首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The effect of exogenous ABA on acquisition of desiccation tolerance has been well documented for the embryos of several species. including maize ( Zea mays L.). It has also been suggested that endogenous ABA plays a role in regulating the same phenomena. To test this hypothesis, endogenous ABA was quantified by radioimmunoassay. Our results show that: (1) during embryogenesis in maize, endogenous ABA increase-concomitantly with the acquisition of desiccation tolerance: (2) ABA deficient embryos of the vp 5 mutant are desiccation intolerant, but tolerance can he induced by exogenous ABA: and (3) desiccation tolerance is acquired if desiccation sensitive embryos undergo a slow drying treatment, during which ABA increases. However, when embryos were preincubated in fluridone to prevent ABA accumulation during slow drying, desiccation tolerance was induced in spite of the low level of endogenous ABA in the embryo. Our results cast doubts on an exclusive role of ABA in the acquisition of desiccation tolerance in maize embryo.  相似文献   

2.
3.
4.
5.
6.
7.
It is known that salt stress and exogenously applied abscisic acid (ABA) can enhance the polyamine content in plants and that salt stress itself can lead to an increase in endogenous ABA production. In the present study, the relationships between salt-induced ABA and polyamine accumulation were inves- tigated using ABA-deficient mutant (vp5/vp5) maize (Zea mays L.) seedlings and ABA and polyamine biosynthesis inhibitors. The results show that reduced endogenous ABA levels, as a result of either the mutation or by using a chemical inhibitor (sodium tungstate), also reduced the accumulation of polyamines in salt-stressed leaves of maize seedlings. The polyamine synthesis inhibitors D-arginine and α- difluoromethylornithine also reduced the polyamine content of the leaves of maize seedling under salt stress. Both ABA and polyamine enhanced the dry weight accumulation of salt-stressed seedlings and also increased the activities of the two dominant tonoplast membrane enzymes, H^+-ATPase and H^+-PPase, when plants were under salt stress. The results suggest that salt stress induces an increase in endogenous ABA levels, which then enhances polyamine synthesis. Such responses may increase a plant's tolerance to salt.  相似文献   

8.
Maize (Zes mays L.) embryos, isolated from the developing seed and incubated in dilute buffer, show reduced triacylglycerol (TAG) synthesis, and accumulation stops after 24 h. Synthesis and accumulation can be maintained at high levels if the incubation medium contains abscisic acid (ABA) and/or a high osmotic concentration. Radiolabeled free fatty acids accumulate at higher levels in embryos that contain less TAG, and acetyl coenzyme A carboxylase activity remains essentially unchanged under all of the conditions tested. In contrast, the activities of the acyltransferases required for TAG synthesis remain high only in embryos incubated with ABA and/or a high osmotic concentration. Dose-response curves showed that 4 microM of ABA or mannitol at -1.0 MPa elicits a full response; both values are within the range considered to be physiological. The TAG synthesis capacity and discylglycerol acyltransferase activity lost by pretreatment of the embryos can be restored by re-exposure to ABA or high osmoticum. Germination is not involved because isolated scutellum halves showed the same changes in enzyme activity found in the whole embryo but did not germinate. Our results provide direct evidence for the regulation of TAG-synthesizing activities in maize embryos by ABA and the osmotic potential of the environment.  相似文献   

9.
Hu X  Zhang A  Zhang J  Jiang M 《Plant & cell physiology》2006,47(11):1484-1495
The histochemical and cytochemical localization of water stress-induced H(2)O(2) production in the leaves of ABA-deficient vp5 mutant and wild-type maize (Zea mays L.) plants were examined, using 3,3-diaminobenzidine and CeCl(3) staining, respectively, and the roles of endogenous ABA in the production of H(2)O(2) induced by water stress were assessed. Water stress induced by polyethylene glycol resulted in the accumulation of H(2)O(2) in mesophyll cells, bundle-sheath cells and vascular bundles of wild-type maize leaves, and the accumulation was substantially blocked in the mutant maize leaves exposed to water stress. Pre-treatments with several apoplastic H(2)O(2) manipulators abolished the majority of H(2)O(2) accumulation induced by water stress in the wild-type leaves. The subcellular localization of H(2)O(2) production was demonstrated in the cell walls, xylem vessels, chloroplasts, mitochondria and peroxisomes in the leaves of wild-type maize plants exposed to water stress, and the accumulation of H(2)O(2) induced by water stress in the cell walls and xylem vessels, but not in the chloroplasts, mitochondria and peroxisomes, was arrested in the leaves of the ABA mutant or the ABA biosynthesis inhibitor (tungstate)-pre-treated maize plants. Pre-treatments with the apoplastic H(2)O(2) manipulators also blocked the apoplastic but not the intracellular H(2)O(2) accumulation induced by water stress in the leaves of wild-type plants. These data indicate that under water stress, the apoplast is the major source of H(2)O(2) production and ABA is a key inducer of apoplastic H(2)O(2) production. These data also suggest that H(2)O(2) generated in the apoplast could not diffuse freely into subcellular compartments.  相似文献   

10.
11.
12.
13.
14.
Rivin CJ  Grudt T 《Plant physiology》1991,95(2):358-365
The relationship of abscisic acid (ABA) inhibition of precocious germination and ABA-induced storage protein accumulation was examined over the course of embryogenesis in wild-type and viviparous mutants of maize (Zea mays L.). We show that a high level of embryo ABA and the product of the Viviparous-1 gene are both required in early maturation phase for germination suppression and the accumulation of storage globulins encoded by the gene Glb1. Suppressing precocious germination with a high osmoticum is not sufficient to initiate Glb1 protein synthesis, although continued accumulation is contingent upon this inhibition; germination of immature or mature embryos leads to a decline in synthesis and the degradation of stored globulins. Late in embryogenesis, fragments of Glb1 protein accumulate, coinciding with the loss of ABA sensitivity. These results suggest that ABA influences storage globulin accumulation by initiating synthesis, suppressing degradation, and inhibiting precocious germination.  相似文献   

15.
16.
The role of ABA in brassinosteroid (BR)-induced stress tolerance and the relationship between BR, nitric oxide (NO) and ABA under water stress induced by polyethylene glycol (PEG) were investigated in leaves of maize (Zea mays) plants. Water stress led to oxidative damage. Pre-treatment with the BR biosynthetic inhibitor brassinazole (Brz) aggravated the oxidative damage induced by PEG treatment, which was alleviated by the application of BR or ABA. Pre-treatment with the ABA biosynthetic inhibitor fluridone also aggravated the oxidative damage induced by PEG treatment; however, this was barely alleviated by the application of BR. BR treatment increased the content of ABA and up-regulated the expression of the ABA biosynthetic gene vp14 in maize leaves, which was blocked by pre-treatments with the NO scavenger cPTIO (2,4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) and the nitric oxide synthase inhibitor l-NAME (N(G)-nitro-l-arginine methyl ester. Moreover, BR treatment induced increases in the generation of NO in mesophyll cells of maize leaves, and treatment with the NO donor sodium nitroprusside (SNP) up-regulated the content of ABA and the expression of vp14 in maize leaves. Our results suggest that BR-induced NO production and NO-activated ABA biosynthesis are important mechanisms for BR-enhanced water stress tolerance in leaves of maize plants.  相似文献   

17.
18.
19.
20.
Abscisic acid (ABA), auxin and nitrate are important signaling molecules that affect plant growth responses to the environment. The synthesis or metabolism of these compounds depends on the molybdenum cofactor (MoCo). We show that maize (Zea mays) viviparous10 (vp10) mutants have strong precocious germination and seedling lethal phenotypes that cannot be rescued with tissue culture. We devised a novel PCR-based method to clone a transposon-tagged allele of vp10, and show that Vp10 encodes the ortholog of Cnx1, which catalyzes the final common step of MoCo synthesis. The seedling phenotype of vp10 mutants is consistent with disruptions in ABA and auxin biosynthesis, as well as a disruption in nitrate metabolism. Levels of ABA and auxin are reduced in vp10 mutants, and vp10 seedlings lack MoCo-dependent enzyme activities that are repairable with exogenous molybdenum. vp10 and an Arabidopsis cnx1 mutant, chlorate6 (chl6), have similar defects in aldehyde oxidase (AO) enzyme activity, which is required for ABA synthesis. Surprisingly, chl6 mutants do not show defects in abiotic stress responses. These observations confirm an orthologous function for Cnx1 and Vp10, as well as defining a characteristic viviparous phenotype to identify other maize cnx mutants. Finally, the vp10 mutant phenotype suggests that cnx mutants can have auxin- as well as ABA-biosynthesis defects, while the chl6 mutant phenotype suggests that low levels of AO activity are sufficient for normal abiotic stress responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号