首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Raf-1 kinase plays a key role in relaying proliferation signals elicited by mitogens or oncogenes. Raf-1 is regulated by complex and incompletely understood mechanisms including phosphorylation. A number of studies have indicated that phosphorylation of serines 259 and 621 can inhibit the Raf-1 kinase. We show that both serines are hypophosphorylated during early mitogenic stimulation and that hypophosphorylation correlates with peak Raf-1 activation. Concentrations of okadaic acid that selectively inhibit protein phosphatase 2A (PP2A) induce phosphorylation of these residues and prevent maximal activation of the Raf-1 kinase. This effect is mediated via phosphorylation of serine 259. The PP2A core heterodimer forms complexes with Raf-1 in vivo and in vitro. These data identify PP2A as a positive regulator of Raf-1 activation and are the first indication that PP2A may support the activation of an associated kinase.  相似文献   

2.
Adenosine plays a role in regulating the contractile function of the heart. This includes a positive ionotropic action via the adenosine A(2A) receptor (A(2A)R) and an inhibition of beta(1)-adrenergic receptor-induced ionotropy (antiadrenergic action) via the adenosine A(1) receptor (A(1)R). Phosphatase activity has also been shown to influence contractile function by affecting the level of protein phosphorylation. Protein phosphatase 2A (PP2A) plays a significant role in mediating the A(1)R antiadrenergic effect. The purpose of this study was to investigate the effects of A(2A)R and A(1)R on the activities of PP2A in hearts obtained from wild-type (WT) and A(2A)R knockout (A(2A)R-KO) mice. PP2A activities were examined in myocardial particulate and cytoplasmic extract fractions. Treatment of wild-type hearts with the A(1)R agonist CCPA increased the total PP2A activity and increased the particulate:cytoplasmic PP2A activity ratio. Treatment with the A(2A)R agonist CGS-21680 (CGS) decreased the total PP2A activity and decreased the particulate:cytoplasmic PP2A activity ratio. This indicated a movement of PP2A activity between cell fractions. The effect of CCPA was inhibited by CGS. In A(2A)R-KO hearts the response to A(1)R activation was markedly enhanced whereas the response to A(2A)R activation was absent. These data show that A(2A)R and A(1)R regulate PP2A activity, thus suggesting an important mechanism for modulating myocardial contractility.  相似文献   

3.
The important role of the serine/threonine protein phosphatase 2A (PP2A) in various cellular processes requires a precise and dynamic regulation of PP2A activity, localization, and substrate specificity. The regulation of the function of PP2A involves the reversible methylation of the COOH group of the C-terminal leucine of the catalytic subunit, which, in turn, controls the enzyme's heteromultimeric composition and confers different protein recognition and substrate specificity. We have determined the structure of PPM1, the yeast methyltransferase responsible for methylation of PP2A. The structure of PPM1 reveals a common S-adenosyl-l-methionine-dependent methyltransferase fold, with several insertions conferring the specific function and substrate recognition. The complexes with the S-adenosyl-l-methionine methyl donor and the S-adenosyl-l-homocysteine product and inhibitor unambiguously revealed the co-substrate binding site and provided a convincing hypothesis for the PP2A C-terminal peptide binding site. The structure of PPM1 in a second crystal form provides clues to the dynamic nature of the PPM1/PP2A interaction.  相似文献   

4.
Adenosine A1 receptor activation causes protein phosphatase 2a (PP2a) activation in ventricular myocytes. This attenuates beta-adrenergic functional effects in the heart (Liu Q and Hofmann PA. Am J Physiol Heart Circ Physiol 283: H1314-H1321, 2002). The purpose of the present study was to identify the signaling pathway involved in the translocation/activation of PP2a by adenosine A1 receptors in ventricular myocytes. We found that N6-cyclopentyladenosine (CPA; an adenosine A1 receptor agonist)-induced PP2a translocation was blocked by p38 MAPK inhibition but not by JNK inhibition. CPA increased phosphorylation of p38 MAPK, and this effect was abolished by pertussis toxin and inhibitors of the cGMP pathway. Moreover, CPA-induced PP2a translocation was blocked by inhibition of the cGMP pathway. Guanylyl cyclase activation mimicked the effects of CPA and caused p38 MAPK phosphorylation and PP2a translocation. Finally, CPA-induced dephosphorylations of troponin I and phospholamban were blocked by pertussis toxin and attenuated by p38 MAPK inhibition. These results suggest that adenosine A1 receptor-mediated PP2a activation uses a pertussis toxin-sensitive Gi protein-guanylyl cyclase-p38 MAPK pathway. This proposed, novel pathway may play a role in acute modulation of cardiac function.  相似文献   

5.
This study describes a novel mechanism of regulation of the high-affinity Na(+)-dependent adenosine transporter (CNT2) via the activation of A(1) adenosine receptors (A(1)R). This regulation is mediated by the activation of ATP-sensitive K(+) (K(ATP)) channels. The high-affinity Na(+)-dependent adenosine transporter CNT2 and A(1)R are coexpressed in the basolateral domain of the rat hepatocyte plasma membrane and are colocalized in the rat hepatoma cell line FAO. The transient increase in CNT2-mediated transport activity triggered by (-)-N(6)-(2-phenylisopropyl)adenosine is fully inhibited by K(ATP) channel blockers and mimicked by a K(ATP) channel opener. A(1)R agonist activation of CNT2 occurs in both hepatocytes and FAO cells, which express Kir6.1, Kir6.2, SUR1, SUR2A, and SUR2B mRNA channel subunits. With the available antibodies against Kir6.X, SUR2A, and SUR2B, it is shown that all of these proteins colocalize with CNT2 and A(1)R in defined plasma membrane domains of FAO cells. The extent of the purinergic modulation of CNT2 is affected by the glucose concentration, a finding which indicates that glycemia and glucose metabolism may affect this cross-regulation among A(1)R, CNT2, and K(ATP) channels. These results also suggest that the activation of K(ATP) channels under metabolic stress can be mediated by the activation of A(1)R. Cell protection under these circumstances may be achieved by potentiation of the uptake of adenosine and its further metabolization to ATP. Mediation of purinergic responses and a connection between the intracellular energy status and the need for an exogenous adenosine supply are novel roles for K(ATP) channels.  相似文献   

6.
In the epididymal portion of rat vas deferens, facilitation of noradrenaline release mediated by adenosine A2A receptors, but not that mediated by beta2-adrenoceptors or by direct activation of adenylyl cyclase, was attenuated by blockade of alpha2-adrenoceptors and abolished by simultaneous blockade of alpha2-adrenoceptors, adenosine A1 and P2Y receptors. The adenosine A2A receptor-mediated facilitation was not changed by inhibitors of protein kinase A, protein kinase G or calmodulin kinase II but was prevented by inhibition of protein kinase C with chelerythrine or bisindolylmaleimide XI. Activation of protein kinase C with phorbol 12-myristate 13-acetate caused a facilitation of noradrenaline release that was abolished by bisindolylmaleimide XI and reduced by antagonists of alpha2-adrenoceptors, adenosine A1 and P2Y receptors. Activation of adenosine A2A receptors attenuated the inhibition of noradrenaline release mediated by the presynaptic inhibitory receptors. This effect was mimicked by phorbol 12-myristate 13-acetate and prevented by bisindolylmaleimide XI. It is concluded that adenosine A2A receptors facilitate noradrenaline release by a mechanism that involves a protein kinase C-mediated attenuation of effects mediated by presynaptic inhibitory receptors, namely alpha2-adrenoceptors, adenosine A1 and P2Y receptors.  相似文献   

7.
Mice lacking dopamine D2 receptors exhibit a significantly decreased agonist-promoted forebrain neocortical D1 receptor activation that occurs without changes in D1 receptor expression levels. This raises the possibility that, in brains of D2 mutants, a substantial portion of D1 receptors are uncoupled from their G protein, a phenomenon known as receptor desensitization. To test this, we examined D1-agonist-stimulated [35S]GTPgammaS binding (in the presence and absence of protein phosphatase inhibitors) and cAMP production (in the presence and absence of pertussis toxin) in forebrain neocortical tissues of wild-type mice and D2-receptor mutants. These studies revealed a decreased agonist-stimulated G-protein activation in D2 mutants. Moreover, whereas protein phosphatase 1/2A (PP1/2A) and 2B (PP2B) inhibitors decrease [35S]GTPgammaS binding in a concentration-dependent manner in wild type, they have either no (PP2B) or only partial (PP1/2A) effects in D2 mutants. Furthermore, for D2 mutants, immunoprecipitation experiments revealed increased basal and D1-agonist-stimulated phosphorylation of D1-receptor proteins at serine residues. Finally, D1 immunoprecipitates of both wild type and D2 mutants also contain protein kinase A (PKA) and PP2B immunoreactivities. In D2 mutants, however, the catalytic activity of the immunoprecipitated PP2B is abolished. These data indicate that neocortical D1 receptors are physically linked to PKA and PP2B and that the increased phosphorylation of D1 receptors in brains of D2 mutants is due to defective dephosphorylation of the receptor rather than increased kinase-mediated phosphorylation.  相似文献   

8.
Extracellular ATP (ATPe) binds to P2X7 receptors (P2X7R) expressed on the surface of cells of hematopoietic lineage, including murine thymocytes. Activation of P2X7R by ATPe results in the opening of cation-specific channels, and prolonged ATPe exposure leads to the formation of non-selective pores enabling transmembrane passage of solutes up to 900 Da. In the presence of ATPe, P2X7R-mediated thymocyte death is due primarily to necrosis/lysis and not apoptosis, as measured by the release of lactate dehydrogenase indicative of a loss of plasma membrane integrity. The present study is focused on the identification of P2X7R signaling mediators in ATP-induced thymocyte necrosis/lysis. Thus, extracellular signal-regulated protein kinase 1/2 (Erk1/2) phosphorylation was found to be required for cell lysis, and both events were independent of ATP-induced calcium influx. P2X7R-dependent thymocyte death involved the chronological activation of Src family tyrosine kinase(s), phosphatidylinositol 3-kinase, the mitogen-activated protein (MAP) kinase(Erk1/2) module, and the proteasome. Although independent of this signaling cascade, non-selective pore formation may modulate ATP-mediated thymocyte death. These results therefore suggest a role for both activation of MAP kinase(Erk1/2) and non-selective pore opening in P2X7R-induced thymocyte death.  相似文献   

9.
G(q) protein-coupled receptor stimulation increases sarcolemmal Na(+)/H(+) exchanger (NHE1) activity in cardiac myocytes by an ERK/RSK-dependent mechanism, most likely via RSK-mediated phosphorylation of the NHE1 regulatory domain. Adenosine A(1) receptor stimulation inhibits this response through a G(i) protein-mediated pathway, but the distal inhibitory signaling mechanisms are unknown. In cultured adult rat ventricular myocytes (ARVM), the A(1) receptor agonist cyclopentyladenosine (CPA) inhibited the increase in NHE1 phosphorylation induced by the alpha(1)-adrenoreceptor agonist phenylephrine, without affecting activation of the ERK/RSK pathway. CPA also induced significant accumulation of the catalytic subunit of type 2A protein phosphatase (PP2A(c)) in the particulate fraction, which contained the cellular NHE1 complement; this effect was abolished by pretreatment with pertussis toxin to inactivate G(i) proteins. Confocal immunofluorescence microscopic imaging of CPA-treated ARVM revealed significant co-localization of PP2A(c) and NHE1, in intercalated disc regions. In an in vitro assay, purified PP2A(c) dephosphorylated a GST-NHE1 fusion protein containing aa 625-747 of the NHE1 regulatory domain, which had been pre-phosphorylated by recombinant RSK; such dephosphorylation was inhibited by the PP2A-selective phosphatase inhibitor endothall. In intact ARVM, the ability of CPA to attenuate the phenylephrine-induced increase in NHE1 phosphorylation and activity was lost in the presence of endothall. These studies reveal a novel role for the PP2A holoenzyme in adenosine A(1) receptor-mediated regulation of NHE1 activity in ARVM, the mechanism of which appears to involve G(i) protein-mediated translocation of PP2A(c) and NHE1 dephosphorylation.  相似文献   

10.
Myosin light chain 2 (LC2) phosphorylation is of both physiological and pathological importance to myocardial function. The phosphatase that directly dephosphorylates LC2 is a type 1 protein phosphatase (PP1) that contains a catalytic subunit that complexes with a myosin-binding phosphatase targeting subunit (MYPT). The goal of the present study was to examine the role of MYPT in the regulation of PP1 in ventricular myocytes. In the first part of the study, regional distribution of MYPT expression and phosphorylation were determined in unstimulated hearts. The pattern of MYPT phosphorylation was inversely related to the LC2 phosphorylation spatial gradient as described by Epstein and colleagues (Davis JS, Hassanzadeh S, Winitsky S, Lin H, Satorius C, Vemuri R, Aletras AH, Wen H, and Epstein ND. Cell 107: 631-641, 2001). In the second part of the study, adult rat isolated ventricular myocytes were exposed to an alpha-adrenergic receptor agonist, and properties of MYPT, PP1, and LC2 were studied. We found MYPT associates with cardiac myofilaments, and this association increases upon alpha-adrenergic receptor stimulation. Activation of alpha-adrenergic receptors also led to a decrease in the PP1-myofilament association. Furthermore, alpha-adrenergic receptor stimulation results in phosphorylation of MYPT and LC2 and an increase in myocyte Ca(2+) sensitivity of tension that all depend on Rho kinase activation. These data support the hypothesis that alpha-adrenergic receptor activation works through Rho kinase to phosphorylate MYPT, and phosphorylated MYPT dissociates from PP1 so that PP1 is no longer physically associated with LC2. Hence, we propose a pathway for the dynamic modulation of LC2 phosphorylation through receptor-dependent phosphorylation of MYPT, and a spatial gradient of LC2 phosphorylation under basal conditions that occurs due to varied levels of phosphorylation of MYPT in ventricles.  相似文献   

11.
Protein phosphatase 1(PP1) is a key regulator of cardiac function through dephosphorylating serine/threonine residues within target proteins to oppose the function of protein kinases. Studies from failing hearts of animal models and human patients have demonstrated significant increase of PP1 activity in myocardium, while elevated PP1 activity in transgenic mice leads to cardiac dysfunction, suggesting that PP1 might be a therapeutic target to ameliorate cardiac dysfunction in failing hearts. In fact, cardiac overexpression of inhibitor 1, the endogenous inhibitor of PP1, increases cardiac contractility and suppresses heart failure progression. However, this notion of PP1 inhibition for heart failure treatment has been challenged by recent studies on the isoform-specific roles of PP1 in the heart. PP1 is a holoenzyme composed of catalytic subunits (PP1α, PP1β, or PP1γ) and regulatory proteins that target them to distinct subcellular locations for functional specificity. This review will summarize how PP1 regulates phosphorylation of some of the key cardiac proteins involved in Ca2+ handling and cardiac contraction, and the potential role of PP1 isoforms in controlling cardiac physiology and pathophysiology.  相似文献   

12.
We have previously reported a direct in vivo interaction between the activated insulin receptor and protein-tyrosine phosphatase-1B (PTP1B), which leads to an increase in PTP1B tyrosine phosphorylation. In order to determine if PTP1B is a substrate for the insulin receptor tyrosine kinase, the phosphorylation of the Cys 215 Ser, catalytically inactive mutant PTP1B (CS-PTP1B) was measured in the presence of partially purified and activated insulin receptor. In vitro, the insulin receptor tyrosine kinase catalyzed the tyrosine phosphorylation of PTP1B. 53% of the total cellular PTP1B became tyrosine phosphorylated in response to insulin in vivo. Tyrosine phosphorylation of PTP1B by the insulin receptor was absolutely dependent upon insulin-stimulated receptor autophosphorylation and required an intact kinase domain, containing insulin receptor tyrosines 1146, 1150 and 1151. Tyrosine phosphorylation of wild type PTP1B by the insulin receptor kinase increased phosphatase activity of the protein. Intermolecular transdephosphorylation was demonstrated both in vitro and in vivo, by dephosphorylation of phosphorylated CS-PTP1B by the active wild type enzyme either in a cell-free system or via expression of the wild type PTP1B into Hirc-M cell line, which constitutively overexpress the human insulin receptor and CS-PTP1B. These results suggest that PTP1B is a target protein for the insulin receptor tyrosine kinase and PTP1B can regulate its own phosphatase activity by maintaining the balance between its phosphorylated (the active form) and dephosphorylated (the inactive form) state.  相似文献   

13.
Recombinant I(1)(PP2A) and I(2)(PP2A) did not affect the activity of the catalytic subunit of protein phosphatase 1 (PP1(C)) with (32)P-labeled myelin basic protein, histone H1, and phosphorylase when assayed in the absence of divalent cations. However, in the presence of Mn(2+), I(1)(PP2A) and I(2)(PP2A) stimulated PP1(C) activity by 15-20-fold with myelin basic protein and histone H1 but not phosphorylase. Half-maximal stimulation occurred at 2 and 4 nM I(1)(PP2A) and I(2)(PP2A), respectively. Moreover, I(1)(PP2A) and I(2)(PP2A) reduced the Mn(2+) requirement by about 30-fold to 10 microM. In contrast, PP1(C) activity was unaffected by I(1)(PP2A) and I(2)(PP2A) in the presence of Co(3+) (0.1 mM), Mg(2+) (2 mM), Ca(2+) (0.5 mM), and Zn(2+) (0.1 mM). Following gel filtration chromatography on Sephacryl S-200 in the presence of Mn(2+), PP1(C) coeluted with I(1)(PP2A) and I(2)(PP2A) in the void volume. However, when I(1)(PP2A) and I(2)(PP2A) or Mn(2+) were omitted, PP1(C) emerged with a V(e)/V(0) of approximately 1.6. The results demonstrate that I(1)(PP2A) and I(2)(PP2A) associate with and modify the substrate specificity of PP1(C) in the presence of physiological concentrations of Mn(2+). A novel role is suggested for I(1)(PP2A) and I(2)(PP2A) in the reciprocal regulation of two major mammalian serine/threonine phosphatases, PP1 and PP2A.  相似文献   

14.
Amyotrophic lateral sclerosis (ALS) is a disease leading to neuromuscular transmission impairment. A2A adenosine receptor (A2AR) function changes with disease stage, but the role of the A1 receptors (A1Rs) is unknown and may have a functional cross-talk with A2AR. The role of A1R in the SOD1(G93A) mouse model of ALS in presymptomatic (4–6 weeks old) and symptomatic (12–14 weeks old) phases was investigated by recording endplate potentials (EPPs), miniature endplate potentials (MEPPs), and quantal content (q.c.) of EPPs, from Mg2+ paralyzed hemidiaphragm preparations. In presymptomatic mice, the A1R agonist, N6-cyclopentyladenosine (CPA) (50 nM), decreased mean EPP amplitude, MEPP frequency, and q.c. of EPPs, an effect quantitatively similar to that in age-matched wild-type (WT) mice. However, coactivation of A2AR with CGS 21680 (5 nM) prevented the effects of CPA in WT mice but not in presymptomatic SOD1(G93A) mice, suggestive of A1R/A2AR cross-talk disruption in this phase of ALS. DPCPX (50 nM) impaired CGS 21680 facilitatory action on neuromuscular transmission in WT but not in presymptomatic mice. In symptomatic animals, CPA only inhibited transmission if added in the presence of adenosine deaminase (ADA, 1 U/mL). ADA and DPCPX enhanced more transmission in symptomatic mice than in age-matched WT mice, suggestive of increase in extracellular adenosine during the symptomatic phase of ALS. The data documents that at the neuromuscular junction of presymptomatic SOD1(G93A) mice, there is a loss of A1R-A2AR functional cross-talk, while in symptomatic mice there is increased A1R tonic activation, and that with disease progression, changes in A1R-mediated adenosine modulation may act as aggravating factors during the symptomatic phase of ALS.  相似文献   

15.
The ATP.Mg-dependent type-1 protein phosphatase and its activating factor (protein kinase FA) were identified to exist in brain synaptosome. The inactive protein phosphatase was found to exist in the synaptosomal cytosol whereas its activating factor (protein kinase FA) was present in the synaptosomal membrane, indicating that the inactive protein phosphatase and its activating factor FA are localized in two separate subcellular compartments. The membrane-bound FA was found to exist in two forms; approximately 75% of FA is inactive and trypsin-resistant, whereas 25% of FA is active and trypsin-labile. When membranes were incubated with exogenous phospholipase C, the inactive/trypsin-resistant FA could be activated and sequestered to become the active/trypsin-labile FA in a time- and dose-dependent manner. Taken together, the results provide initial evidence that the activation-sequestration of membrane-bound protein kinase FA may represent one mode of control modulating the activity of protein kinase FA and thereby to activate protein phosphatase in brain synaptosome, representing an efficient regulatory mechanism for regulating neurotransmission in the central nervous system.  相似文献   

16.
Spatial control of protein phosphatase 2A (de)methylation   总被引:2,自引:0,他引:2  
Reversible methylation of the protein phosphatase 2A catalytic subunit (PP2A(C)(1)) is an important regulatory mechanism playing a crucial role in the selective recruitment of regulatory B subunits. Here, we investigated the subcellular localization of leucine carboxyl methyltransferase (LCMT1) and protein phosphatase methylesterase (PME-1), the two enzymes catalyzing this process. The results show that PME-1 is predominantly localized in the nucleus and harbors a functional nuclear localization signal, whereas LCMT1 is underrepresented in the nucleus and mainly localizes to the cytoplasm, Golgi region and late endosomes. Indirect immunofluorescence with methylation-sensitive anti-PP2A(C) antibodies revealed a good correlation with the methylation status of PP2A(C), demethylated PP2A(C) being substantially nuclear. Throughout mitosis, demethylated PP2A(C) is associated with the mitotic spindle and during cytokinesis with the cleavage furrow. Overexpression of PME-1, but not of an inactive mutant, results in increased demethylation of PP2A(C) in the nucleus, whereas overexpression of a cytoplasmic PME-1 mutant lacking the NLS results in increased demethylation in the cytoplasm-in all cases, however, without any obvious functional consequences. PME-1 associates with an inactive PP2A population, regardless of its esterase activity or localization. We propose that stabilization of this inactive, nuclear PP2A pool is a major in vivo function of PME-1.  相似文献   

17.
C-protein purified from chicken cardiac myofibrils was phosphorylated with the catalytic subunit of cAMP-dependent protein kinase to nearly 3 mol [32P]phosphate/mol C protein. Digestion of 32P-labeled C-protein with trypsin revealed that the radioactivity was nearly equally distributed in three tryptic peptides which were separated by reversed-phase HPLC. Fragmentation of 32P-labeled C-protein with CNBr showed that the isotope was incorporated at different ratios in three CNBr fragments which were separated on polyacrylamide gels in the presence of sodium dodecyl sulfate. Phosphorylation was present in both serine and threonine residues. Incubation of 32P-labeled C-protein with the catalytic subunit of protein phosphatase 1 or 2A rapidly removed 30-40% of the [32P]phosphate. The major site(s) dephosphorylated by either one of the phosphatases was a phosphothreonine residue(s) apparently located on the same tryptic peptide and on the same CNBr fragment. CNBr fragmentation also revealed a minor phosphorylation site which was dephosphorylated by either of the phosphatases. Increasing the incubation period or the phosphatase concentration did not result in any further dephosphorylation of C-protein by phosphatase 1, but phosphatase 2A at high concentrations could completely dephosphorylate C-protein. These results demonstrate that C-protein phosphorylated with cAMP-dependent protein kinase can be dephosphorylated by protein phosphatases 1 and 2A. It is suggested that the enzyme responsible for dephosphorylation of C-protein in vivo is phosphatase 2A.  相似文献   

18.
Human CD2 regulates T cell activation and adhesion via mechanisms yet to be fully understood. This study focuses on CD2BP1, a CD2 cytoplasmic tail-binding protein preferentially expressed in hematopoetic cells. Structural and functional analyses suggest that CD2BP1 acts as a scaffold protein, participating in regulation of the actin cytoskeleton. In this study, using a murine Ag-specific primary T cell transduction system to assess CD69, IL-2, and IFN-gamma expression, we provide evidence that CD2BP1 directly and negatively impacts T cell activation via isolated CD2 triggering or TCR stimulation dependent on coordinate CD2 engagement. Disruption of protein tyrosine phosphatase-PEST and/or CD2BP1 association with the CD2 signalsome rescues T cells from the inhibitory effect of CD2 crosslinking. The overexpression of CD2BP1 selectively attenuates phospholipase Cgamma1, ERK1/2, and p38 phosphorylation without abrogating CD2-independent TCR stimulation. This study provides new insight on the regulation of T cell activation and may have implications for autoimmune processes known to be associated with CD2BP1 mutations.  相似文献   

19.
Two protein tyrosine phosphatase genes, PTP1 and PTP2, are known in Saccharomyces cerevisiae. However, the functions of these tyrosine phosphatases are unknown, because mutations in either or both phosphatase genes have no clear phenotypic effects. In this report, we demonstrate that although ptp2 has no obvious phenotype by itself, it has a profound effect on cell growth when combined with mutations in a novel protein phosphatase gene. Using a colony color sectoring assay, we isolated 25 mutants in which the expression of PTP1 or PTP2 is required for growth. Complementation tests of the mutants showed that they have a mutation in one of three genes. Cloning and sequence determination of one of these gene, PTC1, indicated that it encodes a homolog of the mammalian protein serine/threonine phosphatase 2C (PP2C). The amino acid sequence of the PTC1 product is approximately 35% identical to PP2C. Disruption of PTC1 indicated that the PTC1 function is nonessential. In contrast, ptc1 ptp2 double mutants showed a marked growth defect. To examine whether PTC1 encodes an active protein phosphatase, a glutathione S-transferase (GST)-PTC1 fusion gene was constructed and expressed in Escherichia coli. Purified GST-PTC1 fusion protein hydrolyzed a serine phosphorylated substrate in the presence of the divalent cation Mg2+ or Mn2+. GST-PTC1 also had weak (approximately 0.5% of its serine phosphatase activity) protein tyrosine phosphatase activity.  相似文献   

20.
We have shown previously that the ubiquitin ligase MID1, mutations of which cause the midline malformation Opitz BBB/G syndrome (OS), serves as scaffold for a microtubule-associated protein complex that regulates protein phosphatase 2A (PP2A) activity in a ubiquitin-dependent manner. Here, we show that the MID1 protein complex associates with mRNAs via a purine-rich sequence motif called MIDAS (MID1 association sequence) and thereby increases stability and translational efficiency of these mRNAs. Strikingly, inclusion of multiple copies of the MIDAS motif into mammalian mRNAs increases production of the encoded proteins up to 20-fold. Mutated MID1, as found in OS patients, loses its influence on MIDAS-containing mRNAs, suggesting that the malformations in OS patients could be caused by failures in the regulation of cytoskeleton-bound protein translation. This is supported by the observation that the majority of mRNAs that carry MIDAS motifs is involved in developmental processes and/or energy homeostasis. Further analysis of one of the proteins encoded by a MIDAS-containing mRNA, namely PDPK-1 (3-phosphoinositide dependent protein kinase-1), which is an important regulator of mammalian target of rapamycin/PP2A signaling, showed that PDPK-1 protein synthesis is significantly reduced in cells from an OS patient compared with an age-matched control and can be rescued by functional MID1. Together, our data uncover a novel messenger ribonucleoprotein complex that regulates microtubule-associated protein translation. They suggest a novel mechanism underlying OS and point at an enormous potential of the MIDAS motif to increase the efficiency of biotechnological protein production in mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号