首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The utilization of ribose by Veillonella alcalescens has been further investigated. Nonfermentation of ribose is not a result of a phosphorylation lesion since ribose-phosphorylating activity was measured in cell extracts. Resting cells accumulated ribose-5-phosphate and nucleotides when 14C-ribose was provided; no other sugar phosphates were detectable. Resting cells that were shifted to growth conditions polymerized rather than degraded the accumulated ribose compounds. Cell extracts contained a fructose diphosphate phosphatase. Ribose-5-phosphate, glucose-6-phosphate, and fructose-6-phosphate were not hydrolyzed. It is postulated that the nonfermentation of ribose is not due to any metabolic lesions, but is a consequence of metabolic control at the fructose diphosphate level of glycolysis.  相似文献   

2.
Summary Binding sites for horseradish peroxidase (HRP), with unusual properties, were detected on the surface of cultured and isolated cells after the cells (on cover slips) had been quickly dried, fixed in cold methanol, and postfixed in a paraformaldehyde solution. The reaction for surface-bound HRP was suppressed by micromolar concentrations of glycoproteins such as invertase, equine luteinizing hormone (eLH) or human chorionic gonadotropin (hCG). The reaction was also suppressed by 20 mM CDP, UDP, GTP, NAD, and ribose 5-phosphate. Two to six times higher concentrations of GMP, fructose 1-phosphate, galactose 6 phosphate, mannose 6-phosphate, fructose 6-phosphate, and glucose 6-phosphate were required to suppress the binding eaction. AMP, ATP, heparin, mannan, and eight non-phosphorylated sugars showed relatively low competing potencies but fucoidin and -lactalbumin were strong inhibitors. No addition of Ca2+ was required for the binding of HRP to the cell surface. However, calcium-depleted, inactive HRP did not compete with the binding of native (calcium-containing) HRP whereas H2O2-inactivated HRP suppressed the binding. GTP, NAD, ribose 5-phosphate, and EGTA accelerated the release of previously-bound HRP from the cell surface whereas glycoproteins (invertase, cLH, and hCG) did not do se. Addition of Ca2+ to GTP, NAD, ribose 5-phosphate or to EGTA prevented the accelerated release of HRP from the cell surface. It is suggested that calciam, present either in the surface membrane or in HRP itself, is involved in the binding of HRP to the cell surface and in the inhibition of binding by GTP, NAD, and ribose 5-phosphate. It is also suggested that -lactalbumin, GTP, UDP, and CDP compete with the binding of HRP to a glycosyltransferase on the cell surface.  相似文献   

3.
Methods for the quantitative determination of ribose 5-phosphate isomerase, ribulose 5-phosphate 3-epimerase, transketolase and transaldolase in tissue extracts are described. The determinations depend on the measurement of glyceraldehyde 3-phosphate by using the coupled system triose phosphate isomerase, α-glycero-phosphate dehydrogenase and NADH. By using additional purified enzymes transketolase, ribose 5-phosphate isomerase and ribulose 5-phosphate epimerase conditions could be arranged so that each enzyme in turn was made rate-limiting in the overall system. Transaldolase was measured with fructose 6-phosphate and erythrose 4-phosphate as substrates, and again glyceraldehyde 3-phosphate was measured by using the same coupled system. Measurements of the activities of the non-oxidative reactions of the pentose phosphate pathway were made in a variety of tissues and the values compared with those of the two oxidative steps catalysed by glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase.  相似文献   

4.
Binding sites for horseradish peroxidase (HRP), with unusual properties, were detected on the surface of cultured and isolated cells after the cells (on cover slips) had been quickly dried, fixed in cold methanol, and post-fixed in a paraformaldehyde solution. The reaction for surface-bound HRP was suppressed by micromolar concentrations of glycoproteins such as invertase, equine luteinizing hormone (eLH) or human chorionic gonadotropin (hCG). The reaction was also suppressed by 20 mM CDP, UDP, GTP, NAD, and ribose 5-phosphate. Two to six times higher concentrations of GMP, fructose 1-phosphate, galactose 6-phosphate, mannose 6-phosphate, fructose 6-phosphate, and glucose 6-phosphate were required to suppress the binding reaction. AMP, ATP, heparin, mannan, and eight non-phosphorylated sugars showed relatively low competing potencies but fucoidin and alpha-lactalbumin were strong inhibitors. No addition of Ca2+ was required for the binding of HRP to the cell surface. However, calcium-depleted, inactive HRP did not compete with the binding of native (calcium-containing) HRP whereas H2O2-inactivated HRP suppressed the binding. GTP, NAD, ribose 5-phosphate, and EGTA accelerated the release of previously-bound HRP from the cell surface whereas glycoproteins (invertase, eLH, and hCG) did not do so. Addition of Ca2+ to GTP, NAD, ribose 5-phosphate or to EGTA prevented the accelerated release of HRP from the cell surface. It is suggested that calcium, present either in the surface membrane or in HRP itself, is involved in the binding of HRP to the cell surface and in the inhibition of binding by GTP, NAD, and ribose 5-phosphate. It is also suggested that alpha-lactalbumin, GTP, UDP, and CDP compete with the binding of HRP to a glycosyltransferase on the cell surface.  相似文献   

5.
The light-dependent synthesis of glycolate derived from fructose 1,6-diphosphate, ribose 5-phosphate, or glycerate 3-phosphate was studied in the intact spinach (Spinacia oleracea) chloroplasts in the absence of CO(2). Glycolate yield increased with an elevation of O(2), pH, and the concentration of the phosphorylated compound supplied. No pH optimum was observed as the pH was increased from 7.4 to 8.5. The average maximal rate of glycolate synthesis was 50 mumoles per milligram chlorophyll per hour while the highest rate observed was 92 with 2.5 mm fructose 1,6-diphosphate in 100% O(2). The highest yields of glycolate synthesized from fructose 1,6-diphosphate, ribose 5-phosphate, or glycerate 3-phosphate were 0.14, 0.24, and 0.30, respectively, on a molar basis.  相似文献   

6.
Phosphofructokinase (EC 2.7.1.11) is a major enzyme of the glycolytic pathway, catalyzing the conversion of fructose 6-phosphate to fructose 1,6-bisphosphate. In this study, we demonstrated the effect of ribose 1,5-bisphosphate on phosphofructokinase purified from rat kidney cortex. Ribose 1,5-bisphosphate relieved the phosphofructokinase from ATP inhibition and increased the affinity for fructose 6-phosphate at nanomolar concentrations. These activating effects of ribose 1,5-bisphosphate were enhanced in the presence of AMP. Ribose 1,5-bisphosphate reduced the inhibition of the phosphofructokinase induced by citrate. These results suggest that ribose 1,5-bisphosphate is an activator of rat kidney cortex phosphofructokinase and synergistically regulates the enzyme activity with AMP.  相似文献   

7.
Level of photosynthetic intermediates in isolated spinach chloroplasts   总被引:15,自引:12,他引:3       下载免费PDF全文
Latzko E  Gibbs M 《Plant physiology》1969,44(3):396-402
The level of intermediates of the photosynthetic carbon cycle was measured in intact spinach chloroplasts in an attempt to determine the cause of the induction lag in CO2 assimilation. In addition, transient changes in the level of the intermediates were determined as affected by a light-dark period and by the addition of an excess amount of bicarbonate during a period of steady photosynthesis. Assayed enzymically were: ribulose 1,5-diphosphate, pentose monophosphates (mixture of ribose 5-phosphate, ribulose 5-phosphate and xylulose 5-phosphate, hexose monophosphates (mixture of glucose 6-phosphate, glucose 1-phosphate, and fructose 6-phosphate), glyceraldehyde 3-phosphate, dihydroxyacetone phosphate, glycerate acid 3-phosphate, a mixture of fructose 1,6-diphosphate and sedoheptulose 1,7-diphosphate, adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP).  相似文献   

8.
Thermodynamics of the enzyme-catalyzed (alkaline phosphatase, EC 3.1.3.1) hydrolysis of glucose 6-phosphate, mannose 6-phosphate, fructose 6-phosphate, ribose 5-phosphate, and ribulose 5-phosphate have been investigated using microcalorimetry and, for the hydrolysis of fructose 6-phosphate, chemical equilibrium measurements. Results of these measurements for the processes sugar phosphate2- (aqueous) + H2O (liquid) = sugar (aqueous) + HPO2++-(4) (aqueous) at 25 degrees C follow: delta Ho = 0.91 +/- 0.35 kJ.mol-1 and delta Cop = -48 +/- 18 J.mol-1.K-1 for glucose 6-phosphate; delta Ho = 1.40 +/- 0.31 kJ.mol-1 and delta Cop = -46 +/- 11 J.mol-1.dK-1 for mannose 6-phosphate; delta Go = -13.70 +/- 0.28 kJ.mol-1, delta Ho = -7.61 +/- 0.68 kJ.mol-1, and delta Cop = -28 +/- 42 J.mol-1.K-1 for fructose 6-phosphate; delta Ho = -5.69 +/- 0.52 kJ.mol-1 and delta Cop = -63 +/- 37 J.mol-1.K-1 for ribose 5-phosphate; and delta Ho = -12.43 +/- 0.45 kJ.mol-1 and delta Cop = -84 +/- 30 J.mol-1.K-1 for the hydrolysis of ribulose 5-phosphate. The standard state is the hypothetical ideal solution of unit molality. Estimates are made for the equilibrium constants for the hydrolysis of ribose and ribulose 5-phosphates. The effects of pH, magnesium ion concentration, and ionic strength on the thermodynamics of these reactions are considered.  相似文献   

9.
1. Ribose 5-phosphate was non-oxidatively synthesized from glucose 6-phosphate and triose phosphate by an enzyme extract prepared from rat liver (RLEP). Analysis of the intermediates by GLC, ion-exchange chromatography and specific enzymatic analysis, revealed the presence of the following intermediates of the L-type pentose pathway: altro-heptulose 1,7-bisphosphate, arabinose 5-phosphate and D-glycero D-ido octulose 8-phosphate. 2. With either [1-14C] or [2-14C]glucose 6-phosphate as diagnostic substrates, the distribution of 14C in ribose 5-phosphate was determined. At early time intervals (0.5-8 hr), [1-14C]glucose 6-phosphate introduced 14C into C-1, C-3 and C-5 of ribose 5-phosphate, at 17 hr 14C was confined to C-1. With [2-14C]glucose 6-phosphate as substrate, 14C was confined to C-2, C-3 and C-5 of ribose 5-phosphate during early times (0.5-8 hr), while at 17 hr 14C was located in C-2. 3. The transketolase exchange reaction, [14C]ribose 5-phosphate + altro-heptulose 7-phosphate in equilibrium ribose 5-phosphate + [14C]altro-heptulose 7-phosphate, was demonstrated for the first time using purified transketolase, its activity was measured and it is proposed to play a major role in the relocation of 14C into C-3 and C-5 or ribose 5-phosphate during the prediction labelling experiments. 4. The coupled transketolase-transaldolase reactions, 2 fructose 6-phosphate in equilibrium altro-heptulose 7-phosphate + xylulose 5-phosphate and 2 altro-heptulose 7-phosphate in equilibrium fructose 6-phosphate + D-glycero D-altro octulose 8-phosphate were demonstrated with purified enzymes, but are concluded to play a minor role in the non-oxidative synthesis of pentose 5-phosphate and octulose phosphate by (RLEP). 5. The formation of gem diol and dimers of erythrose 4-phosphate is proposed to account in part for the failure to detect monomeric erythrose 4-phosphate in the carbon balance studies. 6. The equilibrium value for the pentose pathway acting by the reverse mode in vitro was measured and contrasted with the value for the pathway acting in the forward direction. The initial specific rates of the pentose pathway reactions in vitro for the reverse and forward directions are measured. 7. The study which includes carbon balance, time course changes and 14C prediction labelling experiments reports a comprehensive investigation of the mechanism of the pentose pathway acting reversibly.  相似文献   

10.
Ian E. Woodrow  Keith A. Mott 《Planta》1993,191(4):421-432
A model of the C 3 photosynthetic system is developed which describes the sensitivity of the steadystate rate of carbon dioxide assimilation to changes in the activity of several enzymes of the system. The model requires measurements of the steady-state rate of carbon dioxide assimilation, the concentrations of several intermediates in the photosynthetic system, and the concentration of the active site of ribulose 1,5-bisphosphate carboxyalse/oxygenase (Rubisco). It is shown that in sunflowers (Helianthus annuus L.) at photon flux densities that are largely saturating for the rate of photosynthesis, the steady-stete rate of carbon dioxide assimilation is most sensitive to Rubisco activity and, to a lesser degree, to the activities of the stromal fructose, 6-bisphosphatase and the enzymes catalysing sucrose synthesis. The activities of sedoheptulose 1,7-bisphosphatase, ribulose 5-phosphate kinase, ATP synthase and the ADP-glucose pyrophosphorylase are calculated to have a negligible effect on the flux under the high-light conditions. The utility of this analysis in developing simpler models of photosynthesis is also discussed.Abbreviations c i intercellular CO2 concentration - C infP supJ control coefficient for enzyme P with respect to flux J - DHAP dihydroxyacetonephosphate - E4P erythrose 4-phosphate - F6P fructose 6-phosphate - FBP fructose 1,6-bisphosphate - FBPase fructose 1,6-bisphosphatase - G3P glyceraldehyde 3-phosphate - G1P glucose 1-phosphate - G6P glucose 6-phosphate - Pi inorganic phosphate - PCR photosynthetic carbon reduction - PGA 3-phosphoglyceric acid - PPFD photosynthetically active photon flux density - R n J response coefficient for effector n with respect to flux J - R5P ribose 5-phosphate - Rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase - Ru5P ribulose 5-phosphate - RuBP ribulose 1,5-bisphosphate - S7P sedoheptulose 7-phosphate - SBP sedoheptulose 1,7-bisphosphate - SBPase sedoheptulose 1,7-bisphosphatase - SPS sucrose-phosphate synthase - Xu5P xylulose 5-phosphate - n P elasticity coefficient for effector n with respect to the catalytic velocity of enzyme P This research was funded by an Australian Research Council grant to I.E.W. and was undertaken during a visity by K.A.M. to the James Cook University of North Queensland. The expert help of Glenys Hanley and Mick Kelly is greatly appreciated.  相似文献   

11.
Kirkland, Jerry J. (Oklahoma State University, Stillwater), and Norman N. Durham. Synthesis of protocatechuate oxygenase by Pseudomonas fluorescens in the presence of exogenous carbon sources. J. Bacteriol. 90:15-22. 1965.-The addition of glucose, ribose, or fructose (0.45 or 45.0 mumoles/ml) simultaneously with protocatechuic acid shortens the lag period required for synthesis of protocatechuate oxygenase by a washed-cell suspension of Pseudomonas fluorescens. Glucose is readily oxidized and supports growth of P. fluorescens, whereas neither ribose nor fructose readily supports growth. High glucose concentrations (45.0 mumoles/ml) shorten the lag period but lower the total enzyme synthesis. The pH drops during glucose oxidation, and this is accompanied by a decrease in the rate of enzyme synthesis. High glucose concentrations, with adequate buffering, permitted "normal" enzyme synthesis. A decrease in the total enzyme synthesis was not observed in the presence of high concentrations of ribose or fructose. Succinate, pyruvate, acetate, or formate (0.45 mumole/ml) were readily oxidized, but did not shorten the lag period required for synthesis of the enzyme. The data suggest that glucose, ribose, or fructose may serve as a "specific" carbon source (such as ribose-5-phosphate or a similar precursor important in ribonucleic acid synthesis) functional in the synthesis of protocatechuate oxygenase.  相似文献   

12.
6-Phosphofructo-1-kinase and fructose-1,6-bisphosphatase are rate-limiting enzymes for glycolysis and gluconeogenesis respectively, in the fructose 6-phosphate/fructose 1,6-bisphosphate cycle in the liver. The effect of ribose 1,5-bisphosphate on the enzymes was investigated. Ribose 1,5-bisphosphate synergistically relieved the ATP inhibition and increased the affinity of liver 6-phosphofructo-1-kinase for fructose 6-phosphate in the presence of AMP. Ribose 1,5-bisphosphate synergistically inhibited fructose-1,6-bisphosphatase in the presence of AMP. The activating effect on 6-phosphofructo-1-kinase and the inhibitory effect on fructose-1,6-bisphosphatase suggest ribose 1,5-bisphosphate is a potent regulator of the fructose 6-phosphate/fructose 1,6-bisphosphate cycle in the liver.  相似文献   

13.
Piazza GJ  Smith MG  Gibbs M 《Plant physiology》1982,70(6):1748-1758
Photoassimilation of 14CO2 by intact chloroplasts from the Crassulacean acid metabolism plant Sedum praealtum was investigated. The main water-soluble, photosynthetic products were dihydroxyacetone phosphate (DHAP), glycerate 3-phosphate (PGA), and a neutral saccharide fraction. Only a minor amount of glycolate was produced. A portion of neutral saccharide synthesis was shown to result from extrachloroplastic contamination, and the nature of this contamination was investigated with light and electron microscopy. The amount of photoassimilated carbon partitioned into starch increased at both very low and high concentrations of orthophosphate. High concentrations of exogenous PGA also stimulated starch synthesis.

DHAP and PGA were the preferred forms of carbon exported to the medium, although indirect evidence suported hexose monophosphate export. The export of PGA and DHAP to the medium was stimulated by high exogenous orthophosphate, but depletion of chloroplastic reductive pentose phosphate intermediates did not occur. As a result only a relatively small inhibition in the rate of CO2 assimilation occurred.

The rate of photoassimilation was stimulated by exogenous PGA, ribose 5-phosphate, fructose 1,6-bisphosphate, fructose 6-phosphate, and glucose 6-phosphate. Inhibition occurred with phosphoenolpyruvate and high concentrations of PGA and ribose 5-phosphate. PGA inhibition did not result from depletion of chloroplastic orthophosphate or from inhibition of ribulose 1,5-bisphosphate carboxylase. Exogenous PGA and phosphoenolpyruvate were shown to interact with the orthophosphate translocator.

  相似文献   

14.
The effects of reduced osmotic potential on the photosynthetic carbon reduction cycle were investigated by monitoring photosynthetic processes of spinach (Spinacia oleracea L. var. Long Standing Bloomsdale) chloroplasts exposed to increased assay medium sorbitol concentrations. CO2 assimilation was found to be inhibited at 0.67 molar sorbitol by about 60% from control rates at 0.33 molar sorbitol. This level of stress inhibition was greater than that affecting the reductive phase of the cycle; glycerate 3-phosphate reduction was inhibited at 0.67 molar by 27 to 40%. Sorbitol (0.67 molar) inhibited the rate of O2 evolution at saturating and limiting concentrations of NaHCO3, and extended the lag phase of O2 evolution. This indicated that factors which are rate-limiting to the photosynthetic process are adversely affected by reduced osmotic potential.

Analysis of photosynthetic products following CO2 fixation in 0.33 molar sorbitol and 0.67 molar sorbitol indicated that reduced osmotic potential facilitated increases in the levels of fructose 1,6-bisphosphate and triose phosphates with reductions in glucose 6-phosphate and fructose 6-phosphate, implicating fructose 1,6-bisphosphatase as a site of osmotic stress. Osmotic inhibition of the reductive portion (glycerate 3-phosphate to triose phosphate) of the photosynthetic carbon reduction cycle was partially attributed to feedback inhibition by the product, triose phosphate, on glycerate 3-phosphate reduction. A saturating concentration of ribose 5-phosphate partially overcame osmotic inhibition of CO2-supported O2 evolution, indicating another but apparently less severe site of stress inhibition in the sequence of ribose 5-phosphate to glycerate 3-phosphate.

  相似文献   

15.
It was recently observed that Leuconostoc oenos GM, a wine lactic acid bacterium, produced erythritol anaerobically from glucose but not from fructose or ribose and that this production was almost absent in the presence of O2. In this study, the pathway of formation of erythritol from glucose in L. oenos was shown to involve the isomerization of glucose 6-phosphate to fructose 6-phosphate by a phosphoglucose isomerase, the cleavage of fructose 6-phosphate by a phosphoketolase, the reduction of erythrose 4-phosphate by an erythritol 4-phosphate dehydrogenase and, finally, the hydrolysis of erythritol 4-phosphate to erythritol by a phosphatase. Fructose 6-phosphate phosphoketolase was copurified with xylulose 5-phosphate phosphoketolase, and the activity of the latter was competitively inhibited by fructose 6-phosphate, with a Ki of 26 mM, corresponding to the Km of fructose 6-phosphate phosphoketolase (22 mM). These results suggest that the two phosphoketolase activities are borne by a single enzyme. Extracts of L. oenos were also found to contain NAD(P)H oxidase, which must be largely responsible for the reoxidation of NADPH and NADH in cells incubated in the presence of O2. In cells incubated with glucose, the concentrations of glucose 6-phosphate and of fructose 6-phosphate were higher in the absence of O2 than in its presence, explaining the stimulation by anaerobiosis of erythritol production. The increase in the hexose 6-phosphate concentration is presumably the result of a functional inhibition of glucose 6-phosphate dehydrogenase because of a reduction in the availability of NADP.  相似文献   

16.
Kim I  Kim E  Yoo S  Shin D  Min B  Song J  Park C 《Journal of bacteriology》2004,186(21):7229-7235
Methylglyoxal (MG) is a highly reactive metabolic intermediate, presumably accumulated during uncontrolled carbohydrate metabolism. The major source of MG is dihydroxyacetone phosphate, which is catalyzed by MG synthase (the mgs product) in bacteria. We observed Escherichia coli cell death when the ribose transport system, consisting of the RbsDACBK proteins, was overproduced on multicopy plasmids. Almost 100% of cell death occurs a few hours after ribose addition (>10 mM), due to an accumulation of extracellular MG as detected by (1)H-nuclear magnetic resonance ((1)H-NMR). Under lethal conditions, the concentration of MG produced in the medium reached approximately 1 mM after 4 h of ribose addition as measured by high-performance liquid chromatography. An excess of the protein RbsD, recently characterized as a mutarotase that catalyzes the conversion between the beta-pyran and beta-furan forms of ribose, was critical in accumulating the lethal level of MG, which was also shown to require ribokinase (RbsK). The intracellular level of ribose 5-phosphate increased with the presence of the protein RbsD, as determined by (31)P-NMR. As expected, a mutation in the methylglyoxal synthase gene (mgs) abolished the production of MG. These results indicate that the enhanced ribose uptake and incorporation lead to an accumulation of MG, perhaps occurring via the pentose-phosphate pathway and via glycolysis with the intermediates fructose 6-phosphate and glyceraldehyde 3-phosphate. It was also demonstrated that a small amount of MG is synthesized by monoamine oxidase.  相似文献   

17.
2-Deoxyribose 5-phosphate production through coupling of the alcoholic fermentation system of baker's yeast and deoxyriboaldolase-expressing Escherichia coli was investigated. In this process, baker's yeast generates fructose 1,6-diphosphate from glucose and inorganic phosphate, and then the E. coli convert the fructose 1,6-diphosphate into 2-deoxyribose 5-phosphate via D-glyceraldehyde 3-phosphate. Under the optimized conditions with toluene-treated yeast cells, 356 mM (121 g/l) fructose 1,6-diphosphate was produced from 1,111 mM glucose and 750 mM potassium phosphate buffer (pH 6.4) with a catalytic amount of AMP, and the reaction supernatant containing the fructose 1,6-diphosphate was used directly as substrate for 2-deoxyribose 5-phosphate production with the E. coli cells. With 178 mM enzymatically prepared fructose 1,6-diphosphate and 400 mM acetaldehyde as substrates, 246 mM (52.6 g/l) 2-deoxyribose 5-phosphate was produced. The molar yield of 2-deoxyribose 5-phosphate as to glucose through the total two step reaction was 22.1%. The 2-deoxyribose 5-phosphate produced was converted to 2-deoxyribose with a molar yield of 85% through endogenous or exogenous phosphatase activity.  相似文献   

18.
A.R. Slabas  D.A. Walker 《BBA》1976,430(1):154-164
Photosynthetic oxygen evolution by a reconstituted chloroplast system utilising sn-phospho-3-glycerol (3-phosphoglycerate) ceases upon the addition of ribose 5-phosphate even though the presence of this metabolite permits a rapid and immediate CO2 fixation. The period of cessation is appreciable at 0.1 mM ribose 5-phosphate. It is lengthened as the amount of added ribose 5-phosphate is increased and by the addition of dithiothreitol, a known activator of ribulose-5-phosphate kinase. Ribulose 1,5-bisphosphate is without effect. A similar interruption of O2 evolution may also be brought about by the addition of ADP or by ADP-generating systems such as glucose plus hexokinase. Spectrophotometric experiments indicate that the reoxidation of NADPH in the presence of sn-phospho-3-glycerol is similarly affected.The transient inhibition by ribose 5-phosphate is not observed in the presence of an active ATP-generating system or in the presence of sufficient dl-glyceraldehyde to inhibit ribulose-5-phosphate kinase activity.It is concluded that ribose 5-phosphate inhibits photosynthetic O2 evolution by adversely affecting the steady-state ATP/ADP ratio and consequently the reduction of sn-phospho-3-glycerol to glyceraldehyde 3-phosphate. The results are discussed in their relation to ADP regulation of photosynthetic carbon assimilation and metabolite transport.  相似文献   

19.
An enzyme (5'-methylthioadenosine phosphorylase) that catalyzes the phosphorolytic cleavage of 5'-methylthioadenosine to 5-methylthioadenosine to 5-methylthioribose-1-phosphate and adenine was found in various rat tissues. Liver and lung had the highest enzyme activities and heart the lowest, most of the activity (greater than 90%) was recovered in soluble tissue fractions. The enzyme from rat lung was purified about 30-fold by pH treatment (NH4)2SO4 fractionation, and gel filtration. The enzyme did not require an added metal-ion for activity, and was not inhibited by EDTA. Many compounds were tested for their inhibitory effects; of these, ribose 1-phosphate, 2-deoxyribose 1-phosphate, fructose 1-phosphate, adenine and guanine were shown to inhibit. Kinetic patterns on reciprocal plots were linear as a function of the concentration of either 5'-methylthioadenosine or phosphate. More detailed kinetic studies suggested that the rat lung 5'-methylioadenosine phosphorylase catalyzes an equilibrium-ordered reaction, and that 5'-methylthioadenosine is the first substrate to bind and 5-methylthioribose-1-phosphate is the first product to be released.  相似文献   

20.
Cell wall polysaccharides are synthesized from sugar-nucleotides, e.g. uridine 5'-diphosphoglucose (UDP-Glc), but the metabolic pathways that produce sugar-nucleotides in plants remain controversial. To help distinguish between potentially 'competing' pathways, we have developed a novel dual-radiolabelling strategy that generates a remarkably wide range of 3H:14C ratios among the various proposed precursors. Arabidopsis cell cultures were fed traces of D-[1-(3)H]galactose and a 14C-labelled hexose (e.g. D-[U-14C]fructose) in the presence of an approximately 10(4)-fold excess of non-radioactive carbon source. Six interconvertible 'core intermediates', galactose 1-phosphate <--> UDP-galactose <--> UDP-glucose <--> glucose 1-phosphate <--> glucose 6-phosphate <--> fructose 6-phosphate, showed a large decrease in 3H:14C ratio along this pathway from left to right. The isotope ratio of a polysaccharide-bound sugar residue indicates from which of the six core intermediates its sugar-nucleotide donor substrate stemmed. Polymer-bound galacturonate, xylose, arabinose and apiose residues (all produced via UDP-glucuronate) stemmed from UDP-glucose, not glucose 6-phosphate; therefore, UDP-glucuronate arose predominantly by the action of UDP-glucose dehydrogenase rather than through the postulated competing pathway leading from glucose 6-phosphate via myo-inositol. The data also indicate that UDP-galacturonate was not formed by a hypothetical UDP-galactose dehydrogenase. Polymer-bound mannose and fucose residues stemmed from fructose 6-phosphate, not glucose 1-phosphate; therefore GDP-mannose (guanosine 5'-diphosphomannose) arose predominantly by a pathway involving phosphomannose isomerase (via mannose phosphates) rather than through a postulated competing pathway involving GDP-glucose epimerization. Curiously, the ribose residues of RNA did not stem directly from hexose 6-phosphates, but predominantly from UDP-glucose; an alternative to the textbook pentose-phosphate pathway therefore predominates in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号