首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
抑癌基因的负转录调控   总被引:1,自引:0,他引:1  
抑癌基因在正常细胞中适度表达,抑制细胞永生及转化,其转录下调见于某些肿瘤,而在衰老细胞中常见表达上调或活性增强。抑癌基因INK4a/ARF、p53和p21^Cipl的表达及其负调控与肿瘤及细胞衰老的关系十分密切。  相似文献   

5.
自噬(autophagy)是真核生物长期进化形成的一种高度保守的细胞内物质降解和周转途径,通过形成双层膜结构的自噬体将包裹其中的待降解大分子物质,如受损伤的蛋白质、蛋白质复合物和细胞器,运送至液泡或溶酶体进行降解并产生可循环利用的降解产物。细胞自噬在植物生长发育和环境应答等过程中发挥重要作用。在拟南芥(Arabidop...  相似文献   

6.
7.
8.
9.
Novel Regulation of Vegetative Storage Protein Genes   总被引:33,自引:7,他引:26       下载免费PDF全文
  相似文献   

10.
11.
12.
13.
Prolamins, the seed storage proteins of maize, sorghum and coix were also found in sugarcane. Prolamins are grouped into structurally distinct classes termed the α-, β-, γ- and δ-prolamins. Orthologues for almost all of the α-, β-, γ- and δ-prolamins classes were identified in sugarcane. In maize, there are two molecular weight classes of α-prolamins, the 22 and 19 kD α-zeins. Sugarcane also possesses both the 22 kD and the 19 kD α-prolamins, which we denote as caneins, whereas sorghum and coix contain only the 22 kD α-prolamin (α-kafirin and α-coixin, respectively). Amino acid sequence alignments of the 22 and 19 kD α-prolamins from these plants revealed that both the 19 kD α-zein and the 19 kD α-canein lack around 20 amino acids at the sixth α-helix domain. We postulate that the 19 kD α-prolamins originated from a deletion of the sixth α-helix of a 22 kD counterpart in the saccharum lineage. Saccharum and sorghum diverged around five to nine million years ago (Mya), when only the 22 kD α-prolamins existed. The 19 kD α-canein must therefore have emerged after this time. Sorghum possesses a 19 kD α-prolamin similar to that of sugarcane and maize, but it contains the sixth α-helix domain lacking in the 19 kD α-zein and the 19 kD α-canein. This sorghum α-prolamin that we called 19 kD-like α-kafirin must be the ancestor of the 19 kD α-canein. The 19 kD-like α-kafirin could also be the ancestor of the 19 kD α-zein but it is also possible that the genes encoding the 19 kD α-zein and the 19 kD α-canein have evolved separately in these close groups.  相似文献   

14.
15.
16.
Bacteriocin production in many Gram-positive bacteria is controlled by a two-component regulatory system that is composed of the sensor protein and the response regulator. In this work, methods of computer analysis were used to describe the locus of genes responsible for the synthesis of class II bacteriocins in theStreptococcus equi genome. Potential regulatory sites (direct repeats) recognized by a DNA-binding protein of the corresponding two-component system were predicted.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号