首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The systematic evaluation of different transthoracic echocardiographic (TTE) methods to determine cardiac output (CO) and the effect of changes in intravascular volume on echocardiographically determined indexes of cardiovascular structure in the rat has not been documented. With the use of 11 Wistar rats, simultaneous echocardiographic and thermodilution measurements of CO were compared at baseline and after blood withdrawal or transfusion at 43 different levels of intravascular volume and using 10 different echocardiographic approaches. The best correlation (r = 0.93; P < 0.0001), least bias (-3 ml/min), and best precision (16 ml/min) between thermodilution and echocardiographic methods were obtained at the level of aortic annulus using pulsed Doppler. In conclusion, CO could be accurately assessed in rats using TTE and pulsed Doppler at the level of the aortic annulus. This annulus was demonstrated to remain stable, but pulmonary annulus, thoracic aorta, mitral valve, and left ventricular diameters were found to be more modifiable during volumic changes.  相似文献   

2.
To assess the reliability of conductance (G) catheter for evaluating right ventricular (RV) volume changes, a miniature (3.5F) six-electrode catheter was developed and tested in 11 New Zealand rabbit hearts. In five animals the heart was excised; in six it was left in the thorax. RV conductance was recorded while the RV was filled with blood in 0.25-ml steps at different left ventricular (LV) volumes. Linear correlation of measured conductance vs. reference volumes was computed. RV conductance was highly correlated with reference volume [correlation coefficient (r) ranging from 0.991 to 0.999]. Slope of regression lines was not significantly affected by LV volume variations in 1-ml steps or by acute conductance changes of structures surrounding the heart, whereas the intercept was affected only by the 0- to 1-ml LV volume change. In four rabbits, RV conductance changes during a cardiac cycle [stroke volume- (SV) G] were compared in vivo with electromagnetic flow probe-derived estimates of SV (SVem) as stroke volume was varied by graded inferior vena caval occlusion. SV-G correlated well with SVem (r ranging from 0.92 to 0.96). This correlation persisted after the thorax was filled with saline; however, significant differences were found in individual slopes (P < 0.001). These results show that the conductance catheter has a potential to reliably monitor in vivo relative RV volume changes in small-animal hearts.  相似文献   

3.
The purpose of this study was to evaluate right ventricular (RV) loading and cardiac output changes, by using the thermodilution technique, during the mechanical ventilatory cycle. Fifteen critically ill patients on mechanical ventilation, with 5 cmH(2)O of positive end-expiratory pressure, mean respiratory frequency of 18 breaths/min, and mean tidal volume of 708 ml, were studied with help of a rapid-response thermistor RV ejection fraction pulmonary artery catheter, allowing 5-ml room-temperature 5% isotonic dextrose thermodilution measurements of cardiac index (CI), stroke volume (SV) index, RV ejection fraction (RVEF), RV end-diastolic volume (RVEDV), and RV end-systolic volume (RVESV) indexes at 10% intervals of the mechanical ventilatory cycle. The ventilatory modulation of CI and RV volumes varied from patient to patient, and the interindividual variability was greater for the latter variables. Within patients also, RV volumes were modulated more by the ventilatory cycle than CI and SV index. Around a mean value of 3.95 +/- 1.18 l. min(-1). m(-2) (= 100%), CI varied from 87.3 +/- 5.2 (minimum) to 114.3 +/- 5.1% (maximum), and RVESV index varied between 61.5 +/- 17.8 and 149.3 +/- 34.1% of mean 55.1 +/- 17.9 ml/m(2) during the ventilatory cycle. The variations in the cycle exceeded the measurement error even though the latter was greater for RVEF and volumes than for CI and SV index. For mean values, there was an inspiratory decrease in RVEF and increase in RVESV, whereas a rise in RVEDV largely prevented a fall in SV index. We conclude that cyclic RV afterloading necessitates multiple thermodilution measurements equally spaced in the ventilatory cycle for reliable assessment of RV performance during mechanical ventilation of patients.  相似文献   

4.
The pericardium may modulate acute compensatory changes in stroke volumes seen with sudden changes in cardiac volume, but such a mechanism has never been clearly demonstrated. In eight open-chest dogs, we measured left and right ventricular pressures, diameters, stroke volumes, and pericardial pressures during rapid (approximately 300 ms) systolic infusions or withdrawals of approximately 25 ml blood into and out of the left atrium and right atrium. Control beats, the infusion/withdrawal beat, and 4-10 subsequent beats were studied. With infusions, ipsilateral ventricular end-diastolic transmural pressure, diameter, and stroke volume increased. With the pericardium closed, there was a compensatory decrease in contralateral transmural pressure, diameter, and stroke volume, mediated by opposite changes in transmural end-diastolic pressures. The sum of the ipsilateral increase and contralateral decrease in stroke volume approximated the infused volume. Corresponding changes were seen with blood withdrawals. This direct ventricular interaction was diminished when pericardial pressure was <5 mmHg and absent when the pericardium was opened. Pericardial constraint appears essential for immediate biventricular compensatory responses to acute atrial volume changes.  相似文献   

5.
We investigated to what extent heart failure alters the ability of the muscle metaboreflex to improve ventricular function. Dogs were chronically instrumented to monitor mean arterial pressure (MAP), cardiac output (CO), heart rate (HR), stroke volume (SV), and central venous pressure (CVP) at rest and during mild treadmill exercise (3.2 km/h) before and during reductions in hindlimb blood flow imposed to activate the muscle metaboreflex. These control experiments were repeated at constant heart rate (ventricular pacing 225 beats/min) and at constant heart rate coupled with a beta-adrenergic blockade (atenolol, 2 mg/kg iv) in normal animals and in the same animals after the induction of heart failure (HF, induced via rapid ventricular pacing). In control experiments in normal animals, metaboreflex activation caused tachycardia with no change in SV, resulting in large increases in CO and MAP. At constant HR, large increases in CO still occurred via significant increases in SV. Inasmuch as CVP did not change in this setting and that beta-adrenergic blockade abolished the reflex increase in SV at constant HR, this increase in SV likely reflects increased ventricular contractility. In contrast, after the induction of HF, much smaller increases in CO occurred with metaboreflex activation because, although increases in HR still occurred, SV decreased thereby limiting any increase in CO. At constant HR, no increase in CO occurred with metaboreflex activation even though CVP increased significantly. After beta-adrenergic blockade, CO and SV decreased with metaboreflex activation. We conclude that in HF, the ability of the muscle metaboreflex to increase ventricular function via both increases in contractility as well as increases in filling pressure are markedly impaired.  相似文献   

6.
In 10 anesthetized dogs, we measured high-fidelity left circumflex coronary (P(LCx)), aortic (P(Ao)), and left ventricular (P(LV)) pressures and left circumflex velocity (U(LCx); Doppler) and used wave-intensity analysis (WIA) to identify the determinants of P(LCx) and U(LCx). Dogs were paced from the right atrium (control 1) or right ventricle by use of single (control 2) and then paired pacing to evaluate the effects of left ventricular contraction on P(LCx) and U(LCx). During left ventricular isovolumic contraction, P(LCx) exceeded P(Ao), paired pacing increasing the difference. Paired pacing increased DeltaP(X) (the P(LCx)-P(Ao) difference at the P(Ao)-P(LV) crossover) and average dP(LCx)/dt (P < 0.0001 for both). During this time, WIA identified a backward-going compression wave (BCW) that increased P(LCx) and decreased U(LCx); the BCW increased during paired pacing (P < 0.0001). After the aortic valve opened, the increase in P(Ao) caused a forward-going compression wave that, when it exceeded the BCW, caused U(LCx) to increase, despite P(LV) and (presumably) elastance continuing to increase. Thus WIA identifies the contributions of upstream (aortic) and downstream (microcirculatory) effects on P(LCx) and U(LCx).  相似文献   

7.
OBJECTIVE: To evaluate the cardiovascular structure and function of older adult Rhesus monkey by utrasonography. METHODS: Sixteen monkeys aged from 17 to 20 years and weighing from 8.2 to 15.3 kg, six adults aged 7-8 years and weighing from 8.1 to 9.2 kg. All monkeys were determined to be free from hypertension, hyperglycaemia and cardiac disease. The normal values of index related to heart and blood vessels including structure, haemodynamics and systolic or diastolic function were detected by 2D, M-mode, pulsed Doppler and tissue Doppler echocardiography respectively under ketamine hydrochloride sedation. Meanwhile, blood pressures were also measured by electronic sphygmomanometer. Each monkey underwent repeated detections in 2 weeks and all data were analysed with statistical methods. RESULTS: Compared with young adult monkeys, the older's heart rate (HR), the left ventricular diastolic function and the compliance of big artery including right and left common carotid artery, bulbus caroticus, internal carotid artery and abdominal aorta were decreased and the associated indexes changed significantly (P < 0.05 or P < 0.01). Meanwhile, older monkeys exhibited significant increase in the aorta diameter (AO), amplitude of aortic wall (AAO), left atrial diameter (LAD), end diastolic volume of left ventricle (EDV), stroke volume (SV), left ventricular mass (LVM) (P < 0.05 vs. young adult monkeys); however, cardiac output (CO) only slightly increased but the difference did not reach the statistical significance (P = 0.418, P = 0.644 respectively). CONCLUSIONS: The present results demonstrated the profiles of cardiovascular function and structure in the older Rhesus monkeys. Older monkey is accompanied by diminished left ventricular diastolic function and big artery compliance. Ultrasonography provides a means to non-invasively evaluate the anatomy and function of the heart and blood vessel, and plays an increasingly important role in the drug evaluation against cardiovascular dysfunction.  相似文献   

8.
We describe the feasibility of chronic measurement of cardiac output (CO) in conscious mice. With the use of gas anesthesia, mice >30 g body wt were instrumented either with transit-time flow probes or electromagnetic probes placed on the ascending aorta. Ascending aortic flow values were recorded 6-16 days after surgery when probes had fully grown in. In the first set of experiments, while mice were under ketamine-xylazine anesthesia, estimates of stroke volume (SV) obtained by the transit-time technique were compared with those simultaneously obtained by echocardiography. Transit-time values of SV were similar to those obtained by echocardiography. The average difference +/- SD between the methods was 2 +/- 7 microl. In the second set of studies, transit-time values of CO were compared with those obtained by the electromagnetic flow probes. In conscious resting conditions, estimates +/- SD) of cardiac index (CI) obtained by the transit-time and electromagnetic flow probes were 484 +/- 119 and 531 +/- 103 ml x min(-1) x kg body wt(-1), respectively. Transit-time flow probes were also implanted in mice with a myocardial infarction (MI) induced by ligation of a coronary artery 3 wk before probe implantation. In these MI mice (n = 7), average (+/- SD) resting and stimulated (by volume loading) values of CO were significantly lower than in noninfarcted mice (n = 15) (resting CO 16 +/- 3 vs. 20 +/- 4 ml/min; stimulated CO 20 +/- 5 vs. 26 +/- 6 ml/min). Finally, using transfer function analysis, we found that, in resting conditions for both intact and MI mice, spontaneous variations in CO (> 0.1 Hz) were mainly due to those occurring in SV rather than in heart rate. These data indicate that CO can be measured chronically and reliably in conscious mice, also in conditions of heart failure, and that variations in preload are an important determinant of CO in this species.  相似文献   

9.
Normal aerobic metabolic rates persist in the early chicken embryo after elimination of cardiac output, but the dependence of tissue growth and differentiation on blood flow is unknown in these early stages. We partially ligated (25-50% occlusion) the ventricular outflow tract of Hamburger-Hamilton stage (HH) 16-18 embryos, producing a wide range of cardiac output. For the next approximately 48 h (to HH 24), we measured heart rate (HR), stroke volume (SV), and cardiac output (CO), as well as these growth indicators: eye diameter, chorioallantoic vessel density, and body mass. Acutely, HR declined with partial ligation (from 108 to 98 beats/min). Paradoxically, SV and CO decreased sharply in most embryos but increased in others, collectively producing the desired large variation (up to 25-fold) in CO and permitting assessment of tissue growth over a very large range of blood perfusion. Eye diameter doubled (from 0.6 to 1.2 mm) with development from HH 16 to HH 24, but within a developmental cohort there was no significant correlation between eye diameter and CO over a 25-fold range of CO. Similarly, chorioallantoic membrane vessel index was independent of CO over the CO range at all stages. Finally, body mass increase during development was not significantly affected by partial conal truncal ligation. Collectively, these data suggest that normal eye and vessel growth and body mass accumulation occur independent of their rate of blood perfusion, supporting the hypothesis of prosynchronotropy-that the heart begins to beat and generate blood flow in advance of the actual need for convective blood flow to tissues.  相似文献   

10.
The left ventricular power (LVP), stroke volume (SV), cardiac output (Q), systolic blood pressure (BPs), and the overall physical activity of schoolgirls attending gymnasium classes with in-depth instruction in specific subjects were lower than in those attending general education classes with the standard curriculum. There were no differences in heart rate (HR), specific peripheral resistance (SPR), or diastolic blood pressure. The stroke index (SI) and cardiac index (CI) were, respectively, moderately and strongly correlated with the degree of motor activity.  相似文献   

11.
Release of ANP is dependent on right atrial distension and pressure, which in turn are dependent on both venous return and left ventricular function. These two latter parameters are both modulated by beta-receptors. In the present study, the effects of selective beta-blockade vs non-selective beta-blockade on hypertonic volume expansion induced changes in ANP release and systemic hemodynamics were assessed in 8 healthy normotensive male volunteers. On placebo, infusion of hypertonic saline (1200 ml of 2.5% NaCl) caused an intravascular volume expansion of 10-11%, and small non-significant increases in cardiac performance (LVEDV, SV, or CI), but it provoked a 2-fold increase in plasma ANP. Beta-blockade by either atenolol or propranolol blunted the increase in cardiac volume load (reflected by LVEDV) as compared to placebo, but did not affect the ANP response to volume expansion. The increase in ANP correlated closely with the intravascular volume expansion on placebo and to a lesser extent on beta-blockade. In healthy men, therefore, intravascular volume expansion that caused only small changes in cardiac activity, resulted in clear increases in release of ANP. Inhibition of the increase in cardiac volume load by beta-blockade did not interfere with ANP increase, suggesting a role for extra-cardiac receptors in the release of ANP or a change in the pressure/volume relationship.  相似文献   

12.
Several investigations demonstrated that aerobic fitness is associated with a tendency towards orthostatic hypotension whereas other reports did not show any differences in cardiovascular adjustment to orthostatic challenges between endurance trained and sedentary subjects. In the present work, the time course of changes in heart rate (HR), systolic time intervals (STI), stroke volume (SV), cardiac output (CO) and blood pressure was studied during 8 minutes following standing up from supine position in 7 healthy volunteers before and after 10 weeks of endurance training on bicycle ergometer. Impedance cardiography was used for measurement of cardiac postural responses. The training program applied in this study increased the subjects' aerobic capacity (VO2max) by approx. 18%. After training, the steady-state supine HR and contribution of the pre-ejection period and ejection time to the total R-R interval in ECG were lowered while SV was significantly increased. No significant training-induced changes were found in magnitude and time-courses of HR, STI, SV and CO changes following standing up. Diastolic blood pressure during standing was greater after than before training. It is concluded that the short-time endurance training does not affect adversely cardiovascular orthostatic response and may even improve orthostatic tolerance due to the augmentation of diastolic blood pressure response.  相似文献   

13.
It is commonly believed that during hyperbaric oxygen (HBO) treatment, in spite of the vasoconstriction induced by the increased O2 content in the breathing gas, the elevated carrying capacity of O2 in the arterial blood results in augmented O2 delivery to tissues. The experiments described here tested the hypothesis that HBO treatment would be more efficient in delivering O2 to poorly perfused tissues if the vasoconstriction induced by elevated O2 could be abolished or attenuated by adding CO2 to the breathing gas. Organ blood flow (QOBF), systemic hemodynamics, and arterial blood gases were measured before, during and after exposure to either 300 kPa O2 (group 1) or 300 kPa O2 with 2 kPa CO2 (group 2), in awake, instrumented rats. During the HBO exposure the respiratory frequency (fb) fell (4 breaths x min(-1) x 100 kPa O2(-1)), with no changes in arterial CO2 tension (PaCO2), but when CO2 was added, fb and PaCO2 increased. The left ventricular pressure (LVP) and the systolic arterial pressure (SBP) increased. The maximum velocity of LVP (+dP/dt) rose linearly with LVP whether CO2 was added or not (r2 = 0.72 and 0.75 respectively). Similarly, the cardiac output (Qc) and heart rate (fc) fell, while the stroke volume (SV) was unaltered, independent of PaCO2. There was a general vasoconstriction in most organs in both groups, with the exception of the central nervous system (CNS), eyes, and respiratory muscles. HBO reduced the blood flow to the CNS by 30%, but this vasoconstriction was diminished or eliminated when CO2 was added. In group 2, the blood flow to the CNS rose linearly with increased PaCO2 and decreased pH. After decompression fc and SBP stayed high, while Qc returned to control values by reducing the SV; CNS blood flow remained markedly elevated in group 2, while in group 1, it returned to control levels. We conclude that the changes in fc, Qc, LVP, dP/dt, SBP and most QOBF values induced by HBO were not changed by hypercapnia. Blood flow to the CNS decreased during HBO treatment at a constant PaCO2. Hypercapnia prevented this decline. Elevated PaCO2 augmented O2 delivery to the CNS and eyes, but increased the susceptibility to O2 poisoning. A prolonged suppression of O2 supply to the CNS occurred during the HBO exposure and in air following the decompression in the absence of CO2. This suppression was offset by the addition of CO2 to the breathing gas.  相似文献   

14.
Mechanisms involved in the control of arterial pressure during postural changes were studied by analysis of the dynamic time course of cardiovascular changes during head-up tilt (HUT) and tilt back to supine position (TB). Beat-to-beat values of cardiovascular variables were recorded continuously before, during, and after passive HUT to 30 degrees in seven healthy humans. Left cardiac stroke volume (SV, Doppler ultrasound), mean arterial blood pressure (MAP), heart rate (HR), cardiac output (CO), and total peripheral conductance (TPC) were recorded. During HUT, MAP at the level of the carotid baroreceptors decreased by approximately 5 mmHg. There was a striking asymmetry between the time courses of cardiovascular changes on HUT and on TB. Adjustments generally took up to 30 s after HUT, whereas most changes were completed during the first 10 s after TB. Cardiovascular reflex adjustments of HR and TPC were more symmetrical. After HUT, SV was maintained during the first 4-6 s and then decreased steadily during the next 30 s to a stable level approximately 25% below its pretilt value. However, after TB, SV increased rapidly to its pretilt value in <10 s. This asymmetry in SV dynamics may be explained in part by a more rapid change in left cardiac filling after TB than after HUT. On TB, there must be a rapid inflow of stagnant blood from the legs, whereas venous valves will impede backward filling of veins in the lower body on HUT. In conclusion, we have revealed a characteristic asymmetry in cardiovascular responses to inverse variations in gravity forces in humans. This asymmetry can be explained in part by nonlinear, hydrodynamic factors, such as the one-way effect of venous valves in the lower part of the body.  相似文献   

15.
A one-step CO2 rebreathing method for the determination of cardiac output and stroke volume (SV) has been evaluated by comparison with the direct Fick technique during recumbent exercise (10-90 W) in 13 patients. In an initial analysis, the influence of different rebreathing times and of correction for haemoglobin concentration was studied. The best correlation with the direct Fick technique was obtained with the longest analysis time, i.e. 21 s, and correction for variations in haemoglobin concentration further improved the correlation. Consequently, an analysis time of 21 s and correction for haemoglobin have been used. At low cardiac outputs, the CO2-rebreathing method overestimated the flow compared to the Fick technique. The correlation between the methods, however, was so good that a valid estimate of cardiac output could be obtained from the CO2 rebreathing method with appropriate corrections (Cardiac output, CO2 method = 2.7 + 0.77. Cardiac output, Fick; r = 0.91; Residual Standard deviation (SD res) = 0.77 l X min-1). Stroke volumes measured with the CO2 rebreathing method did not differ significantly from those obtained with the direct Fick technique, although there was a tendency to overestimate stroke volume with the CO2 rebreathing method (SV, CO2 method = 12 + 0.89 X SV, Fick; r = 0.82; SD res = 11 ml).  相似文献   

16.
Measurement of venous function in vivo is inherently difficult. In this study, we used the Hilbert transform to examine the dynamic relationships between venous pressure and cardiac output (CO) in rainbow trout whose blood volume was continuously increased and decreased by ramp infusion and withdrawal (I/W). The dorsal aorta and ductus Cuvier were cannulated percutaneously and connected to pressure transducers; a flow probe was placed around the ventral aorta. Whole blood from a donor was then I/W via the dorsal aortic cannula at a rate of 10% of the estimated blood volume per minute, and the duration of I/W was varied from 40, 60, 80, 90, 120, 230, 240, 260, 300, and 340 s. Compliance [change in (delta) blood vol/deltavenous pressure] was 2.8 +/- 0.2 ml x mmHg-1x g-1 (N = 25 measurements; 6 fish with closed pericardium) and 2.8 +/- 0.3 ml. mmHg-1x kg-1 (N = 19 measurements, 4 fish with open pericardium). Compliance was positively correlated with the duration of I/W, indicative of cardiovascular reflex responses at longer I/W durations. In trout with closed pericardium, CO followed venous pressure oscillations with an average time lag of 4.2 +/- 1.0 s (N = 9); heart rate (HR) was inversely correlated with CO. These studies show that CO is entrained by modulation of venous pressure, not by HR. Thus, although trout have a rigid pericardium, venous pressure (vis-a-tergo), not cardiac suction (vis-a-fronte), appears to be the primary determinant of CO. Estimation of venous compliance by ramp-modulation of venous pressure is faster and less traumatic than classical capacitance measurements and appears applicable to a variety of vertebrate species, as does the Hilbert transform, which permits analysis of signals with disparate frequencies.  相似文献   

17.
Pericardial constraint and ventricular interaction influence left ventricular (LV) performance when preload is high. However, it is unclear if these constraining forces modulate LV filling when the heart is unloaded, such as during upright posture, in humans. Fifty healthy individuals underwent right heart catheterization to measure pulmonary capillary wedge (PCWP) and right atrial pressure (RAP). To evaluate the effects of pericardial constraint on hemodynamics, transmural filling pressure (LVTMP) was defined as PCWP-RAP. Beat-to-beat blood pressure (BP) waveforms were recorded, and stroke volume (SV) was derived from the Modelflow method. After measurements at -30 mmHg lower body negative pressure (LBNP), which approximates the upright position, LBNP was released, and beat-to-beat measurements were performed for 15 heartbeats. At -30 mmHg LBNP, RAP and PCWP were significantly decreased. During the first six beats of LBNP release, heart rate (HR) was unchanged, while BP increased from the fourth beat. RAP increased faster than PCWP resulting in an acute decrease in LVTMP from the fourth beat. A corresponding drop in SV by 3% was observed with no change in pulse pressure. From the 7th to 15th beats, LVTMP and SV increased steadily, followed by a decreased HR due to the baroreflex. A decreased TMP, but not PCWP, caused a transient drop in SV with no changes in HR or pulse pressure during LBNP release. These results suggest that the pericardium constrains LV filling during LBNP release, enough to cause a small but significant drop of SV, even at low cardiac filling pressure in healthy humans.  相似文献   

18.
目的:监测中国南极冰盖考察预选队员心血管系统随海拔增高的变化,探讨筛查低氧易感队员和急性高原病的防治。方法:用无创血流动力学监护仪和十二导联心电图机,在北京(40 m)、拉萨(3 650 m)、羊八井(4 300 m)对第25次和26次南极冰盖考察预选队员心血管功能进行连续动态性监测。结果:随着海拔的增高,心率、收缩压、舒张压、平均动脉压、外周血管阻力、外周血管阻力指数显著升高(P0.05),心输出量、心指数、搏出量、搏出指数、加速度指数、速度指数、左心射血时间显著降低(P0.05),预射血期呈降低趋势(P0.05)。结论:随着海拔的增高,预选队员的外周血管阻力显著升高,左心泵血和收缩功能减弱且与Q-TC间期呈负相关。  相似文献   

19.
The differences in shape between central aortic pressure (P(Ao)) and flow waveforms have never been explained satisfactorily in that the assumed explanation (substantial reflected waves during diastole) remains controversial. As an alternative to the widely accepted frequency-domain model of arterial hemodynamics, we propose a functional, time-domain, arterial model that combines a blood conducting system and a reservoir (i.e., Frank's hydraulic integrator, the windkessel). In 15 anesthetized dogs, we measured P(Ao), flows, and dimensions and calculated windkessel pressure (P(Wk)) and volume (V(Wk)). We found that P(Wk) is proportional to thoracic aortic volume and that the volume of the thoracic aorta comprises 45.1 +/- 2.0% (mean +/- SE) of the total V(Wk). When we subtracted P(Wk) from P(Ao), we found that the difference (excess pressure) was proportional to aortic flow, thus resolving the differences between P(Ao) and flow waveforms and implying that reflected waves were minimal. We suggest that P(Ao) is the instantaneous summation of a time-varying reservoir pressure (i.e., P(Wk)) and the effects of (primarily) forward-traveling waves in this animal model.  相似文献   

20.
The slope of the action potential duration (APD) restitution curve may be a significant determinant of the propensity to develop ventricular fibrillation, with steeper slopes associated with a more arrhythmogenic substrate. We hypothesized that one mechanism by which beta-blockers reduce sudden cardiac death is by flattening the APD restitution curve. Therefore, we investigated whether infusion of esmolol modulates the APD restitution curve in vivo. In 10 Yorkshire pigs, dynamic APD restitution curves were determined from measurements of APD at 90% repolarization with a monophasic action potential catheter positioned against the right ventricular septum during right ventricular apical pacing in the basal state and during infusion of esmolol. APD restitution curves were fitted to the three-parameter (a, b, c) exponential equation, APD = a.[1 - e((-b.DI))] + c, where DI is the diastolic interval. Esmolol decreased the maximal APD slope, 0.68 +/- 0.14 vs. 0.94 +/- 0.24 (baseline), P = 0.002, and flattened the APD restitution curve at shorter DIs, 75 and 100 ms (P < 0.05). To compare the slopes of the APD restitution curves at similar steady states, slopes were also computed at points of intersection between the restitution curve and the lines representing pacing at a fixed cycle length (CL) of 200, 225, 250, 275, and 300 ms using the relationship CL = APD + DI. Esmolol decreased APD restitution slopes at CLs 200-275 ms (P < 0.05). Esmolol flattens the cardiac APD restitution curve in vivo, particularly at shorter CLs and DIs. This may represent a novel mechanism by which beta-blockers prevent sudden cardiac death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号