and a final elastic modulus of 2.288-2. 547 GPa (approximately 1513-1596 m/s) have been determined. During polymerization the sound velocity in low-concentration actin solutions increased up to +1.3 m/s (approximately 1.69 kPa) and decreased up to -7 m/s (approximately 49 kPa) at high actin concentrations. On polymerization of tubulin a concentration-dependent decrease of sound velocity was observed, too (+48 to -12 m/s approximately 2.3-0.1 MPa, for 10- to 100-microM tubulin). This decrease was interpreted by a nematic phase transition of the actin filaments and microtubules with increasing concentration. 2 mM ATP (when compared to 0.2 mM ATP) increased polymerization rate, final viscosity and elastic modulus of f-actin (17 microM). The actin-binding glycolytic enzyme hexokinase also accelerated the polymerization rate and final viscosity but elastic modulus (2.26 GPa) was less than for f-actin polymerized in presence of 0.2 mM ATP (2.28 GPa).  相似文献   

18.
The role of GTP hydrolysis in microtubule dynamics has been reinvestigated using an analogue of GTP, guanylyl-(alpha, beta)-methylene-diphosphonate (GMPCPP). This analogue binds to the tubulin exchangeable nucleotide binding site (E-site) with an affinity four to eightfold lower than GTP and promotes the polymerization of normal microtubules. The polymerization rate of microtubules with GMPCPP-tubulin is very similar to that of GTP-tubulin. However, in contrast to microtubules polymerized with GTP, GMPCPP-microtubules do not depolymerize rapidly after isothermal dilution. The depolymerization rate of GMPCPP-microtubules is 0.1 s-1 compared with 500 s-1 for GDP-microtubules. GMPCPP also completely suppresses dynamic instability. Contrary to previous work, we find that the beta--gamma bond of GMPCPP is hydrolyzed extremely slowly after incorporation into the microtubule lattice, with a rate constant of 4 x 10(-7) s-1. Because GMPCPP hydrolysis is negligible over the course of a polymerization experiment, it can be used to test the role of hydrolysis in microtubule dynamics. Our results provide strong new evidence for the idea that GTP hydrolysis by tubulin is not required for normal polymerization but is essential for depolymerization and thus for dynamic instability. Because GMPCPP strongly promotes spontaneous nucleation of microtubules, we propose that GTP hydrolysis by tubulin also plays the important biological role of inhibiting spontaneous microtubule nucleation.  相似文献   

19.
The signal for retention in the endoplasmic reticulum of the E3/19K protein of adenovirus type 2 is located within the carboxyl-terminal cytoplasmic extension. A synthetic peptide corresponding to this sequence showed affinity for beta-tubulin, could promote tubulin polymerization in vitro, and bound to taxol-polymerized microtubules. When compared with the microtubule binding sequences from two microtubule-associated proteins (MAPs; MAP2 and tau), we found similarities suggesting that the cytoplasmic tail might bind to tubulin/microtubules in a MAPs-like fashion. A synthetic peptide corresponding to the cytoplasmic tail of an E3/19K deletion mutant not retained in the endoplasmic reticulum was also tested. It had the same net charge but did not promote tubulin polymerization in vitro nor did it show measurable affinity for tubulin or microtubules. This indicates that binding to microtubules is important for retention of the E3/19K protein in the endoplasmic reticulum.  相似文献   

20.
Three tubulin isotypes from the parasitic nematode Haemonchus contortus were individually expressed in Escherichia coli, purified, and induced to polymerize into microtubules in the absence of microtubule-associated proteins. The effect of different conditions on the rate of polymerization of pure tubulin was assessed. This is the first time that recombinant alpha-tubulin has been shown to be capable of polymerization into microtubule-like structures when incubated with recombinant beta-tubulin. In addition, the present study has shown that: (1) microtubule-associated proteins are not required for tubulin polymerization; and (2) pure beta-tubulin isotype, beta12-16, alone was capable of forming microtubule-like structures in the absence of alpha-tubulin. Polymerization of the recombinant invertebrate tubulin, as measured by a spectrophotometric assay, was found to be enhanced by a concentration of tubulin >0.25 mg/mL; temperature > or =20 degrees C; 2 mM GTP; glycerol; EGTA; and Mg(2+). Polymerization was inhibited by GTP (>2 mM) and albendazole. Calcium ions and a pH range of 6 to 8.5 had no measurable effect on polymerization. Individual isotypes of tubulin polymerized to approximately the same extent as an alpha-/beta-tubulin mixture. Samples of tubulin assembled under the above conditions for 60 min were also examined under a transmission electron microscope. Although the spectrophotometric assay indicated polymerization, it did not predict the structure of the polymer. In many cases tubulin sheets, folded sheets, and rings were observed in addition to, or instead of, microtubule-like structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号