首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We isolated and sequenced Ha hsp 17.9, a DNA complementary (cDNA) of dry-seed stored mRNA that encodes a low-molecular-weight heat-shock protein (LMW HSP). Sequence analysis identified Ha hsp17.9, and the previously reported Ha hsp17.6, as cDNAs encoding proteins (HSP17.6 and HSP17.9) which belong to different families of cytoplasmic LMW HSPs. Using specific antibodies we observed differential expression of both proteins during zygotic embryogenesis under controlled environment, and a remarkable persistence of these LMW HSPs during germination. Immuno-blot analysis of HSP17.9 proteins in two-dimensional gels revealed that the polypeptides expressed in embryos were indistinguishable from LMW HSPs expressed in vegetative tissues in response to water deficit; but they appeared different from homologeous proteins expressed in response to thermal-stress. Tissue-print immunolocalization experiments showed that HSP17.9 and HSP17.6 were homogeneously distributed in every tissue of desiccation-tolerant dry seeds and young seedlings under non-stress conditions. These results demonstrate developmental regulation of specific, cytoplasmic, plant LMW HSPs, suggesting also their involvement in water-stress tolerance.  相似文献   

2.
3.
Diverse higher plant species synthesize low molecular weight (LMW) heat shock proteins (HSPs) which localize to chloroplasts. These proteins are homologous to LMW HSPs found in the cytoplasm of all eukaryotes, a class of HSPs whose molecular mode of action is not understood. To obtain basic information concerning the role of chloroplast HSPs, we examined the accumulation, stability, tissue specificity, and intra-chloroplast localization of HSP21, the major LMW chloroplast HSP in pea. Intact pea plants were subjected to heat stress conditions which would be encountered in the natural environment and HSP21 mRNA and protein levels were measured in leaves and roots. HSP21 was not detected in leaves or roots before stress, but the mature, 21-kD protein accumulated in direct proportion to temperature and HSP21 mRNA levels in both tissues. All of the HSP21 in leaves was localized to chloroplasts; there was no evidence for its transport into other organelles. In chloroplast fractionation experiments, greater than 80% of HSP21 was recovered in the soluble chloroplast protein fraction. The half-life of HSP21 at control temperatures was 52 +/- 12 h, suggesting the protein's function is critical during recovery as well as during stress. We hypothesize that HSP21 functions in a catalytic fashion in both photosynthetic and nonphotosynthetic plastids.  相似文献   

4.
Three related gene families of low-molecular-weight (LMW) heat shock proteins (HSPs) have been characterized in plants. We describe a fourth LMW HSP family, represented by PsHSP22.7 from Pisum sativum and GmHSP22.0 from Glycine max, and demonstrate that this family of proteins is endomembrane localized. PsHSP22.7 and GmHSP22.0 are 76.7% identical at the amino acid level. Both proteins have amino-terminal signal peptides and carboxyl-terminal sequences characteristic of endoplasmic reticulum (ER) retention signals. The two proteins closely resemble class I cytoplasmic LMW HSPs, suggesting that they evolved from the cytoplasmic proteins through the addition of the signal peptide and ER retention motif. The endomembrane localization of these proteins was confirmed by cell fractionation. The polypeptide product of PsHSP22.7 mRNA was processed to a smaller-M(r) form by canine pancreatic microsomes; in vivo, GmHSP22.0 polysomal mRNA was found to be predominantly membrane bound. In vitro-processed PsHSP22.7 corresponded in mass and pI to one of two proteins detected in ER fractions from heat-stressed plants by using anti-PsHSP22.7 antibodies. Like other LMW HSPs, PsHSP22.7 was observed in higher-molecular-weight structures with apparent masses of between 80 and 240 kDa. The results reported here indicate that members of this new class of LMW HSPs are most likely resident ER proteins and may be similar in function to related LMW HSPs in the cytoplasm. Along with the HSP90 and HSP70 classes of HSPs, this is the third category of HSPs localized to the ER.  相似文献   

5.
Pea plants ( Pisum sativum L. cv. Feltham First) exposed to a heat stress of 37°C for 6 h accumulated two low molecular weight (LMW) heat shock proteins (HSPs) of molecular mass 22 kDa. The two LMW HSPs were associated with purified mitochondria. N‐terminal amino acid sequencing analysis indicates that the more basic of these proteins is a novel protein. The response of other cultivars of P. sativum to heat shock revealed that up to three 22‐kDa HSPs were expressed in a cultivar‐specific manner. Evidence presented suggests that the different 22‐kDa HSPs arise as a result of there being multiple 22‐kDa HSP genes. The expression of the most basic novel HSP was studied in the Feltham First cultivar using two dimensional SDS‐PAGE. Treatment of intact plants with chloramphenicol and cycloheximide prior to heat stress treatment indicated that the LMW HSPs were nuclear encoded and de novo synthesised. The response to heat shock was rapid with protein expression detected within 45 min and the protein remained in excess of 6 days following removal of the stress. The protein accumulated to very high levels with maximal expression being 2% of the total mitochondrial protein. The results are discussed in relation to the likely role of LMW HSPs in thermotolerance.  相似文献   

6.
Plants synthesize several families of low molecular weight (LMW) heat shock proteins (HSPs) in response to elevated temperatures. We have characterized two cDNAs, HSP18.1 and HSP17.9, that encode members of the class I family of LMW HSPs from pea (Pisum sativum). In addition, we investigated the expression of these HSPs at the mRNA and protein levels during heat stress and recovery. HSP18.1 and HSP17.9 are 82.1% identical at the amino acid level and are 80.8 to 92.9% identical to class I LMW HSPs of other angiosperms. Heat stress experiments were performed using intact seedlings subjected to a gradual temperature increase and held at a maximum temperature of 30 to 42 degrees Celsius for 4 hours. HSP18.1 and HSP17.9 mRNA levels peaked at the beginning of the maximum temperature period and declined rapidly after the stress period. Antiserum against a HSP18.1 fusion protein recognized both HSP18.1 and HSP17.9 but not members of other families of LMW HSPs. The accumulation of HSP18.1-immunodetected protein was proportional to the severity of the heat stress, and the protein had a half-life of 37.7 ± 8 hours. The long half-life of these proteins supports the hypothesis that they are involved in establishing thermotolerance.  相似文献   

7.
Seed weights at specific positions within inflorescences of field bean plants (Vicia faba L.) were varied by removal of flowers. The inflorescences of two regions (nodes 3+4 and nodes 5+6, counted from the bottom of the plant) were used for manipulations and investigations. The two proximal flowers of the manipulated inflorescence were removed in order to vary the development and seed weights of distal pods (see Fig. 1). Dry matter accumulation and IAA- and ABA-concentrations in seeds were investigated during the filling period. Treatment effects in both regions were similar during two seasons. The removal of proximal flowers prevented the usually observed drop of distal pods and favoured the accumulation of dry matter and IAA in seeds, whereas the variation of ABA-concentrations partly depended on interaction with season. Whether these effects contribute to a signal leading to the establishment of processes preceeding dry matter accumulation or are a consequence of such processes is questionable.  相似文献   

8.
9.
Molecular roles of sterols in plant development remain to be elucidated. To investigate sterol composition during embryogenesis, the occurrence of 25 steroid compounds in stages of developing seeds and pods of Pisum sativum was examined by GC-MS analysis. Immature seeds containing very young embryos exhibited the greatest concentrations of sterols. Regression models indicated that the natural log of seed or pod fr. wt was a consistent predictor of declining sterol content during embryonic development. Although total sterol levels were reduced in mature embryos, the composition of major sterols sitosterol and campesterol remained relatively constant in all 12 seed stages examined. In mature seeds, a significant decrease in isofucosterol was observed, as well as minor changes such as increases in cycloartenol branch sterols and campesterol derivatives. In comparison to seeds and pods, striking differences in composition were observed in sterol profiles of stems, shoots, leaves, flowers and flower buds, as well as cotyledons versus radicles. The highest levels of isofucosterol, a precursor to sitosterol, occurred in young seeds and flower buds, tissues that contain rapidly dividing cells and cells undergoing differentiation. Conversely, the highest levels of stigmasterol, a derivative of sitosterol, were found in fully-differentiated leaves while all seed stages exhibited low levels of stigmasterol. The observed differences in sterol content were correlated to mRNA expression data for sterol biosynthesis genes from Arabidopsis. These findings implicate the coordinated expression of sterol biosynthesis enzymes in gene regulatory networks underlying the embryonic development of flowering plants.  相似文献   

10.
Eukaryotes express several cytoplasmic HSP70 genes, and their encoded proteins participate in diverse cellular processes. Three cDNAs encoding highly expressed cytoplasmic HSP70 homologues from Pisum sativum were cloned and characterized. They were designated PsHSP71.2, PsHSC71.0, and PsHSP70b. These HSP70 genes have different expression profiles in leaves: PsHSP71.2 is observed only in response to heat stress, PsHSC71.0 is present constitutively, and PsHSP70b is weakly constitutively expressed, but induced strongly in response to heat stress. In addition to being heat induced, the PsHSP71.2 mRNA is also expressed in zygotic, but not maternal organs of developing pea seeds, while PsHSC71.0 and PsHSP70b mRNAs are present in maternal and zygotic organs throughout seed development. Immunoblot analysis of parallel protein samples detects a 70 kDa polypeptide in all samples, and a 72 kDa polypeptide that corresponds to the PsHSP71.2 gene product is observed in cotyledons beginning at mid-maturation and in axes beginning between late maturation and desiccation. This polypeptide is not detected in the seed coat. The 72 kDa polypeptide remains abundant in both cotyledons and axes through germination, but declines substantially between 48 and 72 h after the onset of imbibition. Differential control of HSP70 expression during heat stress, seed maturation, and germination is consistent with the hypothesis that there are functional distinctions between cytoplasmic HSP70s.  相似文献   

11.
Summary As in many plant species, Lomatium salmoniflorum (Umbelliferae) individuals produce many flowers, only a subset of which produce mature seeds that escape seed parasitism and enter the seed bank. The interrelationships between the timing and number of flowers produced, sex expression, seed set, and seed parasitism were studied for their direct and indirect effects on the numbers and masses of viable seeds produced by individual plants. In a sample population of 369 plants that produced 161 386 flowers, 76% of the plants produced some hermaphroditic flowers. The percentage of hermaphroditic flowers increased significantly with the total number of flowers produced by a plant. Seed set was 65–90% in plants producing >600 flowers, but was highly variable in plants producing fewer flowers. Hand-pollinated plants showed the same pattern of seed set, suggesting that variable seed set in small plants may result from insufficient resources for seed development. The majority of schizocarps was produced by only 12% of the plants. Parasites killed 24.5% of the seeds prior to dispersal. Another 14.5% of the seeds lacked endosperm. Hence, the initial 161 386 flowers, which included 25874 hermaphroditic flowers each capable of producing two seeds, produced 42 468 seeds of which an estimated 25906 entered the seed bank as undamaged seeds with fully developed endosperm. Path analysis indicated that the number of hermaphroditic flowers on a plant and the percentage of seeds attacked by seed parasites had the greatest direct effects on the number of viable seeds entering the seed bank. The date at which a plant began flowering and the percentage of flowers setting seed had smaller or only indirect effects on viable seed production. Mean seed mass for plants was not significantly related to any of the factors that affected seed number, but little of the variance in seed mass occurred among plants. Masses of intact seeds in the population ranged 9-fold in both 1987 and 1988. Thirty-five percent of the variance was among seeds within umbels, 46% was among umbels within plants, and only 19% was among plants. The large variation among umbels within plants resulted from a seasonal pattern in which seeds from umbels produced late in the spring had lower mean seed masses than seeds from umbels produced early in the spring. Overall, the results indicate that both direct and indirect interactions between number of flowers, the date of initiation of flowering, seed set, and seed parasitism affect the number of viable seeds entering the seed bank. These interactions strongly bias viable seed output to a small minority of plants that produce many seeds with a wide range of masses over the growing season.  相似文献   

12.
Plants synthesize four classes of small heat shock proteins (sHSPs); two classes are targeted to the plastid and endoplasmic reticulum, respectively, and two are found in the cytoplasm. In this paper, we describe a new role for the two classes of cytoplasmic HSPs in maturing embryos of developing seeds. The expression of each class of sHSPs was examined in pea seeds grown under non-stress conditions using Western and Northern analysis. Class I and class II cytoplasmic sHSPs are coordinately expressed in the embryo and accumulate to levels seen in moderately heat-stressed leaves. Their induction in cotyledons coincides with the mid-maturation phase of seed development, and induction in axes roughly coincides with abscission of the seed from the ovary wall. Both classes of sHSPs persisted in cotyledons for 4 days after the onset of imbibition, but disappeared from axes shortly after germination. Neither class of cytoplasmic sHSP is expressed in non-embryonic organs associated with the seed. The timing and organ specificity of sHSP expression is paralleled by the expression of the corresponding mRNAs. Neither the plastid nor the endoplasmic reticulum sHSPs were consistently expressed during seed development, but both could be induced by heat-stressing the developing seed. Developmental regulation of the cytoplasmic sHSPs is evidence that these proteins function not only in responding to heat-stress but also during seed development and/or germination.  相似文献   

13.
14.
Accumulation of mRNA and synthesis of low-molecular-weight heat shock proteins (LMW HSPs) was investigated in water-stressed sunflower, under experimental conditions resulting in little or no thermal stress. Using probes and antibodies derived from developmentally expressed LMW HSPs, it was shown that homologous mRNAs and proteins accumulate in the stem and root of water-stressed plants. This expression is quantitatively comparable with the response to heat shock: protein and mRNA accumulate to similar, high, levels and persist for comparable times during recovery from either environmental stress. However, it is shown that LMW HSPs with different molecular weights and isoelectric points are expressed in response to heat shock or water stress. Furthermore in situ localizations show a differential tissue-specificity for the water-stress- and heat-shock-induced LMW HSPs. Whereas the latter are localized mostly around the xylem vessels in the stem, the water-stress-induced proteins accumulate in the fascicular and interfascicular cambium. The possible functional implications for this specific expression are discussed.  相似文献   

15.
In field experiments carried out at Hyderabad, India with early and mediumduration cultivars of Cajanus cajan sown at the normal time, in July, removal of all flowers and young pods for up to 5 wk had little or no effect on final yield. The flowering period of the deflowered plants was extended and their senescence delayed. The plants compensated for the loss of earlier-formed flowers by setting pods from later-formed flowers; there was relatively little effect of the deflowering treatments on the number of seeds per pod or weight per seed. The plants were also able to compensate for the repeated removal of all flowers and young pods from alternate nodes by setting more pods at the other nodes.
The removal of flowers from pigeonpeas grown as a winter crop resulted in yield reductions roughly proportional to the length of the deflowering period, probably because maturation of these plants was delayed and occurred under increasingly unfavourable conditions as the weather became hotter.  相似文献   

16.
The effects of increased sink-source ratios, induced by elevating night temperatures, on remobilization of 14C-assimilates and N within field-grown soybeans (Glycine max [L.] Merr.) was investigated from preflowering to maturity. Raising the mean minimum night temperature for the entire growing season from 10 (check, uncontrolled) to 16°C increased seed growth without appreciable effect on final leaf area. Increasing this temperature to 24°C increased seed growth and reduced final leaf area. Leaves, stems, petioles, and pods acted as intermediate storage sites for 14C assimilates. Only plants with higher night temperatures remobilized some of the stored assimilates during the period of rapid seed growth. Even the seeds in the 24°C plants with the largest sink-source ratios did not utilize all the C-assimilates potentially available for remobilization. Nitrogen was readily remobilized from petioles, stems, and pods of all treatments as early as the beginning of seed development, but from the leaves only during late seed-filling. However, only plants with elevated night temperatures tended to remobilize all of the available N from vegetative tissues and pods. We concluded that a larger portion of stored assimilates may be remobilized to the seed if a strong seed sink can be sustained. It also appeared that with increasing sink-source ratios, N shortage might limit seed yield before a lack of C-assimilates would. A proposed model for soybean assimilate demand, distribution, partitioning, and remobilization is presented.  相似文献   

17.
Summary A low molecular weight heat shock protein which localizes to chloroplasts has been identified in several plant species. This protein belongs to a eukaryotic superfamily of small HSPs, all of which contain a conserved carboxyl-terminal domain. To investigate further the structure of this HSP, we isolated and sequenced cDNA clones for the chloroplast LMW HSPs from Petunia hybrida and Arabidopsis thaliana. The cloning of chloroplast HSPs from these two species enabled us to compare the amino acid sequences of this protein from plant species (petunia, Arabidopsis, pea, soybean and maize) that represent evolutionarily divergent taxonomic subclasses. Three conserved regions were identified, which are designated as regions I, II and III. Regions I and II are also shared by cytoplasmic LMW HSPs and therefore are likely to have functional roles common to all eukaryotic LMW HSPs. In contrast, consensus region III is not found in other LMW HSPs. Secondary structure analysis predicts that this region forms an amphipathic -helix with high conservation of methionine residues on the hydrophobic face and 100% conservation of residues on the hydrophilic face. This structure is similar to three helices, termed methionine bristles, which are found in a methionine-rich domain of a 54 kDa protein component of signal recognition particle (SRP54). The conservation of regions I and II among LMW cytoplasmic and chloroplast HSPs suggests that these HSPs perform related functions in different cellular compartments. However, identification of the methionine bristle domain suggests that chloroplast HSPs also have unique functions or substrates within the special environment of the chloroplast or other plastids.Abbreviations HS heat shock - HSP heat shock protein - LMW low molecular weight  相似文献   

18.
Maternal-environmental effects on subsequent progeny life-history traits were evaluated in squash ( Cucurbita pepo L.) in terms of the amount of time available for seed development, and the timing of fruit production. Progeny arising from three kinds of fruit were compared. Plants from which fruits were removed 3 d post-pollination throughout the growing season developed only 'late' fruits (during 10–15 d) at the end of the growing season; on control plants both 'early' and 'late' fruits developed (both types allowed to ripen fully). Seed from each type of fruit was weighed individually and categorized into three size classes, then germinated and raised to maturity, including regular harvesting of all fruits 3 d post-pollination. Maternal effects were evident for both vegetative and reproductive traits and carried over to later stages. In contrast, effects due simply to seed size disappeared by day 30 for leaf variables and day 60 for male flower production. Within a seed-size class, progeny arising from fruit of treated plants produced significantly more leaves, with greater size, and more male flowers than those arising from fruit of control plants, while the reverse was true for fruit number and fruit mass. This result is discussed in terms of possible gibberellic acid involvement. In control plants, progeny arising from seeds in the large, fully mature 'early' fruits produced significantly more, and larger leaves by day 30 than did those from late fruits (suggesting differential provisioning in seeds during development). Male flower production had a highly significant positive correlation with vegetative mass and a significant negative correlation with fruit production.  相似文献   

19.
Jinn TL  Chang P  Chen YM  Key JL  Lin CY 《Plant physiology》1997,114(2):429-438
A monospecific polyclonal antibody was used to study the tissue-type specificity and intracellular localization of class I low-molecular-weight (LMW) heat-shock proteins (HSPs) in soybean (Glycine max) under different heat-shock regimes. In etiolated soybean seedlings, the root meristematic regions contained the highest levels of LMW HSP. No tissue-type-specific expression of class I LMW HSP was detected using the tissue-printing method. In immunolocalization studies of seedlings treated with HS (40[deg]C for 2 h) the class I LMW HSPs were found in the aggregated granular structures, which were distributed randomly in the cytoplasm and in the nucleus. When the heat shock was released, the granular structures disappeared and the class I LMW HSPs became distributed homogeneously in the cytoplasm. When the seedlings were then given a more severe heat shock following the initial 40[deg]C -> 28[deg]C treatment, a large proportion of the class I LMW HSPs that originally localized in the cytoplasm were translocated into the nucleus and nucleolus. Class I LMW HSPs may assist in the resolubilization of proteins denatured or aggregated by heat and may also participate in the restoration of organellar function after heat shock.  相似文献   

20.
Injury by Lygus spp. to oilseed rape, Brassica napus L. and Brassica campestris L., was assessed based on laboratory and field studies in Alberta, Canada. The visible injuries consisted of lesions on the surfaces of stems, buds, flowers and pods similar to those described for other crops. They caused buds and flowers to abscise and seeds to collapse, and reduced the weight of healthy seeds produced per pod. The plants compensated for bud loss so that no net reduction in the number of pods occurred. However, in some situations the damage to buds resulted in a reduced seed yield that increased with the amount of injury. The plants also compensated for flower loss so that no net reduction in the number of pods occurred, but seed yield declined as injury increased. Plants did not compensate for seeds that collapsed as a result of lygus feeding. The feeding activity of lygus bugs reduced seed yield in oilseed rape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号