首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In response to many stresses and pathologic states, including different models of nervous system injury, cells synthesize a variety of proteins, most notably the inducible 72 kDa heat shock protein 70 (Hsp70), which plays important roles in maintaining cellular integrity and viability. We report here that cultured astrocytes from rat diencephalon express high levels of Hsp70 upon exposure to elevated temperatures, and are less vulnerable to a subsequent oxidative stress. Complex oxidative stress was induced by exposure of astrocytes to an aqueous extract of tobacco smoke. This resulted in both glutathione and ATP depletion, along with cell death that proceeded through a necrotic pathway. Pretreatment of cultures with the glutathione replenishing agent, N-acetyl-L-cysteine, prevented glutathione and ATP loss as well as necrotic cell death. Thermal stress also protected astrocytes from necrotic cell death but without affecting glutathione or ATP levels. We propose that heat shock protects astrocytes from necrosis induced by oxidative stress, probably as a result of Hsp70 synthesis, through an antioxidant-ATP independent mechanism. As Hsp70 may transfer from glial to neuronal cells, its synthesis by astrocytes may represent an important survival mechanism by which astrocytes protect neurons against oxidative-mediated cell death.  相似文献   

2.
《Autophagy》2013,9(2):273-276
Poly(ADP-ribose) polymerase-1 (PARP-1), activated by DNA strand breaks, participates in the DNA repair process physiologically. Excessive activation of PARP-1 mediates necrotic cell death under the status of oxidative stress and DNA damage. However, it remains elusive whether and how PARP-1 activation is involved in autophagy and what is the function of PARP-1-mediated autophagy under oxidative stress and DNA damage. We recently demonstrate that hydrogen peroxide (H2O2) induces autophagy through a novel autophagy signalling mechanism linking PARP-1 activation to the LKB1-AMP-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR) pathway. Furthermore, PARP-1-mediated autophagy plays a cytoprotective role in H2O2-induced necrotic cell death as suppression of autophagy greatly sensitizes H2O2-induced cell death. Our study thus identifies a novel function of PARP-1 in mediating autophagy and it appears that PAPR-1 possesses a dual role in modulating necrosis and autophagy under oxidative stress and DNA damage: on the one hand, overactivation of PARP-1 leads to ATP depletion and necrotic cell death; on the other hand, PARP-1 activation promotes autophagy via the LKB1-AMPK-mTOR pathway to enhance cell survival. The cellular decision of life or death depends on the balance between autophagy and necrosis mediated by these two distinct pathways.  相似文献   

3.
Abstract: We studied the time course of oxidatively modified proteins in the nigrostriatal dopaminergic system following transection of the medial forebrain bundle by quantifying the number of carbonyl groups coupled to striatal and nigral protein homogenates, an index of metal-catalyzed oxidations. We found a striking effect of axotomy on the number of oxidatively modified proteins in the substantia nigra but not in the striatum within the first 5 days postlesion. This effect was correlated with the neurochemical activity of the dopaminergic and serotoninergic systems in the substantia nigra, which suggests a role of dopamine- and serotonin-derived radical oxygen species in the oxidative stress detected in this brain area. We then searched for the type of cell death in the substantia nigra following axotomy. The fragmentation pattern obtained by agarose gel electrophoresis of DNA isolated from nigral tissue was indicative of cell death being entirely necrotic. In fact, no evidence of apoptosis was detected at any postlesion time as revealed by TdT-mediated dUTP-biotin nick end-labeling (TUNEL) staining. The course of necrotic cell death in the substantia nigra coincided with the maximal levels of oxidatively modified proteins in the substantia nigra, suggesting a link between oxidative stress and nerve cell death and also coinciding with the neurochemical activity of both dopaminergic and serotoninergic systems.  相似文献   

4.
Age-related macular degeneration (AMD) is a degenerative disease of the retina and the leading cause of blindness in the elderly. Retinal pigment epithelial (RPE) cell death and the resultant photoreceptor apoptosis are characteristic of late-stage dry AMD, especially geographic atrophy (GA). Although oxidative stress and inflammation have been associated with GA, the nature and underlying mechanism for RPE cell death remains controversial, which hinders the development of targeted therapy for dry AMD. The purpose of this study is to systematically dissect the mechanism of RPE cell death induced by oxidative stress. Our results show that characteristic features of apoptosis, including DNA fragmentation, caspase 3 activation, chromatin condensation and apoptotic body formation, were not observed during RPE cell death induced by either hydrogen peroxide or tert-Butyl hydroperoxide. Instead, this kind of cell death can be prevented by RIP kinase inhibitors necrostatins but not caspase inhibitor z-VAD, suggesting necrotic feature of RPE cell death. Moreover, ATP depletion, receptor interacting protein kinase 3 (RIPK3) aggregation, nuclear and plasma membrane leakage and breakdown, which are the cardinal features of necrosis, were observed in RPE cells upon oxidative stress. Silencing of RIPK3, a key protein in necrosis, largely prevented oxidative stress-induced RPE death. The necrotic nature of RPE death is consistent with the release of nuclear protein high mobility group protein B1 into the cytoplasm and cell medium, which induces the expression of inflammatory gene TNFα in healthy RPE and THP-1 cells. Interestingly, features of pyroptosis or autophagy were not observed in oxidative stress-treated RPE cells. Our results unequivocally show that necrosis, but not apoptosis, is a major type of cell death in RPE cells in response to oxidative stress. This suggests that preventing oxidative stress-induced necrotic RPE death may be a viable approach for late-stage dry AMD.  相似文献   

5.
One of distinct genetic alterations in spontaneously immortalized DF-1 cells was found to be dysfunction of p53 and E2F-1 as well as altered antioxidant gene expression (upregulation of MnSOD and downregulation of catalase). We have characterized the cellular responses of primary and immortal DF-1 cells to oxidative stress and found that DF-1 cells were more sensitive to oxidative stress than their primary counterparts when treated with antimycin A. The increased DF-1 cell death by oxidative stress was accompanied by an increase in the levels of intracellular superoxide anions and hydrogen peroxide. The cell death in DF-1 cells by antimycin A showed none of the hallmarks of apoptosis, but displayed a significantly increased necrotic cell population. Anti-apoptotic Bcl-2 failed to inhibit oxidative-induced necrotic cell death in the DF-1 cells. However, this necrotic cell death was significantly decreased by treatment with hydrogen peroxide scavengers such as sodium pyruvate and N-acetyl-cysteine. Interestingly, overexpression of human catalase in DF-1 cells endowed cells resistant to the oxidative stress by antimycin A treatment, although the downregulation of MnSOD by an antisense strategy showed no evident change in the cytotoxic effect caused by antimycin A. Taken together, the present study might provide new therapeutic approach for tumor cells having the loss of p53 function and the altered antioxidant functions.  相似文献   

6.
It is well accepted that oxidative DNA repair capacity, oxidative damage to DNA and oxidative stress play central roles in aging and disease development. However, the correlation between oxidative damage to DNA, markers of oxidant stress and DNA repair capacity is unclear. In addition, there is no universally accepted panel of markers to assess oxidative stress in humans. Our interest is oxidative damage to DNA and its correlation with DNA repair capacity and other markers of oxidative stress. We present preliminary data from a small comet study that attempts to correlate single strand break (SSB) level with single strand break repair capacity (SSB-RC) and markers of oxidant stress and inflammation. In this limited study of four very small age-matched 24-individual groups of male and female whites and African-Americans aged 30-64 years, we found that females have higher single strand break (SSB) levels than males (p=0.013). There was a significant negative correlation between SSB-RC and SSB level (p=0.041). There was a positive correlation between SSBs in African American males with both heme degradation products (p=0.008) and high-sensitivity C-reactive protein (hs-CRP) (p=0.022). We found a significant interaction between hs-CRP and sex in their effect on residual DNA damage (p=0.002). Red blood cell reduced glutathione concentration was positively correlated with the levels of oxidized bases detected by endonuclease III (p=0.047), heme degradation products (p=0.015) and hs-CRP (p=0.020). However, plasma carbonyl levels showed no significant correlation with other markers. The data from the literature and from our very limited study suggest a complex relationship between measures of oxidative stress and frequently used clinical parameters believed to reflect inflammation or oxidative stress.  相似文献   

7.
To evaluate the genotoxic, physiological and immunological effects of short-term acute low temperature stress on the Pacific white shrimp, Litopenaeus vannamei, we rapidly transferred shrimp from tanks at 23±2 °C to aquaria at the same temperature (controls) or 12±2 °C for 12 h. Changes in the shrimp hemocyte respiratory burst activity and DNA damage were examined during and after exposure to the temperature stress using flow cytometry and the comet assay, respectively. We also monitored changes in the total hemocyte count, malondialdehyde levels, total protein concentration and osmolality in shrimp plasma. The results show that hemocyte respiratory burst activity, malondialdehydes levels and hemocyte DNA damage in the plasma all increased significantly after exposure to 12±2 °C for 3 h. In contrast, total hemocyte count, total protein concentration and osmolality in the plasma decreased compared to the controls. We conclude that acute low temperature can induce oxidative stress, DNA damage, lipid peroxidation and changes in osmolality in L. vannamei.  相似文献   

8.
Polycyclic aromatic hydrocarbons (PAHs) are of global environmental concern because they cause many health problems including cancer and inflammation of tissue in humans. Plants are important in removing PAHs from the atmosphere; yet, information on the physiology, cell and molecular biology, and biochemistry of PAH stress responses in plants is lacking. The PAH stress response was studied in Arabidopsis (Arabidopsis thaliana) exposed to the three-ring aromatic compound, phenanthrene. Morphological symptoms of PAH stress were growth reduction of the root and shoot, deformed trichomes, reduced root hairs, chlorosis, late flowering, and the appearance of white spots, which later developed into necrotic lesions. At the tissue and cellular levels, plants experienced oxidative stress. This was indicated by localized H2O2 production and cell death, which were detected using 3, 3'-diaminobenzidine and trypan blue staining, respectively. Gas chromatography-mass spectrometry and fluorescence spectrometry analyses showed that phenanthrene is internalized by the plant. Gene expression of the cell wall-loosening protein expansin was repressed, whereas gene expression of the pathogenesis related protein PR1 was induced in response to PAH exposure. These findings show that (i) Arabidopsis takes up phenanthrene, suggesting possible degradation in plants, (ii) a PAH response in plants and animals may share similar stress mechanisms, since in animal cells detoxification of PAHs also results in oxidative stress, and (iii) plant specific defence mechanisms contribute to PAH stress response in Arabidopsis.  相似文献   

9.
Apart from its effect on the regulation of reproductive function, recent studies indicate that kisspeptin may play roles in the antioxidant defense system. The antioxidant defense system and oxidative stress contribute to the etiology and pathogenesis of neuronal cell death after brain injury. We have investigated the postacute effect of kisspeptin‐10 on brain injury induced by l ‐methionine. DNA fragmentation, malondialdehyde (MDA), reduced glutathione levels, and superoxide dismutase (SOD) activities were analyzed. Our results showed that methionine treatment increases apoptotic cell death. Kisspeptin alone showed no side effect on apoptotic cell death. However, kisspeptin treatment reversed the proapoptotic effect of methionine associated with reduced MDA and increased glutathione levels. Furthermore, SOD activity was completely depleted in methionine‐treated animals. In conclusion, our results revealed that delayed kisspeptin‐10 treatment reduces neuronal cell death by activation of SOD activity.  相似文献   

10.
Perturbation of oxidant/antioxidant cellular balance, induced by cellular metabolism and by exogenous sources, causes deleterious effects to proteins, lipids, and nucleic acids, leading to a condition named "oxidative stress" that is involved in several diseases, such as cancer, ischemia-reperfusion injury, and neurodegenerative disorders. Among the exogenous agents, both H(2)O(2) and hyperthermia have been implicated in oxidative stress promotion linked with the activation of apoptotic or necrotic mechanisms of cell death. The goal of this work was to better understand the involvement of some stress-related proteins in adaptive responses mounted by human fibroblasts versus the oxidative stress differently induced by 42 degrees C hyperthermia or H(2)O(2.) The research was developed, switching off inducible nitric oxide synthase (iNOS) expression through antisense oligonucleotide transfection by studying the possible coregulation in the expression of HSP32 (also named HO-1), HSP70, and iNOS and their involvement in the induction of DNA damage. Several biochemical parameters, such as cell viability (MTT assay), cell membrane integrity (lactate dehydrogenase release), reactive oxygen species formation, glutathione levels, immunocytochemistry analysis of iNOS, HSP70, and HO-1 levels, genomic DNA fragmentation (HALO/COMET assay), and transmembrane mitochondrial potential (deltaPsi) were examined. Cells were collected immediately at the end of the stress-inducing treatment. The results, confirming the pleiotropic function of i-NOS, indicate that: (i). HO-1/HSP32, HSP70, and iNOS are finely tuned in their expression to contribute all together, in human fibroblasts, in ameliorating the resistance to oxidative stress damage; (ii). ROS exposure, at least in hyperthermia, in human fibroblasts contributes to growth arrest more than to apoptosis activation; and (iii). mitochondrial dysfunction, in presence of iNOS inhibition seems to be clearly involved in apoptotic cell death of human fibroblasts after H(2)O(2) treatment, but not after hyperthermia.  相似文献   

11.
Imbalance between matrix metalloproteinases (MMPs) and tissue inhibitor of matrix metalloproteinases (TIMPs) is an important control point in tissue remodelling. Several findings have reported a marked MMP/TIMP imbalance in a variety of in vitro models in which oxidative stress was induced. Since previous studies showed that commercial hyaluronan and chondroitin-4-sulphate are able to limit lipid peroxidation during oxidative stress, we investigated the antioxidant capacity of purified human plasma chondroitin-4-sulfate in reducing MMP and TIMP imbalance in a model of ROS-induced oxidative injury in fibroblast cultures. Purified human plasma chondroitin-4-sulfate was added to the fibroblast cultures exposed to FeSO4 plus ascorbate. We assayed cell death, MMP and TIMP mRNA expression and protein activities, DNA damage, membrane lipid peroxidation, and aconitase depletion. FeSO4 plus ascorbate produced severe death of cells and increased MMP-1, MMP-2 and MMP-9 expression and protein activities. It also caused DNA strand breaks, enhanced lipid peroxidation and decreased aconitase. TIMP-1 and TIMP-2 protein levels and mRNA expression remain unaltered. Purified human plasma C4S, at three different doses, restored the MMP/TIMP homeostasis, increased cell survival, reduced DNA damage, inhibited lipid peroxidation and limited impairment of aconitase. These results further support the hypothesis that these biomolecules possess antioxidant activity and by reducing ROS production C4S may limit cell injury produced by MMP/TIMP imbalance.  相似文献   

12.
Oxidative stress induced by tert-butyl hydroperoxide (tBOOH) in freshly isolated rat hepatocytes caused DNA damage and loss of membrane integrity. Such DNA lesions are likely to be single strand breaks since neither caryolysis nor chromatine condensation was seen in electron micrographs from tBOOH-treated cells. In addition, pulsed field gel electrophoresis of genomic DNA from both control and tBOOH-treated hepatocytes showed similar profiles, indicating the absence of internucleosomal DNA cleavage, a classical reflection of apoptotic endonuclease activity. The activation of the repair enzyme poly(ADP-ribose)polymerase (PARP) following DNA damage by tBOOH induced a dramatic drop in both NAD(+) and ATP. The inhibition of PARP by 3-aminobenzamide enhanced DNA damage by tBOOH, restored NAD(+) and ATP levels, but did not result in better survival against cell killing by tBOOH. The lack of the protective effect of PARP inhibitor, therefore, does not implicate PARP in the mechanism of tBOOH-induced cytotoxicity. Electron micrographs also show no mitochondrial swelling in cells under oxidative stress, but such organelles were mainly located around the nucleus, a picture already observed in autoschizis, a new suggested kind of cell death which shows both apoptotic and necrotic morphological characteristics.  相似文献   

13.
Oxidative stress is a major cause of drug induced hepatic diseases. The present study aims to investigate the antioxidative signaling mechanism of a protein isolated from the herb, Cajanus indicus against acetaminophen induced necrotic cell death. We found that incubation of hepatocytes with the protein prevented acetaminophen-induced loss in cell viability, reduction in glutathione level and enhancement of reactive oxygen species generation. Treatment of mice with the protein before administration of acetaminophen also reduced serum nitrite and TNF-α formation. Moreover, it counteracted acetaminophen-induced loss in mitochondrial membrane potential, loss in adenosine tri phosphate and rise in intracellular calcium. Investigating the cell signaling pathways, we found that the protein exerts its protective action via the activation of NF-κB and Akt and deactivation of STAT-1. Surprisingly, no role of ERK1/2 or STAT-3 was found in the protein-mediated protection of hepatocytes during acetaminophen exposure. Finally, we found that acetaminophen introduces necrosis as the primary phenomena of cell death and protein treatment decreased the necrotic process as evident from the DNA fragmentation and flow-cytometry studies. In addition, administration of the protein to mice before acetaminophen application showed fewer number of TUNEL positive cells. Combining, data suggest that the protein possesses cytoprotective activity against acetaminophen-induced oxidative cellular damage and prevents hepatocytes from necrotic death.  相似文献   

14.
The aim of this study was to elucidate death pathways in macrophages resulting from exposure to triacylglycerols (TG), mechanisms which may be relevant to the development of atherosclerosis. A commercial TG emulsion (lipid emulsion, LE; 0.1-1.5 mg lipids/ml) was added to J774.2 cells in culture. Within the first 24 h after TG treatment, cellular reactive oxygen species (ROS) levels were strongly elevated and basal caspase-3 activity was attenuated. In contrast, after 48 h, ROS production was arrested. TG-mediated ROS production was demonstrated to be via mitochondrial complex 1 of the electron-transfer chain since the inhibitor of complex 1 rotenone significantly attenuated the cellular ROS levels in TG-treated cells. The TG effect culminated in cell death, with no caspase-3 activation. We therefore evaluated the effect of TG on apoptotic cells showing high caspase activity. TG induced elevated ROS levels and suppressed caspase-3 in apoptotic cells pretreated for 24 h with cycloheximide. Dual staining with propidium iodide and Annexin V followed by flow cytometric analysis showed that TG facilitated cell death with clear necrotic characteristics. To elucidate whether the necrotic cell death process is indeed oxidant dependent, antioxidant protection was studied. Treatment with N-acetylcysteine (NAC) (0.5 mM), ascorbic acid (0.5 mM), and resveratrol (0.2 mM) protected against the TG lipotoxic effect, while, surprisingly, lipophilic antioxidants did not. The combination of NAC, ascorbic acid, and resveratrol, each at much lower concentrations, had a synergistic protective effect. In conclusion, we show here for the first time that exposure to TG can directly regulate lipotoxicity in macrophages by inducing mitochondria-mediated prolonged oxidative stress; this, in turn, can inactivate the apoptotic caspase system, resulting in necrotic cell death which can be prevented by specific antioxidants.  相似文献   

15.
Oxidative damage has been said to play an important role in pulmonary injury, which is associated with the development and progression of acute respiratory distress syndrome (ARDS). We aimed to identify biomarkers to determine the oxidative stress in an animal model of acute lung injury (ALI) using two different strategies of mechanical ventilation. Rabbits were ventilated using either conventional mechanical ventilation (CMV) or high-frequency oscillatory ventilation (HFOV). Lung injury was induced by tracheal saline infusion (30 ml/kg, 38°C). In addition, five healthy rabbits were studied for oxidative stress. Isolated lymphocytes from peripheral blood and lung tissue samples were analyzed by alkaline single cell gel electrophoresis (comet assay) to determine DNA damage. Total antioxidant performance (TAP) assay was applied to measure overall antioxidant performance in plasma and lung tissue. HFOV rabbits had similar results to healthy animals, showing significantly higher antioxidant performance and lower DNA damage compared with CMV in lung tissue and plasma. Total antioxidant performance showed a significant positive correlation (r = 0.58; P = 0.0006) in plasma and lung tissue. In addition, comet assay presented a significant positive correlation (r = 0.66; P = 0.007) between cells recovered from target tissue and peripheral blood. Moreover, antioxidant performance was significantly and negatively correlated with DNA damage (r = -0.50; P = 0.002) in lung tissue. This study indicates that both TAP and comet assay identify increased oxidative stress in CMV rabbits compared with HFOV. Antioxidant performance analyzed by TAP and oxidative DNA damage by comet assay, both in plasma, reflects oxidative stress in the target tissue, which warrants further studies in humans.  相似文献   

16.
YCT is a semipurified extract from Cratoxylum cochinchinense that has antioxidant properties and contains mostly mangiferin. We show here that YCT is selectively toxic to certain cell types and investigate the mechanisms of this toxicity in Jurkat T cells. By flow cytometric analyses, we show that YCT causes intense oxidative stress and a rise in cytosolic Ca2+. This is followed by a rise in mitochondrial Ca2+, release of cytochrome c, collapse of Δψm, a fall in ATP levels, and eventually cell death. The mechanism(s) of intense oxidative stress may involve a plasma membrane redox system, as cell death is inhibited by potassium ferricyanide. Cell death has some features of apoptosis (propidium iodide staining, externalization of phosphatidylserine, limited caspase-3 and -9 activities), but there was no internucleosomal DNA fragmentation.  相似文献   

17.
Free radicals produced during hyperthermic stress and aging are thought to play an important role in the degenerative process. To investigate the correlation between oxidative damages caused by acute heat exposure or aging, and the protective effect of vitamin C in vivo, we determined the levels of oxidative protein damage, lipid peroxidation, content of endogenous ascorbic acid, and glutathione in the plasma of young and old Wistar rats, subjected or not-subjected to acute heat stress. The results showed that the level of oxidative protein damage (measured as carbonyl content) in plasma was significantly higher in elderly and in heat-exposed animals. Vitamin C treatment led to inhibition on carbonyl production much more pronounced in young heat-exposed than in aged heat-exposed rats. Aging and acute heat exposure correlated positively with increased production of lipid hydroperoxides in rats plasma, but there were no significant differences in lipid hydroperoxides levels between young and old heat-exposed rats, depending on the treatment with vitamin C. Multiple backward regression analysis showed ascorbic acid to be the only determining variable of lipid hydroperoxides levels in unexposed rats. It was concluded that aging and heat exposure instigate an increase of lipid peroxidation and protein oxidation in rat plasma, while vitamin C supplementation significantly counteracts these changes.  相似文献   

18.
Linking exposure to environmental pollutants with biological effects   总被引:8,自引:0,他引:8  
Exposure to ambient air pollution has been associated with cancer. Ambient air contains a complex mixture of toxics, including particulate matter (PM) and benzene. Carcinogenic effects of PM may relate both to the content of PAH and to oxidative DNA damage generated by transition metals, benzene, metabolism and inflammation. By means of personal monitoring and biomarkers of internal dose, biologically effective dose and susceptibility, it should be possible to characterize individual exposure and identify air pollution sources with relevant biological effects. In a series of studies, individual exposure to PM(2.5), nitrogen dioxide (NO(2)) and benzene has been measured in groups of 40-50 subjects. Measured biomarkers included 1-hydroxypyrene, benzene metabolites (phenylmercapturic acid (PMA) and trans-trans-muconic acid (ttMA)), 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in urine, DNA strand breaks, base oxidation, 8-oxodG and PAH bulky adducts in lymphocytes, markers of oxidative stress in plasma and genotypes of glutathione transferases (GSTs) and NADPH:quinone reductase (NQO1). With respect to benzene, the main result indicates that DNA base oxidation is correlated with PMA excretion. With respect to exposure to PM, biomarkers of oxidative damage showed significant positive association with the individual exposure. Thus, 8-oxodG in lymphocyte DNA and markers of oxidative damage to lipids and protein in plasma associated with PM(2.5) exposure. Several types of DNA damage showed seasonal variation. PAH adduct levels, DNA strand breaks and 8-oxodG in lymphocytes increased significantly in the summer period, requiring control of confounders. Similar seasonal effects on strand breaks and expression of the relevant DNA repair genes ERCC1 and OGG1 have been reported.In the present setting, biological effects of air pollutants appear mainly related to oxidative stress via personal exposure and not to urban background levels. Future developments include personal time-resolved monitors for exposure to ultrafine PM and PM(2.5,) use of GPS, as well as genomics and proteomics based biomarkers.  相似文献   

19.
Significant decreases of the hematocrit, hemoglobin, and plasma iron levels were observed in rats receiving daily intraperitoneal injections of aluminum at a dose of 27 mg Al/kg body wt for 3 wk, as compared to untreated controls. The activity of alkaline phosphatase was also significantly lower in the treated animals as a result of the accumulation of aluminum in the liver (p<0.05). Following aluminum administration, the plasma concentrations of aluminum and copper were also significantly increased, whereas the plasma zinc levels and oxidative stress measured through thiobarbituric acid reaction products showed nonsignificant differences between the two groups (p>0.05). The erythrocyte concentrations of aluminum, copper, zinc, and iron and of superoxide dismutase activity were found to be significantly higher in the study group as compared to controls. The treated animals also showed evidence of higher oxidative stress in comparison to controls. These results suggest that erythrocyte aluminum accumulation could result in abnormal trace element homeostasis and increasing oxidative stress, which might be a mechanism of aluminum-induced anemia.  相似文献   

20.
THP-1 cell-derived foam cells were exposed to oxidative stress through combined treatment with acetylated LDL (acLDL) and copper ions (Cu2+). The foam cells showed caspase-dependent apoptotic changes on exposure to oxidative stress for 6 h, and necrotic changes with the leakage of LDH after 24 h. KY-455, an anti-oxidative ACAT inhibitor, and ascorbic acid (VC) but not YM-750, an ACAT inhibitor, prevented apoptotic and necrotic changes. These preventive effects of KY-455 and VC were accompanied by the inhibition of lipid peroxidation in culture medium containing acLDL and Cu2+, suggesting the involvement of oxidized acLDL in apoptosis and necrosis. Foam cells accumulated esterified cholesterol (EC) for 24 h in the presence of acLDL without Cu2+, which was suppressed by KY-455 and YM-750. Foam cells showed necrotic changes and died in the presence of acLDL and Cu2+. KY-455 but not YM-750 prevented cell death and reduced the amount of EC accumulated. The foam cells treated with VC further accumulated EC without necrotic changes for 24 h even in the presence of acLDL and Cu2+. YM-750 as well as KY-455 inhibited lipid accumulation when co-incubated with VC in foam cells exposed to oxidative stress. It is concluded that an anti-oxidative ACAT inhibitor or the combination of an antioxidant and an ACAT inhibitor protects foam cells from oxidative stress and effectively reduces cholesterol levels, which would be a promising approach in anti-atherosclerotic therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号