首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wang W  Winther JR  Thorpe C 《Biochemistry》2007,46(11):3246-3254
The FAD prosthetic group of the ERV/ALR family of sulfhydryl oxidases is housed at the mouth of a 4-helix bundle and communicates with a pair of juxtaposed cysteine residues that form the proximal redox active disulfide. Most of these enzymes have one or more additional distal disulfide redox centers that facilitate the transfer of reducing equivalents from the dithiol substrates of these oxidases to the isoalloxazine ring where the reaction with molecular oxygen occurs. The present study examines yeast Erv2p and compares the redox behavior of this ER luminal protein with the augmenter of liver regeneration, a sulfhydryl oxidase of the mitochondrial intermembrane space, and a larger protein containing the ERV/ALR domain, quiescin-sulfhydryl oxidase (QSOX). Dithionite and photochemical reductions of Erv2p show full reduction of the flavin cofactor after the addition of 4 electrons with a midpoint potential of -200 mV at pH 7.5. A charge-transfer complex between a proximal thiolate and the oxidized flavin is not observed in Erv2p consistent with a distribution of reducing equivalents over the flavin and distal disulfide redox centers. Upon coordination with Zn2+, full reduction of Erv2p requires 6 electrons. Zn2+ also strongly inhibits Erv2p when assayed using tris(2-carboxyethyl)phosphine (TCEP) as the reducing substrate of the oxidase. In contrast to QSOX, Erv2p shows a comparatively low turnover with a range of small thiol substrates, with reduced Escherichia coli thioredoxin and with unfolded proteins. Rapid reaction studies confirm that reduction of the flavin center of Erv2p is rate-limiting during turnover with molecular oxygen. This comparison of the redox properties between members of the ERV/ALR family of sulfhydryl oxidases provides insights into their likely roles in oxidative protein folding.  相似文献   

2.
The yeast and human mitochondrial sulfhydryl oxidases of the Erv1/Alr family have been shown to be essential for the biogenesis of mitochondria and the cytosolic iron sulfur cluster assembly. In this study we identified a likely candidate for the first mitochondrial flavin-linked sulfhydryl oxidase of the Erv1-type from a photosynthetic organism. The central core of the plant enzyme (AtErv1) exhibits all of the characteristic features of the Erv1/Alr protein family, including a redox-active YPCXXC motif, noncovalently bound FAD, and sulfhydryl oxidase activity. Transient expression of fusion proteins of AtErv1 and the green fluorescence protein in plant protoplasts showed that the plant enzyme preferentially localizes to the mitochondria. Yet AtErv1 has several unique features, such as the presence of a CXXXXC motif in its carboxyl-terminal domain and the absence of an amino-terminally localized cysteine pair common to yeast and human Erv1/Alr proteins. In addition, the dimerization of AtErv1 is not mediated by its amino terminus but by its unique CXXXXC motif. In vitro assays with purified protein and artificial substrates demonstrate a preference of AtErv1 for dithiols with a defined space between the thiol groups, suggesting a thioredoxin-like substrate.  相似文献   

3.
The crystal structure of recombinant rat augmenter of liver regeneration (ALRp) has been determined to 1.8 A. The protein is a homodimer, stabilized by extensive noncovalent interactions and a network of hydrogen bonds, and possesses a noncovalently bound FAD in a motif previously found only in the related protein ERV2p. ALRp functions in vitro as a disulfide oxidase using dithiothreitol as reductant. Reduction of the flavin by DTT occurs under aerobic conditions resulting in a spectrum characteristic of a neutral semiquinone. This semiquinone is stable and is only fully reduced by addition of dithionite. Mutation of either of two cysteine residues that are located adjacent to the FAD results in inactivation of the oxidase activity. A comparison of ALRp with ERV2p is made that reveals a number of significant structural differences, which are related to the in vivo functions of these two proteins. Possible physiological roles of ALR are examined and a hypothesis that it may serve multiple roles is proposed.  相似文献   

4.
The quiescin sulfhydryl oxidase (QSOX) family of enzymes generates disulfide bonds in peptides and proteins with the reduction of oxygen to hydrogen peroxide. Determination of the potentials of the redox centers in Trypanosoma brucei QSOX provides a context for understanding catalysis by this facile oxidant of protein thiols. The CXXC motif of the thioredoxin domain is comparatively oxidizing (E0 of −144 mV), consistent with an ability to transfer disulfide bonds to a broad range of thiol substrates. In contrast, the proximal CXXC disulfide in the ERV (essential for respiration and vegetative growth) domain of TbQSOX is strongly reducing (E0 of −273 mV), representing a major apparent thermodynamic barrier to overall catalysis. Reduction of the oxidizing FAD cofactor (E0 of −153 mV) is followed by the strongly favorable reduction of molecular oxygen. The role of a mixed disulfide intermediate between thioredoxin and ERV domains was highlighted by rapid reaction studies in which the wild-type CGAC motif in the thioredoxin domain of TbQSOX was replaced by the more oxidizing CPHC or more reducing CGPC sequence. Mixed disulfide bond formation is accompanied by the generation of a charge transfer complex with the flavin cofactor. This provides thermodynamic coupling among the three redox centers of QSOX and avoids the strongly uphill mismatch between the formal potentials of the thioredoxin and ERV disulfides. This work identifies intriguing mechanistic parallels between the eukaryotic QSOX enzymes and the DsbA/B system catalyzing disulfide bond generation in the bacterial periplasm and suggests that the strategy of linked disulfide exchanges may be exploited in other catalysts of oxidative protein folding.  相似文献   

5.
W Zheng  W Zhang  W Hu  C Zhang  Y Yang 《PloS one》2012,7(7):e40935
Human quiescin-sulfhydryl oxidase 1 isoform b (HsQSOX1b) is a highly efficient, multiple-domain enzyme that directly inserts disulfide bonds into client protein. However, previous studies have focused mainly on the catalytic activity of the whole protein rather than its domain structure. In this research, we dissected the structure and function of HsQSOX1b and explored its mechanism as a highly efficient sulfhydryl oxidase by analyzing the truncated variants. The results showed that the first HsQSOX1b thioredoxin domain was essential for thiol oxidase activity. The smallest active fragment (SAQ) was identified to consist of a helix-rich region (HRR) and an essential for respiration and viability/augmenter of liver regeneration (ERV/ALR) domain, which remained highly active to oxidize an artificial non-thiol substrate but not small molecular and protein thiols. Our study clearly demonstrated that SAQ is a highly efficient oxidative engine, which shows high efficiency in the de novo disulfide formation and oxygen reduction and that this more efficient oxidative engine is necessary for the highly efficient catalysis of QSOXs compared to Erv1 and Erv2. This study will help address the roles of different HsQSOX1b domains in de novo disulfide formation and encourage the engineering of more efficient QSOX variants for the in vitro folding of disulfide-containing proteins.  相似文献   

6.
Saccharomyces cerevisiae Erv2p was identified previously as a distant homologue of Erv1p, an essential mitochondrial protein exhibiting sulfhydryl oxidase activity. Expression of the ERV2 (essential for respiration and vegetative growth 2) gene from a high-copy plasmid cannot substitute for the lack of ERV1, suggesting that the two proteins perform nonredundant functions. Here, we show that the deletion of the ERV2 gene or the depletion of Erv2p by regulated gene expression is not associated with any detectable growth defects. Erv2p is located in the microsomal fraction, distinguishing it from the mitochondrial Erv1p. Despite their distinct subcellular localization, the two proteins exhibit functional similarities. Both form dimers in vivo and in vitro, contain a conserved YPCXXC motif in their carboxyl-terminal part, bind flavin adenine dinucleotide (FAD) as a cofactor, and catalyze the formation of disulfide bonds in protein substrates. The catalytic activity, the ability to form dimers, and the binding of FAD are associated with the carboxyl-terminal domain of the protein. Our findings identify Erv2p as the first microsomal member of the Erv1p/Alrp protein family of FAD-linked sulfhydryl oxidases. We propose that Erv2p functions in the generation of microsomal disulfide bonds acting in parallel with Ero1p, the essential, FAD-dependent oxidase of protein disulfide isomerase.  相似文献   

7.
Escherichia coli thioredoxin is a small monomeric protein that reduces disulfide bonds in cytoplasmic proteins. Two cysteine residues present in a conserved CGPC motif are essential for this activity. Recently, we identified mutations of this motif that changed thioredoxin into a homodimer bridged by a [2Fe-2S] iron-sulfur cluster. When exported to the periplasm, these thioredoxin mutants could restore disulfide bond formation in strains lacking the entire periplasmic oxidative pathway. Essential for the assembly of the iron-sulfur was an additional cysteine that replaced the proline at position three of the CGPC motif. We solved the crystalline structure at 2.3 Angstroms for one of these variants, TrxA(CACA). The mutant protein crystallized as a dimer in which the iron-sulfur cluster is replaced by two intermolecular disulfide bonds. The catalytic site, which forms the dimer interface, crystallized in two different conformations. In one of them, the replacement of the CGPC motif by CACA has a dramatic effect on the structure and causes the unraveling of an extended alpha-helix. In both conformations, the second cysteine residue of the CACA motif is surface-exposed, which contrasts with wildtype thioredoxin where the second cysteine of the CXXC motif is buried. This exposure of a pair of vicinal cysteine residues apparently allows thioredoxin to acquire an iron-sulfur cofactor at its active site, and thus a new activity and mechanism of action.  相似文献   

8.
Erv1p from Saccharomyces cerevisiae is a FAD-linked sulfhydryl oxidase   总被引:6,自引:0,他引:6  
Lee J  Hofhaus G  Lisowsky T 《FEBS letters》2000,477(1-2):62-66
The yeast ERV1 gene encodes a small polypeptide of 189 amino acids that is essential for mitochondrial function and for the viability of the cell. In this study we report the enzymatic activity of this protein as a flavin-linked sulfhydryl oxidase catalyzing the formation of disulfide bridges. Deletion of the amino-terminal part of Erv1p shows that the enzyme activity is located in the 15 kDa carboxy-terminal domain of the protein. This fragment of Erv1p still binds FAD and catalyzes the formation of disulfide bonds but is no longer able to form dimers like the complete protein. The carboxy-terminal fragment contains a conserved CXXC motif that is present in all homologous proteins from yeast to human. Thus Erv1p represents the first FAD-linked sulfhydryl oxidase from yeast and the first of these enzymes that is involved in mitochondrial biogenesis.  相似文献   

9.
The flavin-dependent sulfhydryl oxidase from chicken egg white catalyzes the oxidation of sulfhydryl groups to disulfides with the reduction of oxygen to hydrogen peroxide. Reduced proteins are the preferred thiol substrates of this secreted enzyme. The egg white oxidase shows an average 64% identity (from randomly distributed peptides comprising more than 30% of the protein sequence) to a human protein, Quiescin Q6, involved in growth regulation. Q6 is strongly expressed when fibroblasts enter reversible quiescence (Coppock, D. L., Cina-Poppe, D., Gilleran, S. (1998) Genomics 54, 460-468). A peptide antibody against Q6 cross-reacts with both the egg white enzyme and a flavin-linked sulfhydryl oxidase isolated from bovine semen. Sequence analyses show that the egg white oxidase joins human Q6, bone-derived growth factor, GEC-3 from guinea pig, and homologs found in a range of multicellular organisms as a member of a new protein family. These proteins are formed from the fusion of thioredoxin and ERV motifs. In contrast, the flavin-linked sulfhydryl oxidase from Aspergillus niger is related to the pyridine nucleotide-dependent disulfide oxidoreductases, and shows no detectable sequence similarity to this newly recognized protein family.  相似文献   

10.
The Escherichia coli disulfide isomerase, DsbC is a V-shaped homodimer with each monomer comprising a dimerization region that forms part of a putative peptide-binding pocket and a thioredoxin catalytic domain. Disulfide isomerases from prokaryotes and eukaryotes exhibit little sequence homology but display very similar structural organization with two thioredoxin domains facing each other on top of the dimerization/peptide-binding region. To aid the understanding of the mechanistic significance of thioredoxin domain dimerization and of the peptide-binding cleft of DsbC, we constructed a series of protein chimeras comprising unrelated protein dimerization domains fused to thioredoxin superfamily enzymes. Chimeras consisting of the dimerization domain and the alpha-helical linker of the bacterial proline cis/trans isomerase FkpA and the periplasmic oxidase DsbA gave rise to enzymes that catalyzed the folding of multidisulfide substrate proteins in vivo with comparable efficiency to E. coli DsbC. In addition, expression of FkpA-DsbAs conferred modest resistance to CuCl2, a phenotype that depends on disulfide bond isomerization. Selection for resistance to elevated CuCl2 concentrations led to the isolation of FkpA-DsbA mutants containing a single amino acid substitution that changed the active site of the DsbA domain from CPHC into CPYC, increasing the similarity to the DsbC active site (CGYC). Unlike DsbC, which is resistant to oxidation by DsbB-DsbA and does not normally catalyze disulfide bond formation under physiological conditions, the FkpA-DsbA chimeras functioned both as oxidases and isomerases. The engineering of these efficient artificial isomerases delineates the key features of catalysis of disulfide bond isomerization and enhances our understanding of its evolution.  相似文献   

11.
Raje S  Thorpe C 《Biochemistry》2003,42(15):4560-4568
Flavoproteins of the quiescin/sulfhydryl oxidase (QSOX) family catalyze oxidation of peptide and protein thiols to disulfides with the reduction of oxygen to hydrogen peroxide. QSOX family members contain several domains, including an N-terminal thioredoxin domain (Trx) and an FAD-binding-domain (ERV) toward the C-terminus. Partial proteolysis of avian QSOX leads to two fragments, designated 30 and 60 kDa from their apparent mobilities on SDS-PAGE. The 30 kDa fragment is a monomer under nondenaturing conditions and contains a Trx domain with a CxxC sequence typical of protein disulfide isomerase (WCGHC). This QSOX fragment is not detectably glycosylated, contains no detectable FAD, and shows undetectable sulfhydryl oxidase activity. In contrast, the 60 kDa fragment is a dimeric glycoprotein that binds FAD tightly and oxidizes dithiothreitol about 1000-fold slower than intact QSOX. Reduced RNase is not a significant substrate of the 60 kDa fragment. The redox behavior of the 60 kDa flavoprotein fragment is profoundly different from that of intact QSOX. Thus, dithionite or photochemical reduction of the 60 kDa fragment leads to two-electron reduction of the FAD without subsequent reduction of the other two CxxC motifs or the appearance of a thiolate to flavin charge-transfer complex. Further characterization of the fragments and insights gained from the crystal structure of yeast ERV2p (Gross, E., Sevier, C. S., Vala, A., Kaiser, C. A., and Fass, D. (2002) Nat. Struct. Biol. 9, 61-67) suggest that the flow of reducing equivalents in intact avian QSOX is dithiol substrate --> C80/83 --> C519/522 --> C459/462 --> FAD --> oxygen. The ancient fusion of thioredoxin domains to a catalytically more limited ERV domain has produced an efficient catalyst for the direct introduction of disulfide bonds into a wide range of proteins and peptides in multicellular organisms.  相似文献   

12.
The thioredoxin superfamily consists of enzymes that catalyze the reduction, formation, and isomerization of disulfide bonds and exert their activity through a redox active disulfide in a Cys-Xaa(1)-Xaa(2)-Cys motif. The individual members of the family differ strongly in their intrinsic redox potentials. However, the role of the different redox potentials for the in vivo function of these enzymes is essentially unknown. To address the question of in vivo importance of redox potential for the most reducing member of the enzyme family, thioredoxin, we have employed a set of active site variants of thioredoxin with increased redox potentials (-270 to -195 mV) for functional studies in the cytoplasm of Escherichia coli. The variants proved to be efficient substrates of thioredoxin reductase, providing a basis for an in vivo characterization of NADPH-dependent reductive processes catalyzed by the thioredoxin variants. The reduction of sulfate and methionine sulfoxide, as well as the isomerization of periplasmic disulfide bonds by DsbC, which all depend on thioredoxin as catalyst in the E. coli cytoplasm, proved to correlate well with the intrinsic redox potentials of the variants in complementation assays. The same correlation could be established in vitro by using the thioredoxin-catalyzed reduction of lipoic acid by NADPH as a model reaction. We propose that the rate of direct reduction of substrates by thioredoxin, which largely depends on the redox potential of thioredoxin, is the most important parameter for the in vivo function of thioredoxin, as recycling of reduced thioredoxin through NADPH and thioredoxin reductase is not rate-limiting for its catalytic cycle.  相似文献   

13.
The widespread thioredoxin superfamily enzymes typically share the following features: a characteristic α-β fold, the presence of a Cys-X-X-Cys (or Cys-X-X-Ser) redox-active motif, and a proline in the cis configuration abutting the redox-active site in the tertiary structure. The Cys-X-X-Cys motif is at the solvent-exposed amino terminus of an α-helix, allowing the first cysteine to engage in nucleophilic attack on substrates, or substrates to attack the Cys-X-X-Cys disulfide, depending on whether the enzyme functions to reduce, isomerize, or oxidize its targets. We report here the X-ray crystal structure of an enzyme that breaks many of our assumptions regarding the sequence-structure relationship of thioredoxin superfamily proteins. The yeast Protein Disulfide Isomerase family member Eps1p has Cys-X-X-Cys motifs and proline residues at the appropriate primary structural positions in its first two predicted thioredoxin-fold domains. However, crystal structures show that the Cys-X-X-Cys of the second domain is buried and that the adjacent proline is in the trans, rather than the cis isomer. In these configurations, neither the “active-site” disulfide nor the backbone carbonyl preceding the proline is available to interact with substrate. The Eps1p structures thus expand the documented diversity of the PDI oxidoreductase family and demonstrate that conserved sequence motifs in common folds do not guarantee structural or functional conservation.  相似文献   

14.
Members of the Quiescin-sulfhydryl oxidase (QSOX) family utilize a thioredoxin domain and a small FAD-binding domain homologous to the yeast ERV1p protein to oxidize sulfhydryl groups to disulfides with the reduction of oxygen to hydrogen peroxide. QSOX enzymes are found in all multicellular organisms for which complete genomes exist and in Trypanosoma brucei, but are not found in yeast. The avian QSOX is the best understood enzymatically: its preferred substrates are peptides and proteins, not monothiols such as glutathione. Mixtures of avian QSOX and protein disulfide isomerase catalyze the rapid insertion of the correct disulfide pairings in reduced RNase. Immunohistochemical studies of human tissues show a marked and highly localized concentration of QSOX in cell types associated with heavy secretory loads. Consistent with this role in the formation of disulfide bonds, QSOX is typically found in the cell in the endoplasmic reticulum and Golgi and outside the cell. In sum, this review suggests that QSOX enzymes play a significant role in oxidative folding of a large variety of proteins in a wide range of multicellular organisms.  相似文献   

15.
Erv1p is a FAD-dependent sulfhydryl oxidase of the mitochondrial intermembrane space. It contains three conserved disulfide bonds arranged in two CXXC motifs and one CX16C motif. Experimental evidence for the specific roles of the individual disulfide bonds is lacking. In this study, structural and functional roles of the disulfides were dissected systematically using a wide range of biochemical and biophysical methods. Three double cysteine mutants with each pair of cysteines mutated to serines were generated. All of the mutants were purified with the normal FAD binding properties as the wild type Erv1p, showing that none of the three disulfides are essential for FAD binding. Thermal denaturation and trypsin digestion studies showed that the CX16C disulfide plays an important role in stabilizing the folding of Erv1p. To understand the functional role of each disulfide, small molecules and the physiological substrate protein Mia40 were used as electron donors in oxygen consumption assays. We show that both CXXC disulfides are required for Erv1 oxidase activity. The active site disulfide is well protected thus requires the shuttle disulfide for its function. Although both mutants of the CXXC motifs were individually inactive, Erv1p activity was partially recovered by mixing these two mutants together, and the recovery was rapid. Thus, we provided the first experimental evidence of electron transfer between the shuttle and active site disulfides of Erv1p, and we propose that both intersubunit and intermolecular electron transfer can occur.Disulfide bonds play very important roles in the structure and function of many proteins by stabilizing protein folding and/or acting as thiol/disulfide redox switches. The process of disulfide formation is catalyzed by dedicated enzymes in vivo (14). Erv1p is a FAD-dependent sulfhydryl oxidase located in the Saccharomyces cerevisiae mitochondrial intermembrane space (46). It is an essential component of the redox regulated Mia40/Erv1 import and assembly pathway used by many of the cysteine-containing intermembrane space proteins, such as members of the “small Tim” and Cox17 families (710). Upon import of a Cys-reduced substrate, Mia40 interacts with the substrate via intermolecular disulfide bond and shuttles a disulfide to its substrate. Although oxidized Mia40 promotes disulfide bond formation in the substrates, Erv1p functions in catalyzing reoxidation of the reduced Mia40 and/or release of the substrate (1113).The common features for the FAD-dependent sulfhydryl oxidases are that the enzymes can catalyze the electron transfer from substrate molecules (e.g. protein thiols) through the noncovalent bound FAD cofactor to molecular oxygen or oxidized cytochrome c (14). The sulfhydryl oxidases can be divided into three groups: Ero1 enzymes, multidomain quiesin sulfhydryl oxidases, and single domain Erv (essential for respiration and vegetative growth)/ALR proteins. The yeast Ero1p and the mammalian homologues (Ero1α and Ero1β) are large flavoenzymes present in the ER with at least five disulfide bonds, but only two of the disulfide bonds are conserved. The conserved cysteines are essential for the catalytic activity of Ero1p forming the active site CXXC and shuttle disulfide CX4C, respectively (15, 16). Furthermore, nonconserved disulfide bonds have been shown recently to be important in regulating the activity of both yeast and mammalian Ero1 (1719). The second group of oxidases, the multidomain quiesin sulfhydryl oxidases, have important functions in higher eukaryotes (14, 20). Quiesin sulfhydryl oxidases consist of an Erv/ALR module fused to one or more thioredoxin-like domains with two conserved CXXC motifs in the Erv/ALR module. Quiesin sulfhydryl oxidase enzymes are found in many subcellular and extracellular locations, but not in mitochondria. Instead, single domain Erv/ARL enzymes of the third group are found in the 7mitochondria of many eukaryotic cells (21). Erv1p belongs to this single domain Erv/ARL family, which includes the human mitochondrial ARL, plant AtErv1, and yeast Erv2p of the ER lumen.The Erv/ARL enzymes are characterized by a highly conserved central catalytic core of ∼100 amino acids, which includes an active site CXXC motif (Cys130–Cys133 for Erv1p), CX16C disulfide bond (Cys159–Cys176 for Erv1p), and residues involved in FAD binding (Fig. 1A). Based on the partial crystal structure data of Erv2p (22) and AtErv1 (23), the catalytic core of Erv proteins contains a four-helix bundle forming the noncovalent FAD-binding site with the active site CXXC in close proximity to the isoalloxazine ring of FAD. In addition, the long range CX16C disulfide bond of the Erv proteins brings the short fifth helix to the four-helix bundle in proximity to the adenine ring of FAD (Fig. 1A). Thus, the CX16C disulfide bond is proposed to play a structural role in stabilizing the FAD binding and/or protein folding, but direct experimental evidence to verify the roles is lacking. Apart from the catalytic core, the other parts of the proteins seem flexible and unfolded. Importantly, all members of the Erv/ALR family have at least an additional disulfide bond located in the nonconserved N- or C-terminal region to the catalytic core (Fig. 1B), which is hypothesized as a shuttle disulfide based on the partial crystal structure of Erv2 (22). The hypothesized shuttle disulfide of Erv2p CXC and AtErv1 CX4C are located in the C terminus, but Erv1p (Cys30–Cys33) and ALR have a CXXC shuttle disulfide located N-terminal to the catalytic core. Furthermore, structural and chemical data have suggested that Erv/ARL enzymes form homodimer or oligomers in the presence or absence of intermolecular disulfide bonds (5, 23, 24).Open in a separate windowFIGURE 1.Structure and conserved Cys motifs of Erv/ALR enzymes. A, modeled structures of the conserved central catalytic core domain of Erv1p dimer based on the crystal structure data of AtErv1 (Protein Data Bank accession number 2HJ3, residues 73–173, the helix 1 starts with residue 75). The helices of the four-helix bundle and the short fifth helix are labeled from 1 to 5. The two disulfides are shown as yellow spheres, and the cofactor FAD is in red. The Cys130–Cys133 is the redox active disulfide located closely to the isoalloxazine ring of FAD. The N and C termini were labeled as N and C, respectively. The structure was generated using Pymol program. B, schematic of the primary structure of yeast, plant, and human sulfhydryl oxidase with the conserved Cys motifs. The conserved central catalytic core regions are shown as black bars, and the nonconserved regions are in gray.Yeast mitochondrial Erv1p contains a total of six Cys residues forming three pairs of disulfide bonds (residues 30–33, 130–133, and 159–176) as described above. Previous studies with single Cys mutants showed that although all three disulfide bonds are essential for Erv1p function in vivo, only Cys130–Cys133 disulfide is required for the oxidase activity of Erv1p in vitro (24). The conclusion that only Cys130–Cys133 disulfide is required for Erv1p oxidase activity in vitro was based on a study using the artificial substrate DTT2 as the electron donor. Abnormal color changes were observed for some of the single Cys mutants of Erv1p in the previous study that were probably caused by protein misfolding or formation of non-native disulfides because of the presence of a redox active but unpaired Cys. It is clear that Cys130–Cys133 is the active site disulfide; however, experimental evidence for the role of Cys30–Cys33 disulfide is lacking, and the specific role played by the unique CX16C motif of Erv proteins is unknown.In this study, we dissected the structural and functional roles of all three individual disulfides of Erv1p systematically. To avoid misfolding via unpaired Cys, three double Cys mutants of Erv1p were generated with each of the disulfides mutated to serines. All three mutants were successfully purified with the normal FAD binding properties of the wild type (WT) Erv1p. Various biophysical and biochemical methods were used to study the folding and oxidase activity of the WT and Erv1p mutants. Both artificial and the natural substrate (Mia40) of Erv1p were used as electron donors to understand the functional mechanism of Erv1p. Our results show that both the first (Cys30–Cys33) and second (Cys130–Cys133) disulfides are essential for Erv1 oxidase activity in vitro. Although none of the three disulfides are essential for FAD binding, the third disulfide (Cys159–Cys176) plays an important role in stabilizing the folding of Erv1p. More importantly, this study provided direct experimental evidence to show that Cys30–Cys33 functionally acts as a shuttle disulfide passing electrons to the active site Cys130–Cys133 disulfide. Moreover, the electron transfer seems to occur through both intersubunit and intermolecular interactions.  相似文献   

16.
Heckler EJ  Alon A  Fass D  Thorpe C 《Biochemistry》2008,47(17):4955-4963
The flavoprotein quiescin-sulfhydryl oxidase (QSOX) rapidly inserts disulfide bonds into unfolded, reduced proteins with the concomitant reduction of oxygen to hydrogen peroxide. This study reports the first heterologous expression and enzymological characterization of a human QSOX1 isoform. Like QSOX isolated from avian egg white, recombinant HsQSOX1 is highly active toward reduced ribonuclease A (RNase) and dithiothreitol but shows a >100-fold lower k cat/ K m for reduced glutathione. Previous studies on avian QSOX led to a model in which reducing equivalents were proposed to relay through the enzyme from the first thioredoxin domain (C70-C73) to a distal disulfide (C509-C512), then across the dimer interface to the FAD-proximal disulfide (C449-C452), and finally to the FAD. The present work shows that, unlike the native avian enzyme, HsQSOX1 is monomeric. The recombinant expression system enabled construction of the first cysteine mutants for mechanistic dissection of this enzyme family. Activity assays with mutant HsQSOX1 indicated that the conserved distal C509-C512 disulfide is dispensable for the oxidation of reduced RNase or dithiothreitol. The four other cysteine residues chosen for mutagenesis, C70, C73, C449, and C452, are all crucial for efficient oxidation of reduced RNase. C452, of the proximal disulfide, is shown to be the charge-transfer donor to the flavin ring of QSOX, and its partner, C449, is expected to be the interchange thiol, forming a mixed disulfide with C70 in the thioredoxin domain. These data demonstrate that all the internal redox steps occur within the same polypeptide chain of mammalian QSOX and commence with a direct interaction between the reduced thioredoxin domain and the proximal disulfide of the Erv/ALR domain.  相似文献   

17.
The CXXC motif is more than a redox rheostat   总被引:1,自引:0,他引:1  
The CXXC active-site motif of thiol-disulfide oxidoreductases is thought to act as a redox rheostat, the sequence of which determines its reduction potential and functional properties. We tested this idea by selecting for mutants of the CXXC motif in a reducing oxidoreductase (thioredoxin) that complement null mutants of a very oxidizing oxidoreductase, DsbA. We found that altering the CXXC motif affected not only the reduction potential of the protein, but also its ability to function as a disulfide isomerase and also impacted its interaction with folding protein substrates and reoxidants. It is surprising that nearly all of our thioredoxin mutants had increased activity in disulfide isomerization in vitro and in vivo. Our results indicate that the CXXC motif has the remarkable ability to confer a large number of very specific properties on thioredoxin-related proteins.  相似文献   

18.
Aldose reductase (ALR2) is susceptible to oxidative inactivation by copper ion. The mechanism underlying the reversible modification of ALR2 was studied by mass spectrometry, circular dichroism, and molecular modeling approaches on the enzyme purified from bovine lens and on wild type and mutant recombinant forms of the human placental and rat lens ALR2. Two equivalents of copper ion were required to inactivate ALR2: one remained weakly bound to the oxidized protein whereas the other was strongly retained by the inactive enzyme. Cys(303) appeared to be the essential residue for enzyme inactivation, because the human C303S mutant was the only enzyme form tested that was not inactivated by copper treatment. The final products of human and bovine ALR2 oxidation contained the intramolecular disulfide bond Cys(298)-Cys(303). However, a Cys(80)-Cys(303) disulfide could also be formed. Evidence for an intramolecular rearrangement of the Cys(80)-Cys(303) disulfide to the more stable product Cys(298)-Cys(303) is provided. Molecular modeling of the holoenzyme supports the observed copper sequestration as well as the generation of the Cys(80)-Cys(303) disulfide. However, no evidence of conditions favoring the formation of the Cys(298)-Cys(303) disulfide was observed. Our proposal is that the generation of the Cys(298)-Cys(303) disulfide, either directly or by rearrangement of the Cys(80)-Cys(303) disulfide, may be induced by the release of the cofactor from ALR2 undergoing oxidation. The occurrence of a less interactive site for the cofactor would also provide the rationale for the lack of activity of the disulfide enzyme forms.  相似文献   

19.
Neurotoxic peptides from venoms of scorpions and honey bees exhibit a consensus pattern in the two disulfide bridgings related to the sequence portions Cys-X-Cys and Cys-X-X-X-Cys. A revised three-dimensional structure of charybdotoxin, as determined by two-dimensional nmr spectroscopy, confirms that the consensus cystine dislocation generates in all these toxins a common structural element, i.e., the cystine-stabilized alpha-helical (CSH) motif, which may be correlated with their common ion channel blocking activity.  相似文献   

20.
A thioredoxin reductase (TrxR) has been identified in the hyperthermophilic archaeon Sulfolobus solfataricus (Ss). This enzyme is a homodimeric flavoprotein that was previously identified as NADH oxidase in the same micro-organism ('Biotechnol. Appl. Biochem. 23 (1996) 47'). The primary structure of SsTrxR is made of 323 amino acid residues and contains two putative betaalphabeta regions for the binding of FAD, and a NADP(H) binding consensus sequence in the proximity of a CXXC motif. These findings indicate that SsTrxR is structurally related to the class II of the pyridine nucleotide-disulphide oxidoreductases family. Moreover, the enzyme exhibits a NADP(H) dependent thioredoxin reductase activity requiring the presence of FAD. Surprisingly, the reductase activity of SsTrxR is reduced in the presence of a specific inhibitor of mammalian TrxR. This finding demonstrates that the archaeal enzyme, although structurally related to eubacterial TrxR, is functionally closer to eukaryal enzymes. Experimental evidences indicate that a disulphide bridge is required for the reductase but also for the NADH oxidase activity of the enzyme. These results are further supported by the significantly reduced activities exerted by the C147A mutant. The integrity of the CXXC motif is also involved in the stability of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号