首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new medium, designated HV agar, containing soil humic acid as the sole source of carbon and nitrogen was developed.The HV agar was superior to other currently used media, including colloidal chitin agar, glycerol-arginine agar and starch-casein-nitrate agar, for the isolation and enumeration of soil actinomycetes: It allowed the growth of the largest numbers of actinomycete colonies belonging to each genus of Streptomyces, Micromonospora, Microbispora, Streptosporangium, Nocardia, Dactylosporangium, Microtetraspora and Thermomonospora on the plate, while restricting the development of true bacteria. The HV agar supported adequate growth and good sporulation for these actinomycetes.Even when spore suspensions were used as the inoculum, the HV agar produced remarkably larger numbers of actinomycetes, especially strains of the genera Micromonospora, Microbispora, Streptosporangium, Dactylosporangium and Saccharomonospora, than did glycerol-arginine agar. It was found that the spores of these actinomycetes were activated upon germination by treatment at 20°C for 30 min with a O.2% solution of humic acid prior to incubation.  相似文献   

2.
A chitinolytic actinomycete complex in chernozem soil has a specific taxonomic composition, which differs from that of the actinomycete complex which is typically isolated on standard nutrient media containing sugars and organic acids as carbon sources. The actinomycete complex that was isolated by using nutrient media with chitin as the source of carbon and nitrogen was dominated by representatives of the genus Streptosporangium, and the actinomycete complex that was isolated by using nutrient media with sugars and organic acids as the carbon sources was dominated by representatives of the genus Streptomyces. The confirmation to the ability of actinomycetes to utilize chitin as a sole source of carbon and nitrogen came from the augmented length and biomass of the mycelium, the increased number and biomass of the actinomycete spores, the production of carbon dioxide, and the accumulation of NH4+ ions in the culture liquid of the actinomycetes that are grown in the nutrient media with chitin.  相似文献   

3.
A chitinolytic actinomycete complex in chernozem soil has a specific taxonomic composition, which differs from that of the actinomycete complex typically isolated on standard nutrient media containing sugars and organic acids as carbon sources. The actinomycete complex that was isolated by using nutrient media with chitin as the source of carbon and nitrogen was dominated by representatives of the genus Streptosporangium, and the actinomycete complex that was isolated by using nutrient media with sugars and organic acids as the carbon sources was dominated by representatives of the genus Streptomyces. The confirmation of the ability of actinomycetes to utilize chitin as a sole source of carbon and nitrogen came from the augmented length and biomass of the mycelium, the increased number and biomass of the actinomycete spores, the production of carbon dioxide, and the accumulation of NH4 + ions in the culture liquid of the actinomycetes grown in the nutrient media with chitin.  相似文献   

4.
The objective of this study was to determine if antifungal actinomycetes isolated from rhizosphere and non-rhizosphere soils exhibit different chitinase-like production and (or) induction patterns. Selected isolates from both habitats were compared. Chitinase-like levels and isoform characteristic patterns were evaluated over time in culture fluids of isolates grown on media containing different combinations of colloidal chitin and fungal cell wall (FCW) preparation. Supernatants were also subjected to native and non-native polyacrylamide gel electrophoresis (PAGE), using glycol chitin amended gels. For non-native PAGE, protein samples were denatured by two different approaches. Multiple active bands, ranging from 20 to 53 kDa and present in varying amounts, were detected in gels for most strains. Different substrate preferences were observed among strains, and different chitinase-like enzymes were produced, depending upon the substrate combinations used. The presence of FCW in the medium induced specific chitinase-like enzymes not observed otherwise. Enzymatic activities and profiles of the isolates, however, were strain and substrate specific rather than habitat specific. However, a sagebrush rhizosphere soil had a larger actinomycete community with higher chitinolytic activities than the nearby bulk soil. The use of PAGE to compare chitinase-like proteins induced in media with and without FCW was useful for identifying chitinase-like enzymes potentially involved in antifungal activity.  相似文献   

5.
Chitinolytic activity in the supernatant from autolysed cultures of Penicillium oxalicum in different media was studied. Chitinase and β- N -acetylglucosaminidase activities were detected in culture fluids when the carbon source in the medium was exhausted. The highest β- N -acetylglucosaminidase activities appeared in the media containing glucose and supplemented with colloidal chitin (6 g 1-1) and trace elements. The highest chitinase activities appeared in media containing glucose and supplemented with N -acetylglucosamine or colloidal chitin (2 g 1-1). The β- N -acetylglucosaminidase had a pH optimum at 4.5 and chitinase at 6.5.  相似文献   

6.
姜成林  徐丽华 《生态学报》1984,4(4):316-320
分离了云南的滇池、洱海及泸沽湖的底泥及水样的放线菌,并对它们的数量、组成及生物学特性作了研究。  相似文献   

7.
Nanocomposite materials were obtained from a colloidal suspension of chitin whiskers as the reinforcing phase and latex of both unvulcanized and prevulcanized natural rubber as the matrix. The chitin whiskers, prepared by acid hydrolysis of chitin from crab shell, consisted of slender parallelepiped rods with an aspect ratio close to 16. After the two aqueous suspensions were mixed and strirred, solid composite films were obtained either by freeze-drying and hot-pressing or by casting and evaporating the preparations. The processing and swelling behavior of composite films were evaluated. It was concluded that the whiskers form a rigid network assumed to be governed by a percolation mechanism in the evaporated samples only. Comparatively, better resistance of evaporated samples than hot-pressed ones against swelling in an organic solvent medium is good evidence for the existence of a rigid chitin network. The values of diffusion coefficient, bound rubber content, and relative weight loss also supported the presence of a three-dimensional chitin network within the evaporated samples. The mechanical behavior of the composites gives additional insight and evidence for this fact (part 2).  相似文献   

8.
The anaerobic rumen fungus, Piromyces communis OTS1, was isolated from a fistulated goat. Its chitinolytic activity in the supernatant of media containing different types of chitin was studied. The fungus grew well in our basal medium, with and without colloidal chitin and chitin powder. N-Acetyl--glucosaminidase activity was not detected in any of the culture media. Chitinase activity, however, was detected in the basal medium with and without colloidal chitin and chitin powder. The extracellular chitinase concentrated from the fungal culture's supernatant by ammonium sulfate (80% saturation) showed highest activity at 40°C and at pH 5.5. In the other cell fractions of P. communis OTS1, N-acetyl--glucosaminidase was not detected, but chitinase activity was detected by 4-methylumbelliferyl reagents. Thus, it was found that the rumen fungus P. communis OTS1 has chitinase activity. Chitinases from the extracellular, cytosolic, and the microsomal fractiòns were mainly of the endo type of chitinase activity.  相似文献   

9.
Thermomonospora chromogena was isolated from mushroom compost by spreading diluted suspensions on an agar medium containing kanamycin at 25 µg/ml. The antibiotic prevented the growth of other thermophilic actinomycetes on media incubated at 50°C and significantly reduced the growth of associated bacteria.  相似文献   

10.
Intestinal bacteria from several coastal fish species were screened on 1/20 PYBG medium containing 0.2% colloidal chitin, and 361 bacteria capable of decomposing colloidal chitin were isolated. These isolates were subsequently screened on media containing either 0.5% alpha-chitin or 0.5% beta-chitin resulting in the identification of 31 alpha-chitinolytic and 275 beta-chitinolytic bacterial isolates. Partial 16S rRNA gene sequencing was carried out and homology searches of the resultant sequences against the DDBJ, EMBL, and GenBank databases revealed that the majority (99%) of the chitinolytic bacteria isolated belonged to the Vibrionaceae. Phylogenetic analysis using a Bayesian approach showed that the alpha-chitinolytic bacteria belonging to the Vibrionaceae formed a separate cluster from the non-alpha-chitinolytic bacteria in the Vibrionaceae.  相似文献   

11.
N A Oranusi  A P Trinci 《Microbios》1985,43(172):17-30
Vibrio alginolyticus, Streptomyces griseus, Arthrobacter G12, Bacillus sp. and Cytophaga sp. were grown on solid and liquid media containing soluble and insoluble carbon sources. Arthrobacter G12, Bacillus sp. and Cytophaga sp. grew well on media which contained fungal cell walls or fungal biomass as the main carbon source. All bacteria produced extracellular proteases and all bacteria except Arthrobacter G12 produced extracellular chitinases. Growth of Cytophaga sp. on colloidal chitin was paralleled by the accumulated chitinase activity in the culture filtrate, and growth of Cytophaga sp. and Arthrobacter G12 on cell walls of Geotrichum candidum and cell walls of Candida pseudotropicalis was paralleled by the accumulation of laminarinase activity in the culture filtrate, but little or no extracellular chitinase activity was observed in these cultures. Mycolases purified from the culture filtrates of Cytophaga sp. grown on colloidal chitin on cell walls of C. pseudotropicalis potentiated the antifungal activity of amphotericin B.  相似文献   

12.
An extracellular chitinase of Bacillus sp. WY22 was purified by 9.6-fold. It had a Mr of 35 kDa, an apparent K m value for colloidal chitin of 3 mg ml–1 and was optimally active at 37 °C and pH 5.5 over 1 h. The enzyme could also hydrolyse swollen chitin, glycol chitin and chitosan with relative activities of 76%, 34% and 23% compared with colloidal chitin. It formed chitotriose as a major product from colloidal chitin and glycol chitin.  相似文献   

13.
Targeting polymers with peptides is an efficient strategy to functionalize biomaterials. Phage display technology is one of the most powerful techniques for selecting specific peptides for a wide variety of targets. A method to select a chitin-binding peptide from a 12-mer random peptide library was successfully performed against chitin immobilized in wells of microtiter plates. The synthetic chitin binding peptide (ChiBP) could bind to chitin beads and disrupt their structure. This selected peptide was successfully used to immobilize alkaline phosphatase on chitin. In addition, the peptide could induce colloidal chitin in water to form a chitin coat on the surface of plastic tubes. Scanning electron microscopy (SEM) revealed that the peptide could induce colloidal chitin and chitohexaose to form networks when the temperature was raised to 42°C.  相似文献   

14.
A new strain Penicillium sp. IB-37-2, which actively hydrolyzes chitosan (SD ~80–85%) but possesses low activity against colloidal chitin, was isolated. The fungus was observed to have a high level chitosanase biosynthesis (1.5–3.0 U/mL) during submerged cultivation at 28°C, with a pH of 3.5–7.0 and 220 rpm in nutrient media containing chitosan or chitin from shells of crabs. Purification of the chitosanase enzyme complex from Penicillium sp. IB-37-2 by ultrafiltration and hydrophobic chromatography, followed by denaturing electrophoresis, revealed two predominant proteins with molecular weights of 89 and 41 kDa. The purified enzyme complex demonstrated maximal activity (maximal rate of hydrolysis of dissolved chitosan) and stability at 50–55°C and a pH of 3.5–4.0. The enzyme preparation also hydrolyzed laminarin, β-(1,3)-(1,4)-glycan, and colloidal chitin. Exohydrolysis of chitosan by the preparation isolated from Penicillium sp. IB-37-2 resulted in the formation of single product, D-glucosamine.  相似文献   

15.
Chitin from Streptomyces lunalinharesii spores, detected on its outermost surface layer, was isolated and characterized by chemical and spectroscopic methods, transmission electron microscopy and flow cytometry analysis. Gold–chitinase- and gold–lectin ( Lycopersicum esculentum agglutinin, LEA)-conjugated labels were used in microscopy experiments, whereas a fluorescence–lectin (LEA) conjugate was used in flow cytometry analysis. Chitin isolation consisted of several steps of hot alkali and nitrous acid treatment, and the final material was obtained in the colloidal form. The infrared and the 13C CP/MAS NMR spectra of Streptomyces sp. colloidal chitin and colloidal chitin obtained from commercial crab shell chitin were very similar. Incubation of the spores with gold-labeled lectin, or gold-labeled recombinant chitinase, showed the presence of gold particles around the spore surface, indicating the specific binding of the lectin or the recombinant chitinase with the chitin present on the outermost surface. Flow cytometry analysis, using the fluorescence–lectin conjugate, confirmed these results. According to scanning electron microscopy, S. lunalinharesii presented spore surface ornamentation belonging to the spiny group. This is the first detailed characterization of chitin on the spore's outermost layer from a Streptomyces species.  相似文献   

16.
Characterization of chitinases excreted by Bacillus cereus CH   总被引:1,自引:0,他引:1  
Bacillus cereus CH was shown to excrete chitinases into the culture supernatant when cultivated in a medium containing 0.2% colloidal chitin, whereas the removal of colloidal chitin resulted in a low activity. After concentration of the culture supernatant by precipitation with ammonium sulfate, the induced chitinases were purified by sequential chromatography. Four different chitinases, A, B1, B2, and B3 with molecular masses of 35, 47, 58, and 64 kDa, respectively, were separated. All chitinases showed similarities in their kinetic parameters when observed with colloidal chitin, including an optimal pH of 5.0-7.5, and an optimal temperature between 50-60 degrees C. Chitinase A hydrolyzed glycol chitin and p-nitrophenyl-di-N-acetyl-beta-chitobioside at similar rates to that of colloidal chitin, whereas group B chitinases hydrolyzed both substrates in much lower rates. From analyses of the reaction products, it is most likely that chitinase A and all group B chitinases hydrolyze the substrates tested in an endo-fashion. However, group B chitinases were distinct from chitinase A in possessing high transglycosylation activity. From amino terminal sequencing, chitinases B1, B2, and B3 were shown to have almost identical sequences, which differed from that of chitinase A. The similarities in the reaction modes and amino terminal sequences among chitinases B1, B2, and B3 suggest that these chitinases may be derived from a presumptive precursor protein through C-terminal processing.  相似文献   

17.
Isolation and characterization of three chitinases from Trichoderma harzianum.   总被引:17,自引:0,他引:17  
Three proteins which display chitinase activity were purified from the supernatants of Trichoderma harzianum CECT 2413 grown in minimal medium supplemented with chitin as the sole carbon source. Purification was carried out after protein precipitation with ammonium sulphate, adsorption to colloidal chitin and digestion, and, finally, chromatofocusing. By this procedure, two chitinases of 42 kDa (CHIT42) and 37 kDa (CHIT37) were purified to homogeneity, as judged by SDS/PAGE and gel filtration, whereas a third, of 33 kDa (CHIT33), was highly purified. The isoelectric points for CHIT42, CHIT37 and CHIT33 were 6.2, 4.6 and 7.8, respectively. The three enzymes displayed endochitinase activities and showed different kinetic properties. CHIT33 was able to hydrolyze chitin oligomers of a polymerization degree higher than n = 4, its Km for colloidal chitin being 0.3 mg/ml. CHIT42 and CHIT37 were able to hydrolyze chitin oligomers with a minimal polymerization degree of n = 3, their Km values for colloidal chitin being 1.0 mg/ml and 0.5 mg/ml respectively. With regard to their lytic activity with purified cell walls of the phytopathogenic fungus Botrytis cinerea, a hydrolytic action was observed only when CHIT42 was present. Antibodies against CHIT42 and CHIT37 specifically recognized the proteins and did not display cross-reaction, suggesting that each protein is encoded by a different gene.  相似文献   

18.
A fermentation approach utilizing Paenibacillus sp. to process chitin was developed. The chitin obtained from this process is called fermentation-processed chitin (FPC), and it was further investigated with chitinase affinity adsorption studies together with three other adsorbents, i.e. crab shell chitin, colloid chitin, and enzyme-processed chitin. The results showed that FPC had the highest chitinase adsorption capacity. Under 15 °C and pH 5.0, FPC exhibited an optimal chitinase adsorption capacity of 85.9 U/g, which was 61.9% higher than that of the colloidal chitin. With 0.02 M acetic acid as the eluent, a purification-fold of 10.3 with 97% chitinase recovery was obtained. The results of surface morphology studies indicated that the FPC surface was modified to a fiber-like structure with deep pores. In comparison with the surface morphology of enzyme-processed chitin and colloidal chitin, it is inferred that the enhanced adsorption capacity of FPC for chitinase is attributed to both the effects of chitinase hydrolysis and the bacterial modification.  相似文献   

19.
Abstract Ultraviolet light and nitrosoguanidine were used to mutagenize a red pigmented culture of Serratia marcescens , strain EB415, which produced chitinase. After mutagenesis, a stable, non-pigmented mutant designated BL40 was isolated which produced larger colonies and zones of clearing on solid medium containing colloidal chitin.
In liquid medium with colloidal chitin as the sole carbon source both strains grew similarly but BL40 produced 160 units/ml of chitinase compared with 60 units/ml for EB 415, an increase of 167%. When chitin concentration was increased in the medium, chitinase production also increased. Chitinase appeared to be extracellular, since the supernatant from washed, sonicated cells for both strains showed no detectable amount of chitinolytic activity.  相似文献   

20.
Entevobacter sp. G-1 which produces chitinolytic and chitosanolytic enzymes, was previously isolated in our laboratory. One major chitinase, designated ChiA, was purified 42.9-fold from a culture filtrate of Entevobacter sp. G-L To purify the chitinase, ammonium sulfate fractionation, DEAE-Sephadex A-50 column chromatography, and gel filtration on Sephadex G-100 column chromatography were used. The ChiA protein had a molecular weight of 60,000 estimated by SDS polyacrylamide gel electrophoresis and an isoelectric point of 6.6. The optimal pH and optimal temperature of ChiA against colloidal chitin were pH 7.0, and 40°C, respectively. The purified ChiA degraded colloidal chitin mainly to GlcNAc2 with a small amount of GlcNAc3 and GlcNAc4. ChiA hydrolyzed flaked chitin, colloidal chitin, and ethylenglycol chitin, but did not hydrolyze carboxymethyl cellulose (CMC), nor >90% deacetylated flaked chitosan. The chitinase activity was 42% inhibited by 10mm EDTA, but was not inhibited by Ca2+ (<50 mm) or NaCl (<400 mm). The purified ChiA hydrolyzed colloidal chitin and chitin-related compounds in an endo splitting manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号