首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We tested the hypothesis that myocardial ischemia-reperfusion (I/R)-induced apoptosis is attenuated in transgenic mice overexpressing cardiac A(1) adenosine receptors. Isolated hearts from transgenic (TG, n = 19) and wild-type (WT, n = 22) mice underwent 30 min of ischemia and 2 h of reperfusion, with evaluation of apoptosis, caspase 3 activity, function, and necrosis. I/R-induced apoptosis was attenuated in TG hearts. TG hearts had less I/R-induced apoptotic nuclei (0.88 +/- 0.10% vs. 4.22 +/- 0.24% terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive cells in WT, P < 0.05), less DNA fragmentation (3.30 +/- 0.38-fold vs. 4.90 +/- 0.39-fold over control in WT, P < 0.05), and less I/R-induced caspase 3 activity (145 +/- 25% over nonischemic control vs. 234 +/- 31% in WT, P < 0.05). TG hearts also had improved recovery of function and less necrosis than WT hearts. In TG hearts pretreated with LY-294002 (3 microM) to evaluate the role of phosphosinositol-3-kinase in acute signaling, there was no change in the functional protection or apoptotic response to I/R. These data suggest that cardioprotection with transgenic overexpression of A(1) adenosine receptors involves attenuation of I/R-induced apoptosis that does not involve acute signaling through phosphoinositol-3-kinase.  相似文献   

2.
The present study was undertaken to investigate the protective effect of H2S against myocardial ischemia-reperfusion (I/R) injury and its possible mechanism by using isolated heart perfusion and patch clamp recordings. Rat isolated hearts were Langendorff-perfused and subjected to a 30-minute ischemia insult followed by a 30-minute reperfusion. The heart function was assessed by measuring the LVDP, +/-dP/dt max, and the arrhythmia score. The results showed that the treatment of hearts with a H2S donor (40 micromol/L NaHS) during reperfusion resulted in significant improvement in heart function compared with the I/R group (LVDP recovered to 85.0% +/- 6.4% vs. 35.0% +/- 6.1%, +dP/dt max recovered to 80.9% +/- 4.2% vs. 43.0% +/- 6.4%, and -dP/dt max recovered to 87.4% +/- 7.3% vs. 53.8% +/- 4.9%; p < 0.01). The arrhythmia scores also improved in the NaHS group compared with the I/R group (1.5 +/- 0.2 vs. 4.0 +/- 0.4, respectively; p < 0.001). The cardioprotective effect of NaHS during reperfusion could be blocked by an ATP-sensitive potassium channel (K ATP) blocker (10 micromol/L glibenclamide). In single cardiac myocytes, NaHS increased the open probability of K ATP channels from 0.07 +/- 0.03 to 0.15 +/- 0.08 after application of 40 mumol/L NaHS and from 0.07 +/- 0.03 to 0.36 +/- 0.15 after application of 100 mumol/L NaHS. These findings provide the first evidence that H2S increases the open probability of K ATP in cardiac myocytes, which may be responsible for cardioprotection against I/R injury during reperfusion.  相似文献   

3.
Acute effects of triiodothyronine (T3) on postischemic myocardial stunning and intracellular Ca2+ contents were studied in the isolated working hearts of streptozotocin-induced diabetic rats and age-matched controls. After two weeks of diabetes, serum T3 and T4 levels were decreased to 62.5% and 33.9% of control values. Basal preischemic cardiac performance did not differ between diabetic and control rats. In contrast, during reperfusion after 20-min ischemia, diabetic rats exhibited an impaired recovery of heart rate (at 30-min reperfusion 57.5% of baseline vs. control 88.5%), left ventricular (LV) systolic pressure (44.1% vs. 89.5%), and cardiac work (23.1% vs. 66.0%). When 1 and 100 nM T3 was added before ischemia, heart rate was recovered to 77.2% and 81.8% of baseline, LV systolic pressure to 68.3% and 81.9%, and cardiac work to 50.8% and 59.0%, respectively. Diabetic rat hearts showed a higher Ca2+ content in the basal state and a further increase after reperfusion (4.96+/-1.17 vs. control 3.78+/-0.48 micromol/g, p<0.01). In diabetic hearts, H+ release was decreased after reperfusion (5.24+/-2.21 vs. 8.70+/-1.41 mmol/min/g, p<0.05). T3 administration caused a decrease in the postischemic Ca2+ accumulation (lnM T3 4.66+/-0.41 and 100 nM T3 3.58+/-0.36) and recovered the H+ release (lnM T3 16.2+/-3.9 and 100 nM T3 11.6+/-0.9). T3 did not alter myocardial O2 consumption. Results suggest that diabetic rat hearts are vulnerable to postischemic stunning, and T3 protects the myocardial stunning possibly via inhibiting Ca2+ overload.  相似文献   

4.
We recently reported the identification of a novel human adenosine A3 receptor-selective agonist, (2S,3S,4R,5R)-3-amino-5-[6-[5-chloro-2-(3-methylisoxazol-5-ylmethoxy)benzylamino]purin-9-yl]-4-hydroxytetrahydrofuran-2-carboxylic acid methylamide (CP-608,039), with 1,260-fold selectivity for the human A3 versus human A1 receptor (DeNinno et al., J Med Chem 46: 353-355, 2003). However, because the modest (20-fold) rabbit A3 receptor selectivity of CP-608,039 precludes demonstration of A3-mediated cardioprotection in rabbit models, we identified another member of this class, (2S,3S,4R,5R)-3-amino-5-[6-(2,5-dichlorobenzylamino)purin-9-yl]-4-hydroxytetrahydrofuran-2-carboxylic acid methylamide (CP-532,903), which both retained human A3 receptor selectivity (210-fold; human A3/human A1 Ki: 23/4,800 nM) and had improved rabbit A3 receptor selectivity (90-fold; rabbit A3/rabbit A1 Ki: 23/2,000 nM). Infarct size was measured in Langendorff hearts or in vivo after 30 min of regional ischemia and 120 min of reperfusion. Five-minute perfusion with CP-532,903 before ischemia-reperfusion elicited a concentration-dependent reduction in infarct size in isolated hearts (EC50: 0.97 nM; maximum reduction in infarct size: 77%, P < 0.05 vs. control). Furthermore, administration of CP-532,903 (150 nM) at reperfusion also significantly reduced infarct size by 64% (P < 0.05 vs. control), which was not different (P > or = 0.05) from the cardioprotection provided by the same concentration of drug given before ischemia. The selective rabbit A1 receptor antagonist BWA1433 did not affect CP-532,903-dependent cardioprotection. In vivo, CP-532,903 (1 mg/kg) reduced infarct size by 50% in the absence of significant hemodynamic effects (mean arterial pressure, heart rate, rate-pressure product). CP-532,903 and CP-608,039 represent a novel class of human A3 receptor-selective agonists that may prove suitable for investigation of the clinical cardioprotective efficacy of A3 receptor activation.  相似文献   

5.
The relative roles of mitochondrial (mito) ATP-sensitive K(+) (mitoK(ATP)) channels, protein kinase C (PKC), and adenosine kinase (AK) in adenosine-mediated protection were assessed in Langendorff-perfused mouse hearts subjected to 20-min ischemia and 45-min reperfusion. Control hearts recovered 72 +/- 3 mmHg of ventricular pressure (50% preischemia) and released 23 +/- 2 IU/g lactate dehydrogenase (LDH). Adenosine (50 microM) during ischemia-reperfusion improved recovery (149 +/- 8 mmHg) and reduced LDH efflux (5 +/- 1 IU/g). Treatment during ischemia alone was less effective. Treatment with 50 microM diazoxide (mitoK(ATP) opener) during ischemia and reperfusion enhanced recovery and was equally effective during ischemia alone. A(3) agonism [100 nM 2-chloro-N(6)-(3-iodobenzyl)-adenosine-5'-N-methyluronamide], A(1) agonism (N(6)-cyclohexyladenosine), and AK inhibition (10 microM iodotubercidin) all reduced necrosis to the same extent as adenosine, but less effectively reduced contractile dysfunction. These responses were abolished by 100 microM 5-hydroxydecanoate (5-HD, mitoK(ATP) channel blocker) or 3 microM chelerythrine (PKC inhibitor). However, the protective effects of adenosine during ischemia-reperfusion were resistant to 5-HD and chelerythrine and only abolished when inhibitors were coinfused with iodotubercidin. Data indicate adenosine-mediated protection via A(1)/A(3) adenosine receptors is mitoK(ATP) channel and PKC dependent, with evidence for a downstream location of PKC. Adenosine provides additional and substantial protection via phosphorylation to 5'-AMP, primarily during reperfusion.  相似文献   

6.
Zhu HF  Dong JW  Zhu WZ  Ding HL  Zhou ZN 《Life sciences》2003,73(10):1275-1287
The aim of this study was to investigate the protection afforded by intermittent hypoxia (IH) against ischemia/reperfusion injury and its effects on calcium homeostasis during ischemia/reperfusion. The roles of KATP channels in these two actions were to be explored. Isolated hearts from IH and normoxic rats were subjected to 30 min global ischemia followed by 30 min reperfusion. Cardiac function was less deteriorated during ischemia and reperfusion in the IH rat hearts compared to normoxia rat hearts. Amplitude of the maximal contracture during ischemia was lower, while time to maximal contracture was extended in IH hearts. Post-ischemic recovery of left ventricular developed pressure and +/-dP/dtmax were higher in IH hearts than in normoxic hearts. KATP antagonist glibenclamide (10 microM) completely abolished these protective effects of IH, but had no appreciable influence on normoxic hearts. In cardiomyocytes isolated from normoxic hearts, [Ca2+]i, measured as arbitrary units of fluorescence ratio (340 nm/380 nm) of fura-2, gradually increased during 20 min simulated ischemia and kept at high level during 30 min reperfusion (1.081 +/- 0.004 and 1.088 +/- 0.006 respectively, p<0.01 vs pre-ischemia perfusion). However, in cardiomyocytes isolated from IH hearts, [Ca2+]i kept at normal level during ischemia and reperfusion (1.012 +/- 0.006 and 1.021 +/- 0.002 respectively, P>0.05 vs pre-ischemia perfusion). 10 microM glibenclamide and 100 microM 5-hydroxydecanoate (a selective mitochondria KATP antagonist) respectively abolished this effect of IH; calcium overloading reappeared during ischemia (1.133 +/- 0.007 and 1.118 +/- 0.007 respectively, P<0.01) and reperfusion (1.091 +/- 0.004 and 1.095 +/- 0.012 respectivly, P<0.01). However they had no effects on simulated ischemia and reperfusion-induced calcium overloading in normoxic myocytes. 50 microM pinacidil, a KATP opener, attenuated calcium overloading during ischemia and reperfusion in normoxic myocytes, but had no effect on [Ca2+]i change in IH myocytes. These results suggested that KATP channels contributed to the cardiac protection induced by IH against ischemia/reperfusion injury; the elimination of calcium overloading during ischemia/reperfusion by IH might underlie the mechanism of protection.  相似文献   

7.
We assessed the role of A(1) adenosine receptor (A(1)AR) activation by endogenous adenosine in the modulation of ischemic contracture and postischemic recovery in Langendorff-perfused mouse hearts subjected to 20 min of total ischemia and 30 min of reperfusion. In control hearts, the rate-pressure product (RPP) and first derivative of pressure development over time (+dP/dt) recovered to 57 +/- 3 and 58 +/- 3% of preischemia, respectively. Diastolic pressure remained elevated at 20 +/- 2 mmHg (compared with 3 +/- 1 mmHg preischemia). Interstitial adenosine, assessed by microdialysis, rose from approximately 0.3 to 1.9 microM during ischemia compared with approximately 15 microM in rat heart. Nonetheless, these levels will near maximally activate A(1)ARs on the basis of effects of exogenous adenosine and 2-chloroadenosine. Neither A(1)AR blockade with 200 nM 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) during the ischemic period alone nor A(1)AR activation with 50 nM N(6)-cyclopentyladenosine altered rapidity or extent of ischemic contracture. However, ischemic DPCPX treatment significantly depressed postischemic recovery of RPP and +dP/dt (44 +/- 3 and 40 +/- 4% of preischemia, respectively). DPCPX treatment during the reperfusion period alone also reduced recovery of RPP and +dP/dt (to 44 +/- 2 and 47 +/- 2% of preischemia, respectively). These data indicate that 1) interstitial adenosine is lower in mouse versus rat myocardium during ischemia, 2) A(1)AR activation by endogenous adenosine or exogenous agonists does not modify ischemic contracture in murine myocardium, 3) A(1)AR activation by endogenous adenosine during ischemia attenuates postischemic stunning, and 4) A(1)AR activation by endogenous adenosine during the reperfusion period also improves postischemic contractile recovery.  相似文献   

8.
Dong JW  Zhu HF  Zhou ZN 《生理学报》2003,55(3):245-250
本文旨在研究Na+/H+交换以及Na+/Ca2 +交换对模拟缺血 /复灌引起的大鼠心肌细胞内游离钙水平变化的调节作用。分别利用模拟缺血液和正常台氏液对大鼠心肌细胞进行缺血 /复灌处理 ,在缺血期间分别应用Na+/H+交换抑制剂阿米洛利 (amiloride)、Na+/Ca2 +交换抑制剂NiCl2 以及无钙液 ,观察它们对细胞内游离Ca2 +浓度变化的影响。利用Zeiss LSM 5 10激光共聚焦显微镜检测、采集细胞内游离Ca2 +的指示剂Fluo 3 AM的荧光信号 ,计算出相对于正常(缺血前 )的相对荧光强度 ,以表示胞内游离Ca2 +浓度的变化。结果显示 ,模拟缺血引起大鼠心肌细胞内游离Ca2 +持续上升 ,缺血前的相对荧光强度值为 10 0 % ,模拟缺血 5min后为 140 3± 13 0 % (P <0 0 5 ) ,复灌 15min后为 142 8±15 5 % (P <0 0 5 )。经 10 0 μmol/Lamiloride、5mmol/LNiCl2 和无钙液分别预处理 ,模拟缺血 5min后的相对荧光强度分别为 10 1 4± 16 3 % (P <0 0 5 )、110 4± 11 1% (P <0 0 5 )和 10 7 1± 10 8(P <0 0 5 ) ;复灌 15min后则分别为 97 8±14 3 % (P <0 0 5 )、10 6 2± 14 5 % (P <0 0 5 )和 10 6 6± 15 7(P <0 0 5 )。另外 ,与对照组细胞相比 ,再灌注期间NiCl2和无钙液处理的细胞钙振荡的产生幅度明显减弱 ,amilorid  相似文献   

9.
With the use of markers of sarcolemmal membrane permeability, cardiomyocyte models of ischemic injury have primarily addressed necrotic death during ischemia. In the present study, we used annexin V-propidium iodide staining to examine apoptosis and necrosis after simulated ischemia and simulated reperfusion in rat ventricular myocytes. Annexin V binds phosphatidylserine, a phosphoaminolipid thought to be externalized during apoptosis or programmed cell death. Propidium iodide is a marker of cell necrosis. Under baseline conditions, <1% of cardiomyocytes stained positive for annexin V. After 20 or 60 min of simulated ischemia, there was no increase in annexin V staining, although 60-min simulated ischemia resulted in significant propidium iodide staining. Twenty minutes of simulated ischemia, followed by 20 or 60 min of simulated reperfusion, resulted in 8-10% of myocytes staining positive for annexin V. Annexin V-positive cells retained both rod-shaped morphology and contractile function but exhibited the decreased cell width indicative of cell shrinkage. Baseline mitochondrial free Ca2+ (111 +/- 14 nM) was elevated in reperfused annexin V-negative cells (214 +/- 22 nM), and further elevated in annexin V-positive myocytes (382 +/- 9 nM). After 60 min of simulated reperfusion, caspase-3-like activity was observed in approximately 3% of myocytes, which had a rounded appearance and membrane blebs. These results suggest that the use of annexin V after simulated ischemia-reperfusion uncovers a population of cardiomyocytes whose characteristics appear to be consistent with cells undergoing apoptosis.  相似文献   

10.
Our laboratory has previously reported that acetaminophen confers functional cardioprotection following cardiac insult, including ischemia/reperfusion, hypoxia/reoxygenation, and exogenous peroxynitrite administration. In the present study, we further examined the mechanism of acetaminophen-mediated cardioprotection following ischemia/reperfusion injury. Langendorff-perfused guinea pig hearts were exposed to acute treatment with acetaminophen (0.35 mM) or vehicle beginning at 15 min of a 30-min baseline stabilization period. Low-flow global myocardial ischemia was subsequently induced for 30 min followed by 60 min of reperfusion. At the completion of reperfusion, hearts were homogenized and separated into cytosolic and mitochondrial fractions. Mitochondrial swelling and mitochondrial cytochromec release were assessed and found to be significantly and completely reduced in acetaminophen- vs. vehicle-treated hearts following reperfusion. In a separate group of hearts, ventricular myocytes were isolated and subjected to fluorescence-activated cell sorting. Acetaminophen-treated hearts showed a significant decrease in late stage apoptotic myocytes compared with vehicle-treated hearts following injury (58 +/- 1 vs. 81 +/- 5%, respectively). These data, together with electron micrograph analysis, suggest that acetaminophen mediates cardioprotection, in part, via inhibition of the mitochondrial permeability transition pore and subsequent apoptotic pathway.  相似文献   

11.
All four adenosine receptor subtypes have been shown to play a role in cardioprotection, and there is evidence that all four subtypes may be expressed in cardiomyocytes. There is also increasing evidence that optimal adenosine cardioprotection requires the activation of more than one receptor subtype. The purpose of this study was to determine whether adenosine A(2A) and/or A(2B) receptors modulate adenosine A(1) receptor-mediated cardioprotection. Isolated perfused hearts of wild-type (WT), A(2A) knockout (KO), and A(2B)KO mice, perfused at constant pressure and constant heart rate, underwent 30 min of global ischemia and 60 min of reperfusion. The adenosine A(1) receptor agonist N(6)-cyclohexyladenosine (CHA; 200 nM) was administrated 10 min before ischemia and for the first 10 min of reperfusion. Treatment with CHA significantly improved postischemic left ventricular developed pressure (74 ± 4% vs. 44 ± 4% of preischemic left ventricular developed pressure at 60 min of reperfusion) and reduced infarct size (30 ± 2% with CHA vs. 52 ± 5% in control) in WT hearts, effects that were blocked by the A(1) antagonist 8-cyclopentyl-1,3-dipropylxanthine (100 nM). Treatments with the A(2A) receptor agonist CGS-21680 (200 nM) and the A(2B) agonist BAY 60-6583 (200 nM) did not exert any beneficial effects. Deletion of adenosine A(2A) or A(2B) receptor subtypes did not alter ischemia-reperfusion injury, but CHA failed to exert a cardioprotective effect in hearts of mice from either KO group. These findings indicate that both adenosine A(2A) and A(2B) receptors are required for adenosine A(1) receptor-mediated cardioprotection, implicating a role for interactions among receptor subtypes.  相似文献   

12.
13.
The specific delta-opioid receptor agonist [D-Ala(2)-D-Leu(5)]enkephalin (DADLE) protects against infarction in the heart when given before ischemia. In rabbit, this protection leads to phosphorylation of the pro-survival kinases Akt and extracellular signal-regulated kinase (ERK) and is dependent on transactivation of the epidermal growth factor receptor (EGFR). DADLE reportedly protects rat hearts at reperfusion. We therefore tested whether DADLE at reperfusion could protect isolated rabbit hearts subjected to 30 min of regional ischemia and 120 min of reperfusion and whether this protection is dependent on Akt, ERK, and EGFR. DADLE (40 nM) was infused for 1 h starting 5 min before reperfusion and reduced infarct size from 31.0 +/- 2.3% in the control group to 14.6 +/- 1.6% (P = 0.01). This protection was abolished by cotreatment of the metalloproteinase inhibitor (MPI) and the EGFR inhibitor AG1478. In contrast, 20 nM DADLE, although known to be protective before ischemia, failed to protect. Western blotting revealed that DADLE's protection was correlated to increase in phosphorylation of the kinases Akt and ERK1 and -2 in reperfused hearts (2.5 +/- 0.5, 1.6 +/- 0.2, and 2.3 +/- 0.7-fold of baseline levels, P < 0.05 vs. control). The DADLE-dependent increases in Akt and ERK1/2 phosphorylation were abolished by either MPI or AG1478, confirming a signaling through the EGFR pathway. Additionally, DADLE treatment increased phosphorylation of EGFR (1.4 +/- 0.2-fold, P = 0.03 vs. control). Thus the delta-opioid agonist DADLE protects rabbit hearts at reperfusion through activation of the pro-survival kinases Akt and ERK and is dependent on the transactivation of the EGFR.  相似文献   

14.
To investigate the role of 12-lipoxygenase in preconditioning, we examined whether hearts lacking the "leukocyte-type" 12-lipoxygenase (12-LOKO) would be protected by preconditioning. In hearts from wild-type (WT) and 12-LOKO mice, left ventricular developed pressure (LVDP) and (31)P NMR were monitored during treatment (+/-preconditioning) and during global ischemia and reperfusion. Postischemic function (rate-pressure product, percentage of initial value) measured after 20 min of ischemia and 40 min of reperfusion was significantly improved by preconditioning in WT hearts (78 +/- 12% in preconditioned vs. 44 +/- 7% in nonpreconditioned hearts) but not in 12-LOKO hearts (47 +/- 7% in preconditioned vs. 33 +/- 10% in nonpreconditioned hearts). Postischemic recovery of phosphocreatine was significantly better in WT preconditioned hearts than in 12-LOKO preconditioned hearts. Preconditioning significantly reduced the fall in intracellular pH during sustained ischemia in both WT and 12-LOKO hearts, suggesting that attenuation of the fall in pH during ischemia can be dissociated from preconditioning-induced protection. Necrosis was assessed after 25 min of ischemia and 2 h of reperfusion using 2,3,5-triphenyltetrazolium chloride. In WT hearts, preconditioning significantly reduced the area of necrosis (26 +/- 4%) compared with nonpreconditioned hearts (62 +/- 10%) but not in 12-LOKO hearts (85 +/- 3% in preconditioned vs. 63 +/- 11% in nonpreconditioned hearts). Preconditioning resulted in a significant increase in 12(S)-hydroxyeicosatetraenoic acid in WT but not in 12-LOKO hearts. These data demonstrate that 12-lipoxygenase is important in preconditioning.  相似文献   

15.
To examine whether cardioprotection initiated by reactive oxygen species (ROS) is dependent on protein kinase Cepsilon (PKCepsilon), isolated buffer-perfused mouse hearts were randomized to four groups: 1) antimycin A (AA) (0.1 microg/ml) for 3 min followed by 10 min washout and then 30 min global ischemia (I) and 2 h reperfusion (R); 2) controls of I/R alone; 3) AA bracketed with 13 min of N-2-mercaptopropionyl- glycine (MPG) followed by I/R; and 4) MPG (200 microM) alone, followed by I/R. Isolated adult rat ventricular myocytes (ARVM) were exposed to AA (0.1 microg/ml), and lucigenin was used to measure ROS production. Murine hearts and ARVM were exposed to AA (0.1 microg/ml) with or without MPG, and PKCepsilon translocation was measured by cell fractionation and subsequent Western blot analysis. Finally, the dependence of AA protection on PKCepsilon was determined by the use of knockout mice (-/-) lacking PKCepsilon. AA exposure caused ROS production, which was abolished by the mitochondrial uncoupler mesoxalonitrile 4-trifluoromethoxyphenylhydrazone. In addition, AA significantly reduced the percent infarction-left ventricular volume compared with control I/R (26 +/- 4 vs. 43 +/- 2%; P < 0.05). Bracketing AA with MPG caused a loss of protection (52 +/- 7 vs. 26 +/- 4%; P < 0.05). AA caused PKCepsilon translocation only in the absence of MPG, and protection was lost on the pkcepsilon(-/-) background (38 +/- 3 vs. 15 +/- 4%; P < 0.001). AA causes ROS production, on which protection and PKCepsilon translocation depend. In addition, protection is absent in PKCepsilon null hearts. Our results imply that, in common with ischemic preconditioning, PKCepsilon is crucial to ROS-mediated protection.  相似文献   

16.
A(3) adenosine receptors (A(3)ARs) have been implicated in regulating mast cell function and in cardioprotection during ischemia-reperfusion injury. The physiological role of A(3)ARs is unclear due to the lack of widely available selective antagonists. Therefore, we examined mice with targeted gene deletion of the A(3)AR together with pharmacological studies to determine the role of A(3)ARs in myocardial ischemia-reperfusion injury. We evaluated the functional response to 15-min global ischemia and 30-min reperfusion in isovolumic Langendorff hearts from A(3)AR(-/-) and wild-type (A(3)AR(+/+)) mice. Loss of contractile function during ischemia was unchanged, but recovery of developed pressure in hearts after reperfusion was improved in A(3)AR(-/-) compared with wild-type hearts (80 +/- 3 vs. 51 +/- 3% at 30 min). Tissue viability assessed by efflux of lactate dehydrogenase was also improved in A(3)AR(-/-) hearts (4.5 +/- 1 vs. 7.5 +/- 1 U/g). The adenosine receptor antagonist BW-A1433 (50 microM) decreased functional recovery following ischemia in A(3)AR(-/-) but not in wild-type hearts. We also examined myocardial infarct size using an intact model with 30-min left anterior descending coronary artery occlusion and 24-h reperfusion. Infarct size was reduced by over 60% in A(3)AR(-/-) hearts. In summary, targeted deletion of the A(3)AR improved functional recovery and tissue viability during reperfusion following ischemia. These data suggest that activation of A(3)ARs contributes to myocardial injury in this setting in the rodent. Since A(3)ARs are thought to be present on resident mast cells in the rodent myocardium, we speculate that A(3)ARs may have proinflammatory actions that mediate the deleterious effects of A(3)AR activation during ischemia-reperfusion injury.  相似文献   

17.
Previously, we demonstrated that ischemia induces mitochondrial damage and dysfunction that persist throughout reperfusion and impact negatively on postischemic functional recovery and cellular viability. We hypothesized that viable respiration-competent mitochondria, isolated from tissue unaffected by ischemia and then injected into the ischemic zone just before reperfusion, would enhance postischemic functional recovery and limit infarct size. New Zealand White rabbits (n = 52) were subjected to 30 min of equilibrium and 30 min of regional ischemia (RI) induced by snaring the left anterior descending coronary artery. At 29 min of RI, the RI zone was injected with vehicle (sham control and RI vehicle) or vehicle containing mitochondria (7.7 x 10(6) +/- 1.5 x 10(6)/ml) isolated from donor rabbit left ventricular tissue (RI-Mito). The snare was released at 30 min of RI, and the hearts were reperfused for 120 min. Our results show that left ventricular peak developed pressure and systolic shortening in RI-Mito hearts were significantly enhanced (P < 0.05 vs. RI-vehicle) to 75% and 83% of equilibrium value, respectively, at 120 min of reperfusion compared with 57% and 62%, respectively, in RI-vehicle hearts. Creatine kinase-MB, cardiac troponin I, and infarct size relative to area at risk were significantly decreased in RI-Mito compared with RI-vehicle hearts (P < 0.05). Confocal microscopy showed that injected mitochondria were present and viable after 120 min of reperfusion and were distributed from the epicardium to the subendocardium. These results demonstrate that viable respiration-competent mitochondria, isolated from tissue unaffected by ischemia and then injected into the ischemic zone just before reperfusion, significantly enhance postischemic functional recovery and cellular viability.  相似文献   

18.
Endogenous adenosine is an important ligand trigger for the cardioprotective effects of postconditioning (POC), yet it is unclear which adenosine receptor subtype is primarily responsible. To evaluate the role of A(2A) adenosine receptors in POC-induced protection, global ischemia-reperfusion was performed with and without POC in isolated wild-type (WT) and A(2A) adenosine receptor knockout (A(2A)KO) mouse hearts. Injury was measured in terms of postischemic functional recovery and release of cardiac troponin I (cTnI). Activation of protective signaling with POC was assessed by Akt and extracellular signal-regulated kinase (ERK) 1/2 phosphorylation. In WT hearts, POC improved recovery of postischemic developed pressure in early (81.6 +/- 6.4% of preischemic baseline vs. 37.5 +/- 5.6% for non-POC WT at 1 min) and late (62.2 +/- 4.2% of baseline vs. 45.5 +/- 5.3% for non-POC WT at 30 min) reperfusion, reduced cTnI release by 37%, and doubled the phosphorylation of both Akt and ERK1/2. These beneficial effects of POC were blocked by treatment with the selective A(2A) adenosine receptor antagonist ZM-241385 during reperfusion. Postischemic functional recovery, cTnI release, and phosphorylation of Akt and ERK1/2 were not different between non-POC WT and A(2A)KO hearts. In A(2A)KO hearts, POC did not improve functional recovery, reduce cTnI release, nor increase phosphorylation of Akt or ERK1/2. Thus the protective effects of POC are attenuated by both selective A(2A) receptor antagonism and targeted deletion of the gene encoding A(2A) adenosine receptors. These observations support the conclusion that endogenous activation of A(2A) adenosine receptors is an essential trigger leading to the protective effects of POC in isolated murine hearts.  相似文献   

19.
We investigated whether low-pressure reperfusion may attenuate postischemic contractile dysfunction, limits necrosis and apoptosis after a prolonged hypothermic ischemia, and inhibits mitochondrial permeability transition-pore (MPTP) opening. Isolated rats hearts (n = 72) were exposed to 8 h of cold ischemia and assigned to the following groups: 1) reperfusion with low pressure (LP = 70 cmH(2)O) and 2) reperfusion with normal pressure (NP = 100 cmH(2)O). Cardiac function was assessed during reperfusion using the Langendorff model. Mitochondria were isolated, and the Ca(2+) resistance capacity (CRC) of the MPTP was determined. Malondialdehyde (MDA) production, caspase-3 activity, and cytochrome c were also assessed. We found that functional recovery was significantly improved in LP hearts with rate-pressure product averaging 30,380 +/- 1,757 vs. 18,000 +/- 1,599 mmHg/min in NP hearts (P < 0.01). Necrosis, measured by triphenyltetrazolium chloride staining and creatine kinase leakage, was significantly reduced in LP hearts (P < 0.01). The CRC was increased in LP heart mitochondria (P < 0.01). Caspase-3 activity, cytochrome c release, and MDA production were reduced in LP hearts (P < 0.001 and P < 0.01). This study demonstrated that low-pressure reperfusion after hypothermic heart ischemia improves postischemic contractile dysfunction and attenuates necrosis and apoptosis. This protection could be related to an inhibition of mitochondrial permeability transition.  相似文献   

20.
This study evaluated the ability of A1 and A3 adenosine receptor (AR) agonism, and A1, A2A, A2B and A3AR antagonism (revealing "intrinsic" responses), to modify post-ischemic coronary dysfunction in mouse heart. Vascular function was assessed before and after 20 min global ischemia and 30-45 min reperfusion in Langendorff perfused C57/Bl6 mouse hearts. Ischemic insult impaired coronary sensitivity to the endothelial-dependent dilators ADP (pEC50=6.8+/-0.1 vs. 7.6+/-0.1, non-ischemic) and acetylcholine (pEC50=6.1+/-0.1 vs. 7.3+/-0.1 in non-ischemic), and for the mixed endothelial-dependent/independent dilator 2-chloroadenosine (pEC50=7.5+/-0.1 vs. 8.4+/-0.1, non-ischemic). Endothelium-independent dilation in response to nitroprusside was unaltered (pEC50=7.0+/-0.1 vs. 7.1+/-0.1 in non-ischemic). Pre-treatment with a selective A1AR agonist (50 nM CHA) failed to modify coronary dysfunction, whereas A1AR antagonism (200 nM DPCPX) worsened the effects of I/R (2-chloroadenosine pEC50=6.9+/-0.1). Conversely, A3AR agonism (100 nM Cl-IB-MECA) did reduce effects of I/R (pEC50s=8.0+/-0.1 and 7.3+/-0.1 for 2-chloroadenosine and ADP, respectively), whereas antagonism (100 nM MRS1220) was without effect. While A2AAR agonism could not be assessed (due to pronounced vasodilatation), A2AAR antagonism (100 nM SCH58261) was found to exert no effect, and antagonism of A2BARs (50 nM MRS1754) was also ineffective. The protective actions of A3AR agonism were also manifest as improved reactive hyperemic responses. Interestingly, post-ischemic coronary dysfunction was also limited by: Na+-H+ exchange (NHE) inhibition with 10 or 50 microM BIIB-513 (2-chloroadenosine pEC50s=7.8+/-0.1, either dose), an effect not additive with A3AR agonism; Ca2+ antagonism with 0.3 microM verapamil (2-chloroadenosine pEC50=7.9+/-0.1); and Ca2+ desensitization with 5 mM BDM (2-chloroadenosine pEC50=7.8+/-0.1). In contrast, endothelin antagonism (200 nM PD142893) and anti-oxidant therapy (300 microM MPG+150 U/ml SOD+600 U/ml catalase) were ineffective. Our data collectively confirm that ischemia selectively impairs endothelial function and reactive hyperemia independently of blood cells. Vascular injury is intrinsically limited by endogenous (but not exogenous) activation of A1ARs, whereas exogenous A3AR activation further limits dysfunction (improving post-ischemic vasoregulation). Finally, findings suggest this form of post-ischemic coronary injury is unrelated to endothelin or oxidant stress, but may involve modulation of Ca2+ overload and/or related ionic perturbations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号