首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During central nervous system development, growth factors and their associated receptor protein tyrosine kinases regulate many neuronal functions such as neurite extension and dendrite maturation. Hepatocyte growth factor (HGF) and its receptor, c-Met, can promote formation of neurites and enhance elaboration of dendrites in mature neurons, but their effects on the early stages of dendrite maturation in hippocampal neurons and the signaling pathways by which they promote dendrite formation have not been studied. Exogenous HGF treatment effectively enhanced the phosphorylation and activation of c-Met in cultured hippocampal neurons at 4 days in vitro. HGF treatment increased the number of dendrites and promoted dendrite elongation in these neurons. Consistent with these results, HGF activated Akt, which phosphorylates glycogen synthase kinase-3beta (GSK-3beta) to inactivate it, and reduced phosphorylation of microtubule-associated protein 2 (MAP2), which can promote microtubule polymerization and dendrite elongation when dephosphorylated. Conversely, pharmacological inhibition of c-Met with its specific inhibitor, PHA-665752, or genetic knock-down of c-Met with short hairpin RNAs (shRNAs) suppressed HGF-induced phosphorylation of Akt and GSK-3beta, increased phosphorylation of MAP2, and reduced dendrite number and length in cultured hippocampal neurons. Moreover, suppressing c-Met with PHA-665752 or by shRNA decreased MAP2 expression. Inhibiting Akt activity with the phosphoinositide-3-kinase inhibitor LY294002 or Akt inhibitor X suppressed HGF-induced phosphorylation of GSK-3beta, increased MAP2 phosphorylation, and blocked the ability of HGF to enhance dendritic length. These observations indicate that HGF and c-Met can regulate the early stages of dendrite maturation via activation of the Akt/GSK-3beta pathway.  相似文献   

2.
Hepatocyte growth factor (HGF) is critical for triggering metastasis of hepatocellular carcinoma cell (HCC). Extracellular signal-regulated kinase (ERK) mediates HGF-induced cell migration via focal adhesion signaling. Protein kinase C (PKC) is a negative regulator of ERK activation, however, both PKC and ERK were required for HGF-induced cell migration. To address this intriguing issue, the signal mechanisms for HGF-induced HepG2 cell migration were investigated in a long-term fashion. HGF-induced phosphorylations of ERK, Src (at Tyr 416) and paxillin (at Ser178 and Tyr31) were up and down for 3 times within 24 h. HGF also induced fluctuant PKC activation and Rac degradation. Consistently, HGF induced intermittent actin polarization within 24 h, which can be blocked by the inhibitors of PKC (Bisindolymaleimide) and ERK. Inhibitor studies revealed that ERK was required for HGF-induced paxillin phosphorylation at Ser178, whereas PKC and Rac-1 may suppress HGF-induced phosphorylation of ERK and paxillin (at Ser178) and upregulate phosphorylation of paxillin at Tyr31. Based on shRNA technique, PKCα and δ were responsible for suppressing HGF-induced phosphorylation of ERK and paxillin (at Ser178), whereas PKC ε and ζ were required for phosphorylation of paxillin at Tyr31. The HGF-induced fluctuant signaling is reminiscent of c-Met endocytosis. Using Concanavalin A, an inhibitor of endocytosis, we found that c-Met endocytosis was required for PKC to suppress ERK phosphorylation. Moreover, HGF-induced c-Met degradation was also fluctuant, which can be prevented by Bisindolymaleimide. In conclusion, PKC is critical for mediating HGF-induced fluctuant ERK-paxillin signaling during cell migration, probably via triggering endosomal degradation of c-Met.  相似文献   

3.
Hepatocyte growth factor (HGF), also known as scatter factor (SF), and its receptor, the c-Met tyrosine kinase, play roles in cancer invasion and metastasis in a wide variety of tumor cells. Clinical observations suggest that HGF can promote metastasis of hepatoma cells while stimulating tumor invasiveness. We use HGF as an invasive inducer of human hepatoma HepG2 cells to investigate the effect of flavonoids on anti-invasion. In our preliminary study, we investigated the effect of flavonoids including luteolin, quercetin, baicalein, genistein, taxifolin and catechin on HGF-mediated migration and invasion of HepG2 cells. We found that luteolin presented the most potent potential on anti-migration and anti-invasion by Boyden chamber assay. Furthermore, luteolin inhibited HGF-induced cell scattering and cytoskeleton change such as filopodia and lamellipodia was determined by both phase-contrast and fluorescence microscopy studies. In addition, Western blotting and immunoprecipitation were performed to confirm luteolin suppressed the phosphorylation of c-Met, the membrane receptor of HGF, as well as ERK1/2 and Akt, but not JNK1/2, which is activated by HGF. Our investigation demonstrated that luteolin similar to PD98059, which acts as a specific inhibitor of MEK, an up stream kinase regulating ERK1/2, and wortmannin, a PI3K inhibitor, inhibited the invasiveness induced by HGF. In conclusion, the luteolin inhibited HGF-induced HepG2 cell invasion involving both MAPK/ERKs and PI3K-Akt pathways.  相似文献   

4.
Hepatocyte growth factor (HGF)-induced migration of endothelial cells is critical for angiogenesis. Sphingosine kinase (SPK) is a key enzyme catalyzing the formation of sphingosine-1-phosphate (S1P), a lipid messenger that is implicated in the regulation of a wide variety of important cellular events through both intracellular and extracellular mechanisms. The aim of this study was to investigate whether activation of SPK is involved in the migration of endothelial cells induced by HGF. The biological functions of HGF are mediated through the activation of its high-affinity tyrosine kinase receptor, c-met protooncogene. In the present study, Treatment of ECV304 endothelial cells with HGF resulted in tyrosine phosphorylation of c-Met and activation of SPK in a concentration-dependent manner. Either Ly294002 or PD98059, specific inhibitor of the PI3K and ERK/MAPK pathways, respectively, blocked the HGF-induced activation of SPK. HGF stimulation significantly increased intracellular S1P level, but no detectable secretion of S1P into the cell culture medium was observed. Treatment of ECV304 cells with pertussis toxin (PTX) has no effect on the HGF-induced migration, indicating extracellular S1P is dispensable for this process. Overexpression of wild-type SPK gene in ECV 304 cells increased the intracellular S1P and enhanced the HGF-induced migration, whereas inhibition of cellular SPK activity by N,N-dimethylsphingosine (DMS), a potent inhibitor of SPK, or by expression of a dominant-negative SPK (DN-SK) blocked the HGF-induced migration of ECV 304 cells. It is suggested that PI3K and ERK/MAPK mediated the activation of SPK and would be involved in the HGF-induced migration of endothelial cells. These results elucidate a novel mechanism by which intracellularly generated S1P mediates signaling from HGF/c-Met to the endothelial cell migration.  相似文献   

5.
Previously we demonstrated that ligation of lysophosphatidic acid (LPA) to G protein-coupled LPA receptors induces transactivation of receptor tyrosine kinases (RTKs), such as platelet-derived growth factor receptor beta (PDGF-Rbeta) and epidermal growth factor receptor (EGF-R), in primary cultures of human bronchial epithelial cells (HBEpCs). Here we examined the role of LPA on c-Met redistribution and modulation of hepatocyte growth factor (HGF)/c-Met pathways in HBEpCs. Treatment of HBEpCs with LPA-induced c-Met serine phosphorylation and redistribution to plasma membrane, while treatment with HGF-induced c-Met internalization. Pretreatment with LPA reversed HGF-induced c-Met internalization. Overexpression of dominant negative (Dn)-PKC delta or pretreatment with Rottlerin or Pertussis toxin (PTx) attenuated LPA-induced c-Met serine phosphorylation and redistribution. Co-immnuoprecipitation and immunocytochemistry showed that E-cadherin interacted with c-Met in HBEpCs. LPA treatment induced E-cadherin and c-Met complex redistribution to plasma membranes. Overexpression of Dn-PKC delta attenuated LPA-induced E-cadherin redistribution and E-cadherin siRNA attenuated LPA-induced c-Met redistribution to plasma membrane. Furthermore, pretreatment of LPA attenuated HGF-induced c-Met tyrosine phosphorylation and downstream signaling, such as Akt kinase phosphorylation and cell motility. These results demonstrate that LPA regulates c-Met function through PKC delta and E-cadherin in HBEpCs, suggesting an alternate function of the cross-talk between G-protein-coupled receptors (GPCRs) and RTKs in HBEpCs.  相似文献   

6.
Although it is established that growth factors and prostaglandins function in the maintenance of gastric mucosal integrity and in the healing of gastric mucosal injury and ulceration, the regulatory relationship between growth factors and prostaglandins in the gastric mucosa is not well characterized. Therefore, we investigated whether hepatocyte growth factor (HGF) affects expression of COX-2 (the inducible form of the prostaglandin synthesizing enzyme, cyclooxygenase) in gastric epithelial cells and whether this action is mediated through the MAP (ERK) kinase signaling pathway. In RGM1 cells (an epithelial cell line derived from normal rat gastric mucosa), HGF caused an increase in COX-2 mRNA and protein by 236% and 175%, respectively (both P<0.05). This induction of COX-2 expression was abolished by pretreatment with the MAPK kinase (MEK) inhibitor PD98059. HGF also triggered a 13-fold increase in c-Met/HGF receptor phosphorylation (P<0.005) and increased ERK2 activity by 684% (P<0.01). Pretreatment with PD98059 abolished the HGF-induced increase in ERK2 activity, but not c-Met/HGF receptor phosphorylation. The specific inhibitor of p38 MAP kinase, SB203580, had no effect on HGF-induced COX-2 expression. Thus, HGF triggers activation of the COX-2 gene in gastric epithelial cells through phosphorylation of c-Met/HGF receptor and activation of the ERK2 signaling pathway.-Jones, M. K., Sasaki, E., Halter, F., Pai, R., Nakamura, T., Arakawa, T., Kuroki, T., Tarnawski, A. S. HGF triggers activation of the COX-2 gene in rat gastric epithelial cells: action mediated through the ERK2 signaling pathway.  相似文献   

7.
Benzyl isothiocyanate (BITC), which is found in cruciferous vegetables, has been shown to have anti-carcinogenic properties. Hepatocyte growth factor (HGF) has the ability to stimulate dissociation, migration, and invasion in various tumor cells, and abnormally increased expressions of HGF and its transmembrane tyrosine kinase receptor, c-Met, have previously been detected in human breast cancer, and are associated with high tumor grade and poor prognosis. In this study, in order to assess the mechanisms relevant to the BITC-induced regulation of breast cancer cell migration and invasion, MDA-MB-231 human breast cancer cells and 4T1 murine mammary carcinoma cells were cultured in the presence of 0-4?μmol/l BITC with or without 10?μg/l of HGF. BITC inhibited both the basal and HGF-induced migration of MDA-MB-231 and 4T1 cells in a dose-dependent manner. In MDA-MB-231 cells, BITC reduced both basal and HGF-induced secretion and activity of urokinase-type plasminogen activator (uPA). In addition, BITC increased the protein levels of plasminogen activator inhibitor-1. HGF stimulated c-Met and Akt phosphorylation, but did not affect the phosphorylation of extracellular signal-regulated kinase-1/2 or stress-activated protein/c-jun N-terminal kinase. BITC suppressed NF-κB activity and reduced the HGF-induced phosphorylation of c-Met and Akt in a dose-dependent manner. LY294002, a specific Akt inhibitor, reduced both basal and HGF-induced uPA secretion and migration of MDA-MB-231 cells. In this study, we demonstrated that BITC profoundly inhibits the migration and invasion of MDA-MB-231 cells, which is associated with reduced uPA activity, and also that these phenomena are accompanied by the suppression of Akt signaling.  相似文献   

8.
The receptor of hepatocyte growth factor (HGF), c-met induces different physiological responses in several cell types. Little is known about the role of HGF in exocrine pancreas. However, abnormal HGF signaling has been strongly implicated in pancreatic tumorigenesis and association of HGF with pancreatitis has been demonstrated. We have studied the presence of c-met and activation of their intracellular pathways associated in rat pancreatic acini in comparison with cholecystokinin (CCK) and epidermal growth factor (EGF). C-met expression in rat exocrine pancreas was identified by immunohistochemistry and immunoprecipitation followed by Western analysis. Tyrosine phosphorylation of c-met is strongly stimulated as well as kinase pathways leading to ERK1/2 cascade. HGF, but not CCK or EGF, selectively caused a consistent increase in the amount of p85 regulatory subunit of PI3-K present in anti-phosphotyrosine immunoprecipitates. Downstream of PI3-K, HGF increased Ser473 phosphorylation of Akt selectively, as CCK or EGF did not affect it. HGF selectively stimulated tyrosine phosphorylation of phosphatase PTP1D. HGF failed to promote the well-known CCK effects in pancreatic acini such as amylase secretion and intracellular calcium mobilization. Although HGF shares activation of ERK1/2 with CCK, we demonstrate that it promotes the selective activation of intracellular pathways not regulated by CCK or EGF. Our results suggest that HGF is an in vivo stimulus of pancreatic acini and provide novel insight into the transduction pathways and effects of c-met/HGF in normal pancreatic acinar cells.  相似文献   

9.
PYK2/CAKbeta is a recently described cytoplasmic tyrosine kinase related to p125 focal adhesion kinase (p125(FAK)) that can be activated by a number of stimuli including growth factors, lipids, and some G protein-coupled receptors. Studies suggest PYK2/CAKbeta may be important for coupling various G protein-coupled receptors to the mitogen-activated protein kinase (MAPK) cascade. The hormone neurotransmitter cholecystokinin (CCK) is known to activate both phospholipase C-dependent cascades and MAPK signaling pathways; however, the relationship between these remain unclear. In rat pancreatic acini, CCK-8 (10 nM) rapidly stimulated tyrosine phosphorylation and activation of PYK2/CAKbeta by both activation of high affinity and low affinity CCK(A) receptor states. Blockage of CCK-stimulated increases in protein kinase C activity or CCK-stimulated increases in [Ca(2+)](i), inhibited by 40-50% PYK2/CAKbeta but not p125(FAK) tyrosine phosphorylation. Simultaneous blockage of both phospholipase C cascades inhibited PYK2/CAKbeta tyrosine phosphorylation completely and p125(FAK) tyrosine phosphorylation by 50%. CCK-8 stimulated a rapid increase in PYK2/CAKbeta kinase activity assessed by both an in vitro kinase assay and autophosphorylation. Total PYK2/CAKbeta under basal conditions was largely localized (77 +/- 7%) in the membrane fraction, whereas total p125(FAK) was largely localized (86 +/- 3%) in the cytosolic fraction. With CCK stimulation, both p125(FAK) and PYK2/CAKbeta translocated to the plasma membrane. Moreover CCK stimulation causes a rapid formation of both PYK2/CAKbeta-Grb2 and PYK2/CAKbeta-Crk complexes. These results demonstrate that PYK2/CAKbeta and p125(FAK) are regulated differently by CCK(A) receptor stimulation and that PYK2/CAKbeta is probably an important mediator of downstream signals by CCK-8, especially in its ability to activate the MAPK signaling pathway, which possibly mediates CCK growth effects in normal and neoplastic tissues.  相似文献   

10.
There are no known specific effective cholecystokinin (CCK) receptor antagonists of both peripheral and central nervous systems. Here, we describe experiments which demonstrate that a synthetic pseudopeptide analogue of CCK-7 is a potent agonist in the peripheral system and behaves as a selective and highly potent inhibitor of the dopamine-like effects of CCK in the striatum. This compound, t-butyloxycarbonyl-Tyr (SO3H)-Nle psi (COCH2)Gly-Trp-Nle-Asp-Phe-NH2, is able to stimulate enzyme secretion from rat pancreatic acini, with high efficacy and potency. It is also very potent in inhibiting the binding of labeled CCK-8 to rat pancreatic acini (IC50 = 5 nM) and to guinea pig and mouse brain membranes (IC50 = 0.7 nM). However, this compound is able to antagonize the effects of intrastriatally injected t-butyloxycarbonyl-[Nle28,31] CCK-8 in mice, with high potency.  相似文献   

11.
Previous studies have shown that different agonists increase tyrosine phosphorylation of the focal adhesion related proteins p125(FAK), p130(Cas), and paxillin in different cell types and that tyrosine phosphorylation depends on the integrity of the actin cytoskeleton. Because phosphoinositides are important for the maintenance of the cytoskeleton, the role of phosphoinositides in the tyrosine phosphorylation of these proteins in response to occupancy of m3 muscarinic and CCK(A) receptors has been investigated in pancreatic acini. Addition of carbachol or CCK-8 to pancreatic acini resulted in rapid increases in the tyrosine phosphorylation of p125(FAK), p130(Cas), and paxillin. Pretreatment of pancreatic acini with LY294002 or wortmannin resulted in a concentration-dependent inhibition of tyrosine phosphorylation of p125(FAK), p130(Cas), and paxillin stimulated by carbachol or CCK-8. Carbachol- or CCK-8-stimulated tyrosine phosphorylation of these proteins was not inhibited by rapamycin, PD 98059 or SB 203580, and thus it was dissociated from the activation of p70 S6 or MAP kinases. These results indicate that m3 muscarinic and CCK(A) receptor-mediated increase in p125(FAK), p130(Cas), and paxillin tyrosine phosphorylation in pancreatic acini depends on the ability of these cells to synthesise phosphoinositides.  相似文献   

12.
The scaffolding/adapter protein, Gab1, is a key signaling molecule for numerous stimuli including growth factors and G protein-coupled-receptors (GPCRs). A number of questions about Gab1 signaling remain and little is known about the ability of gastrointestinal (GI) hormones/neurotransmitters/growth factors to activate Gab1. Therefore, we examined their ability to activate Gab1 and explored the mechanisms involved using rat pancreatic acini. HGF and EGF stimulated total Gab1 tyrosine phosphorylation (TyrP) and TyrP of Gab1 phospho-specific sites (Y307, Y627), but not other pancreatic growth factors, GI GPCRs (CCK, bombesin, carbachol, VIP, secretin), or agents directly activating PKC or increasing Ca2+. HGF-stimulated Y307 Gab1 TyrP differed in kinetics from total and Y627. Neither GF109203X, nor inhibition of Ca2+ increases altered HGF's effect. In unstimulated cells>95% of Gab1 was cytosolic and HGF stimulated a 3-fold increase in membrane Gab1. HGF stimulated equal increases in pY307 and pY627 Gab1 in cytosol/membrane. HGF stimulated Gab1 association with c-Met, Grb2, SHP2, PI3K, Shc, Crk isoforms and CrkL, but not with PLCgamma1. These results demonstrate that only a subset of pancreatic growth factors (HGF/EGF) stimulates Gab1 signaling and no pancreatic hormones/neurotransmitters. Our results with Gab1 activation with different growth factors, the role of PKC, and its interaction with distant signaling molecules suggest the cellular mechanisms of Gab1 signaling show important differences in different cells. These results show that Gab1 activation plays a central role in HGF's ability to stimulate intracellular transduction cascades in pancreatic acinar cells and this action likely plays a key role in HGF's ability to alter pancreatic cell function (i.e., growth/regeneration).  相似文献   

13.
Protein kinase D1 (PKD1) is involved in cellular processes including protein secretion, proliferation and apoptosis. Studies suggest PKD1 is activated by various stimulants including gastrointestinal (GI) hormones/neurotransmitters and growth factors in a protein kinase C (PKC)-dependent pathway. However, little is known about the mechanisms of PKD1 activation in physiologic GI tissues. We explored PKD1 activation by GI hormones/neurotransmitters and growth factors and the mediators involved in rat pancreatic acini. Only hormones/neurotransmitters activating phospholipase C caused PKD1 phosphorylation (S916, S744/748). CCK activated PKD1 and caused a time- and dose-dependent increase in serine phosphorylation by activation of high- and low-affinity CCK(A) receptor states. Inhibition of CCK-stimulated increases in phospholipase C, PKC activity or intracellular calcium decreased PKD1 S916 phosphorylation by 56%, 62% and 96%, respectively. PKC inhibitors GF109203X/Go6976/Go6983/PKC-zeta pseudosubstrate caused a 62/43/49/0% inhibition of PKD1 S916 phosphorylation and an 87/13/82/0% inhibition of PKD1 S744/748 phosphorylation. Expression of dominant negative PKC-delta, but not PKC-epsilon, or treatment with PKC-delta translocation inhibitor caused marked inhibition of PKD phosphorylation. Inhibition of Src/PI3K/MAPK/tyrosine phosphorylation had no effect. In unstimulated cells, PKD1 was mostly located in the cytoplasm. CCK stimulated translocation of total and phosphorylated PKD1 to the membrane. These results demonstrate that CCK(A) receptor activation leads to PKD activation by signaling through PKC-dependent and PKC-independent pathways.  相似文献   

14.
We examined receptor occupation, calcium mobilization and amylase release for cholecystokinin octapeptide (CCK-8) within a 3-min incubation period at 37 degrees C using dispersed acini from rat pancreas. Analysis of competitive binding inhibition data obtained after a 3-min incubation revealed the presence of only a single class of CCK receptors, while two classes of CCK receptor, i.e., high-affinity and low-affinity CCK receptors, were detected when binding reached a steady-state after a 60-min incubation. The IC50 of CCK receptors calculated from the 3-min binding data was 19.0 +/- 0.5 nM (mean +/- S.D.), close to the Kd of the low-affinity CCK receptors determined by equilibrium binding studies. Exposure of fura-2-loaded acini to 10-1000 pM CCK-8 caused an immediate and dose-dependent increase in [Ca2+]i followed by a gradual decrease in [Ca2+]i. The CCK-stimulated amylase release after 3 min of incubation was biphasic; amylase release increased over the dose range of 3-300 pM CCK-8, peaked at 300 pM CCK-8 and decreased with supramaximal concentrations of CCK-8. Our data suggest that occupation of the low-affinity, but not the high-affinity, CCK receptors is more directly associated with calcium mobilization and subsequent stimulation of amylase release in rat pancreatic acini.  相似文献   

15.
The relative potencies of cholecystokinin (CCK-33) and its carboxyl terminal octapeptide (CCK-8) for stimulation of amylase release from rat pancreatic acini was measured. Porcine CCK-33 and synthetic CCK-8 were initially subjected to high pressure liquid chromatography to assess purity. Concentrations of each peptide were determined by amino acid analysis. The relative immunoreactivities of CCK-33 and CCK-8 were compared using an antibody that recognizes the common carboxyl terminus of these forms. This antibody bound CCK-8 and CCK-33 with nearly equal affinity. The relative potencies of CCK-33 and CCK-8 were then measured by comparing their abilities to stimulate amylase release from isolated rat pancreatic acini. Statistical analysis of the relative potencies of the two hormones indicated that CCK-8 was 36% more potent than CCK-33 in this assay system. These data suggest that differences in biological activities between large and small forms of CCK are not as great as previously reported.  相似文献   

16.
17.
It has recently been shown that--after chronic cholecystokinin (CCK) treatment--an adaptation of pancreatic secretory but not gastric motor function does occur. Recent studies indicate that the CCK(1)-receptor exists in two (i.e. high and low) affinity states, which could be distinguished by the CCK-analogue JMV-180. CCK occupancy of high and low affinity sites is thought to be related to the initiation of different intracellular events and consequent biological responses. Affinity states of CCK(1)-receptors on pancreas and gastrointestinal (GI) smooth muscle could be different and this can offer an explanation for the different effects of CCK on pancreatic and gastric growth. We therefore studied the affinity states of CCK(1)-receptors on isolated rat pancreatic acini and gastric smooth muscle preparations. When acini were incubated with increasing concentrations of CCK-8, a biphasic (i.e. stimulation followed by inhibition) effect on amylase release was observed. JMV-180 caused only stimulation of enzyme release and combined JMV-180 and CCK stimulation (at submaximal doses) resulted in an additive secretory response. CCK-8 induced contractions of pyloric, antral and fundic muscle in a concentration-dependent manner. The response was monophasic, reaching a plateau. JMV-180 had only a very weak effect on these preparations. On the contrary, it inhibited CCK-induced contractions in a competitive manner, the concentration-response curve to CCK being shifted to the right by the CCK analogue. Our data suggest that the affinity states of CCK(1)-receptors on rat pancreatic and gastric tissue are different. On pancreatic acini CCK(1)-receptors exist in both high- and low-affinity states whose occupation is followed by the sequence of intracellular events leading to growth. In contrast, occupation of low affinity receptors (the only ones present in the GI smooth muscle) does not lead to cell proliferation. This difference therefore explains the different adaptive response of the pancreas and the stomach to chronic CCK administration. Furthermore, different affinity states of CCK(1)-receptors may mediate different functions of the digestive tract.  相似文献   

18.
First incubating dispersed acini from rat pancreas with monensin, a cation ionophore that can inhibit recycling of receptors, inhibited binding of 125I-cholecystokinin 8 (125I-CCK-8) measured during a second incubation by as much as 50%. A maximal effect of monensin required 90 min of first incubation. Detectable inhibition of binding of 125I-CCK-8 occurred with 300 nM monensin, and inhibition increased progressively with concentrations of monensin up to 25 microM. Pancreatic acini possess two classes of receptors that bind 125I-CCK-8. One class has a high affinity (Kd = 461 pM) and a low capacity for CCK (512 fmol/mg DNA); the other class has a low affinity (Kd = 47 nM) and a high capacity for CCK (18 pmol/mg DNA). First incubating acini with monensin caused an 84% decrease in the number of high affinity CCK receptors with no change in the number of low affinity CCK receptors or the values of Kd for either class of receptors indicating that there is recycling of high affinity CCK receptors but not low affinity CCK receptors. First incubating acini with monensin did not alter CCK-stimulated amylase secretion indicating that in contrast to previous conclusions, occupation of low affinity CCK receptors mediates CCK-stimulated enzyme secretion. Moreover, the biphasic dose-response curve for CCK-stimulated enzyme secretion from monensin-treated acini suggests that pancreatic acini also possess a third, previously unrecognized class of very low affinity CCK receptors.  相似文献   

19.
While pancreatic protein synthesis and the initiation of translation are regulated by hormones and neurotransmiters, whether the elongation process is also regulated is unknown. Stimulatory doses of cholecystokinin (CCK) (100 pM), bombesin (10 nM), and carbachol (10 microM) increased elongation rates (measured as ribosomal half-transit time) in pancreatic acini in vitro. At the same time these secretagogues reduced elongation factor 2 (eEF2) phosphorylation, the main factor known to regulate elongation, and increased the phosphorylation of the eEF2 kinase. The mTOR inhibitor rapamycin reversed the dephosphorylation of eEF2 induced by CCK, as did treatment with the p38 MAPK inhibitor SB202190, the MEK inhibitor PD98059, and the phosphatase inhibitor calyculin A. Neither rapamycin, SB202190, PD98059 nor calyculin A had an effect on CCK mediated eEF2 kinase phosphorylation. Translation elongation in pancreatic acinar cells is likely regulated by eEF2 through the mTOR, p38, and MEK pathways, and modulated through PP2A.  相似文献   

20.
Protein kinase C-delta (PKC-delta) is involved in growth, differentiation, tumor suppression, and regulation of other cellular processes. PKC-delta activation causes translocation, tyrosine phosphorylation, and serine-threonine kinase activity. However, little is known about the ability of G protein-coupled receptors to activate these processes or the mediators involved. In the present study, we explored the ability of the neurotransmitter/hormone, CCK, to stimulate these changes in PKC-delta and explored the mechanisms. In rat pancreatic acini under basal conditions, PKC-delta is almost exclusively located in cytosol. CCK and TPA stimulated a rapid PKC-delta translocation to membrane and nuclear fractions, which was transient with CCK. CCK stimulated rapid tyrosine phosphorylation of PKC-delta and increased kinase activity. Using tyrosine kinase (B44) and a tyrosine phosphatase inhibitor (orthovanadate), changes in both CCK- and TPA-stimulated PKC-delta tyrosine phosphorylation were shown to correlate with changes in its kinase activity but not translocation. Both PKC-delta tyrosine phosphorylation and activation occur exclusively in particulate fractions. The Src kinase inhibitors, SU6656 and PP2, but not the inactive related compound, PP3, inhibited CCK- and TPA-stimulated PKC-delta tyrosine phosphorylation and activation. In contrast, PP2 also had a lesser effect on CCK- but not TPA-stimulated PKC-delta translocation. CCK stimulated the association of Src kinases with PKC-delta, demonstrated by co-immunoprecipitation. These results demonstrate that CCKA receptor activation results in rapid translocation, tyrosine phosphorylation, and activation of PKC-delta. Stimulation of PKC-delta translocation precedes tyrosine phosphorylation, which is essential for activation to occur. Activation of Src kinases is essential for the tyrosine phosphorylation and kinase activation to occur and plays a partial role in translocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号