首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Addition of a guanine nucleotide analog, guanosine 5'-O-(thiotriphosphate) (GTP gamma S)(1-100 microM) induced release of [3H]arachidonic acid from [3H]arachidonate-prelabeled rabbit neutrophils permeabilized with saponin. The chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced arachidonate release was enhanced by GTP gamma S, Ca2+, or their combination. Ca2+ alone (up to 100 microM) did not effectively stimulate lipid turnover. However, the combination of fMLP plus GTP gamma S elicited greater than additional effects in the presence of resting level of free Ca2+. The addition of 100 microM of GTP gamma S reduced the Ca2+ requirement for arachidonic acid liberation induced by fMLP. Pretreatment of neutrophils with pertussis toxin resulted in the abolition of arachidonate release and diacylglycerol formation. Neomycin (1 mM) caused no significant reduction of arachidonate release. In contrast, about 40% of GTP gamma S-induced arachidonate release was inhibited by a diacylglycerol lipase inhibitor, RHC 80267 (30 microM). These observations indicate that liberation of arachidonic acid is mediated by phospholipase A2 and also by phospholipase C/diacylglycerol lipase pathways. Fluoride, which bypasses the receptor and directly activates G proteins, induced arachidonic acid release and diacylglycerol formation. The fluoride-induced arachidonate release also appeared to be mediated by these two pathways. The loss of [3H]arachidonate was seen in phosphatidylinositol, phosphatidylcholine, and phosphatidylethanolamine. These data indicate that a G protein is involved between the binding of fMLP to its receptor and activation of phospholipase A2, and also that the arachidonic acid release is mediated by both phospholipase A2 and phospholipase C/diacylglycerol lipase.  相似文献   

2.
Incubation of rabbit platelets with thrombin resulted in rapid accumulations of inositol trisphosphate (IP3) in [3H]inositol-labeled platelets, increases of [3H]arachidonic acid [( 3H]AA) release, and [3H]serotonin secretion from the platelets prelabeled with these labeled compounds. The experiments using phospholipase A2 or C inhibitor suggested that not only phospholipase C but also phospholipase A2 activity plays an important role in serotonin secretion. We then studied the regulatory mechanisms of phospholipase A2 activity. Guanosine 5'-(3-O-thio)triphosphate (GTP gamma S), guanyl-5'-(beta,gamma-iminio)triphosphate), or AlF4- caused a significant liberation of AA in digitonin-permeabilized platelets but not in intact platelets. Thrombin-stimulated AA release was not observed in permeabilized platelets, whereas thrombin acted synergistically with GTP or GTP analogs to stimulate AA release. GTP analog-stimulated AA release was inhibited by guanosine 5'-(2-O-thio)diphosphate) and was also inhibited by decreased Mg2+ concentrations. Thrombin-induced, GTP-dependent AA release, but not IP3 formation, was diminished by 100 ng/ml of pertussis toxin, associated with ADP-ribosylation of membrane 41-kDa protein(s). Thrombin-stimulated AA release from intact platelets and GTP gamma S-stimulated release from permeabilized platelets were both markedly dependent on Ca2+. However, Ca2+ addition could not enhance AA release without GTP gamma S even when Ca2+ was increased up to 10(-4) M in permeabilized platelets. The results show that thrombin-stimulated AA release from rabbit platelets is mainly mediated by phospholipase A2 activity, not by phospholipase C activity, and that Ca2+ is an important factor to the activation of phospholipase A2 but is not the sole factor to the regulation. GTP-binding protein(s) is involved in receptor-mediated activation of phospholipase A2.  相似文献   

3.
Stimulation of human platelets with thrombin is accompanied by activation of both phospholipases C and A2. These have been considered to be sequential events, with phospholipase A2 activation resulting from the prior hydrolysis of inositol phospholipids and mobilization of intracellular Ca2+ stores. However, our and other laboratories have recently questioned this proposal, and we now present further evidence that these enzymes may be activated by separate mechanisms during thrombin stimulation. Alpha-thrombin induced the rapid hydrolysis of inositol phospholipids, and formation of inositol trisphosphate and phosphatidic acid. This was paralleled by mobilization of Ca2+ from internal stores. These responses were blocked by about 50% by prostacyclin. In contrast, the liberation of arachidonic acid induced by alpha-thrombin was totally inhibited by prostacyclin. The less-effective agonists, platelet activating factor (PAF) and gamma-thrombin also both stimulated phospholipase C, but whereas PAF evoked a rapid and transient response, that of gamma-thrombin was delayed and more sustained. The abilities of these agonists to induce the release of Ca2+ stores closely paralleled phospholipase C activation. However, the maximal intracellular Ca2+ concentrations achieved by these two agents were the same. Despite this, gamma-thrombin and not PAF, was able to release a small amount of arachidonic acid. When alpha-thrombin stimulation of platelets was preceded by epinephrine, there was a potentiation of phospholipase C activation, Ca2+ mobilization and aggregation. The same was true for gamma-thrombin and PAF. However, unlike alpha-thrombin, the gamma-thrombin-stimulated arachidonic acid release was not potentiated by epinephrine, but rather somewhat reduced. These results suggested that phospholipase C and phospholipase A2 were separable events in activated platelets. The mechanism by which alpha-thrombin stimulated phospholipase A2 did not appear to be through dissociation of the inhibitory GTP-binding protein, Gi, since gamma-thrombin decreased the pertussis toxin-induced ADP-ribosylation of the 41 kDa protein as much as did alpha-thrombin, but was a much less effective agent than alpha-thrombin at inducing arachidonic acid liberation.  相似文献   

4.
Platelet-activating factor (1-O-alkyl-2-acetyl-sn-glycerol-3-phosphocholine; PAF) enhances the release of newly synthesized PAF as measured by [3H]acetate incorporation into PAF in human neutrophils. The response was dose-dependent, rapid, transient, and inhibitable by the PAF antagonist BN-52021. The non-metabolizable bioactive PAF analogue (C-PAF) but not lyso-PAF enhances the release of newly synthesized PAF. Newly synthesized PAF was also released after stimulation of these cells with fMet-Leu-Phe. The human granulocyte-macrophage colony-stimulating factor potentiates the stimulated release of PAF. The intracellular calcium chelator BAPTA inhibits the rise of [Ca2+]i and the release of PAF but not the Na+/H+ antiport activity. PAF release, but not the rise in the intracellular concentration of free calcium, was inhibited in pertussis toxin-treated neutrophils stimulated with PAF. The release of PAF in pertussis toxin-treated cells was also inhibited in cells stimulated with fMet-Leu-Phe or opsonized zymosan. These results suggest that functional pertussis toxin-sensitive guanine nucleotide regulatory protein and/or one or more of the changes produced by phospholipase C activation are necessary for PAF release produced by physiological stimuli. It appears that PAF release requires a coordinated action of receptor-coupled G-proteins, calcium, and other parameters.  相似文献   

5.
Light stimulates phospholipase A2 activity in rod outer segments (ROS) of bovine retina as measured by the liberation of arachidonate from phosphatidylcholine, in in vitro assays of dark-adapted ROS. A role for GTP-binding proteins (G or N proteins) in the light activation of phospholipase A2 is suggested by the capacity for guanosine 5'-O-(thiotriphosphate) (GTP gamma S) to activate phospholipase A2 in dark-adapted ROS. In contrast, addition of GTP gamma S coincident with light exposure inhibited the light activation of phospholipase A2, suggesting that phospholipase A2 activity in the ROS is under dual regulation by G proteins. Transducin, the major G protein of the ROS, mediates the activation of cGMP phosphodiesterase by light and is a substrate for both cholera and pertussis toxin. Treatment of dark-adapted ROS with either toxin inhibits both basal and light-activated phospholipase A2, mimicking the action of the toxins on the light-induced cGMP phosphodiesterase activity of ROS. There is a loss of light-sensitive phospholipase A2 activity coincident with extraction of transducin from ROS membranes. In addition, the light-sensitive phospholipase A2 activity can be partially restored by the addition of purified transducin to the extracted ROS membranes. Light activation of phospholipase A2 in ROS membranes thus occurs by a transducin-dependent mechanism.  相似文献   

6.
We studied the regulation of arachidonic acid (AA) release by guanosine 5'-O-(3-thiotriphosphate (GTP gamma S) and Ca2+ in electropermeabilized HL60 granulocytes. Stimulation of AA release by GTP gamma S and Ca2+ was mediated by phospholipase A2 (PLA2) and required the presence of MgATP (EC50: 100-250 microM). The nucleotide effects were Ca(2+)-dependent (maximal effects detected at 1 microM free cation). UTP and ATP gamma S, which stimulate AA release in intact HL60 granulocytes with potencies and efficacies similar to those of ATP, were ineffective in supporting the effects of GTP gamma S in electropermeabilized cells. Pretreatment with pertussis toxin affected stimulation of AA release by ATP in intact cell, without altering the nucleotide effects in permeabilized cells. We observed the protein kinase C-dependent phosphorylation of PLA2 in permeabilized HL60 granulocytes, together with a correlation between the effects of phorbol esters and staurosporine on this reaction and on AA release. ATP-independent activation of PLA2 by GTP gamma S and/or Ca2+ was measured in subcellular fractions prepared from HL60 granulocytes. These data appear consistent with a model in which PLA2 activity in resting HL60 granulocytes is subjected to an inhibitory constraint that prevents its activation by Ca2+ and G-proteins. Removal of this constraint, either by the protein kinase C-dependent phosphorylation of the enzyme in vivo or physical disruption of the regulatory assembly (e.g. by N2 cavitation), allows its activation by Ca2+ and G-proteins.  相似文献   

7.
Ca2+ -independent phospholipase A2 (iPLA2) is involved in the incorporation of arachidonic acid (AA) into resting macrophages by the generation of the lysophospholipid acceptor. The role of iPLA2 in AA remodeling in different cells was evaluated by studying the Ca2+ dependency of AA uptake from the medium, the incorporation into cellular phospholipids, and the effect of the iPLA2 inhibitor bromoenol lactone on these events. Uptake and esterification of AA into phospholipids were not affected by Ca2+ depletion in human polymorphonuclear neutrophils and rat fibroblasts. The uptake was Ca2+ independent in chick embryo glial cells, but the incorporation into phospholipids was partially dependent on extracellular Ca2+. Both events were fully dependent on extra and intracellular Ca2+ in human platelets. In human polymorphonuclear neutrophils, the kinetics of incorporation in several isospecies of phospholipids was not affected by the absence of Ca2+ at short times (<30 min). The involvement of iPLA2 in the incorporation of AA from the medium was confirmed by the selective inhibition of this enzyme with bromoenol lactone, which reduced < or =50% of the incorporation of AA into phospholipids of human neutrophils. These data provide evidence that suggests iPLA2 plays a major role in regulating AA turnover in different cell types.  相似文献   

8.
The liberation of arachidonic acid (AA) was investigated in platelet membranes prelabelled with [3H]AA. In rat platelet membranes, Ca2+ at concentrations over several hundred nanomolar induced [3H]AA release, with a concurrent decrease in 3H radioactivity of phosphatidylethanolamine and phosphatidylcholine. Some 4-6% of total radioactivity incorporated into platelet membrane lipids was released at 1-10 microM-Ca2+, which is nearly equivalent to that attained in agonist-stimulated platelets. Formation of lysophospholipids in [3H]glycerol-labelled membranes and decrease in [3H]AA liberated by the phospholipase A2 inhibitors mepacrine and ONO-RS-082 suggest that [3H]AA release is mainly catalysed by phospholipase A2. In intact platelets agonist-stimulated [3H]AA release was markedly decreased in the absence of extracellular Ca2+ or in the presence of the intracellular Ca2+ chelator quin 2. These results indicate that in rat platelets the rise of intracellular Ca2+ plays a primary role in the activation of phospholipase A2. In contrast, Ca2+ even at high millimolar concentrations did not effectively stimulate [3H]AA release in human platelet membranes. Thus factor(s) additional to or independent of Ca2+ is required for the liberation of AA in human platelets.  相似文献   

9.
A peptide mitogen bombesin, which activates the phospholipase C-protein kinase C signaling pathway, induces a mepacrine-sensitive, dose-dependent increase in the release of [3H]arachidonic acid and its metabolites ([3H]AA) from prelabeled Swiss 3T3 fibroblasts. The effect is temporally composed of two phases, i.e. an initial transient burst that is essentially independent of extracellular Ca2+, and a following sustained phase that is absolutely dependent on the extracellular Ca2+. The initial transient [3H]AA liberation occurs concomitantly with bombesin-induced 45Ca efflux from prelabeled cells: both responses being substantially attenuated by loading cells with a Ca2+ chelator quin2. However, bombesin-induced intracellular Ca2+ mobilization by itself is not sufficient as a signal for the initial transient [3H]AA liberation, since A23187 potently stimulates 45Ca efflux to an extent comparable to bombesin but fails to induce [3H]AA release in the absence of extracellular Ca2+. The second sustained phase of the bombesin-induced [3H]AA release is abolished by reducing extracellular Ca2+ to 0.03 mM, although bombesin effects on phospholipase C and protein kinase C activation are barely affected by the same procedure. A protein kinase C activator phorbol 12,13-dibutyrate induces an extracellular Ca(2+)-dependent, slowly developing sustained increase in [3H]AA release, and markedly potentiates both phases of bombesin-induced [3H]AA release. Down-regulation of cellular protein kinase C completely abolishes all of the effects of phorbol dibutyrate, and partially inhibits the second but not the first phase of bombesin-induced [3H]AA release. These results indicate that bombesin-induced receptor-mediated activation of phospholipase A2 involves multiple mechanisms, including intracellular Ca2+ mobilization for the first phase, protein kinase C activation plus Ca2+ influx for the second phase, and as yet unknown mechanism(s) independent of intracellular Ca2+ mobilization or protein kinase C for both of the phases.  相似文献   

10.
Electrically permeabilized RINm5F cells were used to assess the factors required for activation of protein kinase C (PKC) and insulin secretion. PKC was activated either by phorbol 12-myristate 13-acetate (PMA) or by the generation of endogenous diacylglycerol in response to the nonhydrolyzable guanine nucleotide analog guanosine 5'-O-(thiotriphosphate) (GTP gamma S). As shown previously, both PMA and GTP gamma S elicit Ca2+-independent insulin secretion. This effect was mimicked by guanyl-5'-yl imidodiphosphate (Gpp(NH)p) but not by guanosine 5'-O-(3-fluorotriphosphate) and guanosine 5'-O-(3-phenyltriphosphate) possessing only one negative charge in the gamma-phosphate group. The action of PMA was mediated by PKC, since the agent caused both phosphorylation of specific protein substrates and association of the enzyme with cellular membranes. This translocation was independent of the Ca2+ concentration employed. In contrast, GTP gamma S only promoted association of PKC with membranes at 10(-6) and 10(-5) M Ca2+ and failed to alter significantly protein phosphorylation in the absence of Ca2+. Neither Gpp(NH)p, which stimulates insulin release, nor the other two GTP analogs, increased the proportion of PKC associated with membranes. To verify that the Ca2+-dependent effect of GTP gamma S on PKC is due to activation of phospholipase C, we measured the generation of diacylglycerol. GTP gamma S indeed stimulated diacylglycerol production in the leaky cells by about 50% at Ca2+ concentrations between 10(-7) and 10(-5) M, an effect which was almost abolished in the absence of Ca2+. Thus, at 10(-7) M Ca2+, the concentration found in resting intact cells, the generated diacylglycerol was not sufficient to cause PKC insertion into the membrane, demonstrating that both elevated Ca2+ and diacylglycerol are necessary for translocation to occur. It is concluded that while PKC activation by PMA elicits Ca2+-independent insulin secretion, the kinase seems not to mediate the stimulatory action of GTP analogs in the absence of Ca2+.  相似文献   

11.
Production of the potent lipid autacoid, platelet-activating factor (PAF), is a stimulated response of the endothelium which has important physiologic consequences including mediating adherence of inflammatory cells to the endothelium. Consequently, an understanding of the mechanisms that regulate PAF synthesis by the endothelium is important. To this end, we investigated the role of G proteins as a component of the signal transduction pathway that couples hormonal stimuli to PAF production. The addition of aluminum fluoride (AlF-4) to endothelial cells resulted in production of PAF with a maximal effect at 20 mM fluoride and within 20-60 min of exposure. Alf-4 also augmented the production of PAF which occurs in response to hormonal agonists. In addition, submaximal concentrations of AlF-4 converted an ineffective hormonal agonist (thrombin in bovine cells) to a maximally effective agonist. The adherence of neutrophils to endothelial cells that had been exposed previously to AlF-4 was increased in a manner that paralleled PAF production. PAF production in response to AlF-4 was not consistently affected by pertussis or cholera toxin. Introduction of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) into permeabilized endothelial cells also resulted in PAF production, with reversal by guanosine 5'-O-(2-thiodiphosphate) (GDP beta S), consistent with an effect mediated by a G protein. G protein activation with AlF-4 or GTP gamma S resulted in entry of extracellular Ca2+ as determined using 45Ca2+ flux studies and Indo-1 spectrofluorometry. Our data are consistent with the hypothesis that G proteins couple hormone-receptor binding to opening of a membrane calcium channel, a key step in the initiation of PAF production in endothelial cells.  相似文献   

12.
The role of Ca2+ in phospholipid metabolism and arachidonic acid release was studied in guinea pig neutrophils. The chemotactic peptide formylmethionyl-leucyl-phenyl-alanine (fMLP) activated [32P]Pi incorporation into phosphatidylinositol (PI) and phosphatidic acid (PA) without any effects on the labeling of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS). This activation was observed in Ca2+-free medium. Even in the neutrophils severely deprived of Ca2+ with EGTA and Ca2+ ionophore A23187, the stimulated labeling was not inhibited. When [3H]arachidonic acid-labeled neutrophils were stimulated by fMLP, a loss of [3H]arachidonic acid moiety in PI and the resultant increase in [3H]arachidonyl-diacylglycerol (DG), -PA, and free [3H]arachidonic acid was marked within 3 min. With further incubation, a loss of [3H]arachidonic acid in PC and PE became significant. These results suggest the activation of phospholipase C preceded the activation of phospholipase A2. In Ca2+-free medium, the decrease in [3H]arachidonyl-PI and the increase in [3H]arachidonyl-PA were only partially inhibited, although the release of [3H]arachidonic acid and a loss of [3H]arachidonyl-PC and -PE was completely blocked. These results show that PI-specific phospholipase C was not as sensitive to Ca2+ deprivation as arachidonic acid cleaving enzymes, phospholipase A2, and diacylglycerol lipase. Ca2+ ionophore A23187, which is known as an inducer of secretion, also stimulated [32P]Pi incorporation into PI and PA, although the incorporation into other phospholipids, such as PC and PE, was inhibited. This stimulated incorporation seemed to be caused by the activation of de novo synthesis of these lipids, because the incorporation of [3H]glycerol into PA and PI was also markedly stimulated by Ca2+ ionophore. But the chemotactic peptide did not increase the incorporation of [3H]glycerol into any glycerolipids including PI and PA. Thus, it is clear that fMLP mainly activates the pathway, PI leads to DG leads to PA, whereas Ca2+ ionophore activates the de novo synthesis of acidic phospholipids. When [3H]arachidonic acid-labeled neutrophils were treated with Ca2+ ionophore, the enhanced release of arachidonic acid and the accumulation of [3H]arachidonyl-DG, -PA with a concomitant decrease in [3H]arachidonyl-PC, -PE, and -PI were observed. Furthermore, the Ca2+ ionophore stimulated the formation of lysophospholipids, such as LPC, LPE, LPI, and LPA nonspecifically. These data suggest that Ca2+ ionophore releases arachidonic acid, unlike fMLP, directly from PC, PE, and PI, mainly by phospholipase A2. When neutrophils were stimulated by fMLP, the formation of LPC and LPE was observed by incubation for more than 3 min. Because a loss of arachidonic acid from PI occurred rapidly in response to fMLP, it seems likely the activation of PI-specific phospholipase C occurred first and was followed by the activation of phospholipase A2 when neutrophils are activated by fMLP...  相似文献   

13.
G protein regulation of human platelet membrane phospholipase A2 activity was investigated at pH 8.0 and 9.0 by studying the effects of the nonhydrolyzable GTP analogue, guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), and of F-/Al3+ ions on arachidonic acid (AA) release. The membrane acted as the source of the enzyme, the substrate, and the G protein. At pH 8.0, 10 and 100 microM GTP gamma S stimulated AA mobilization at least 6-fold. Optimum AA release conditions required 1 mM Ca2+ and 5 mM Mg2+. Nonspecific nucleotide effect was excluded since similar stimulatory effects on AA release were not observed by ATP, GTP, ADP, and NADP. Although at pH 9.0 the GTP gamma S-stimulated AA release was greater than at pH 8.0, it constituted only 26% of the total. At both pH values the effect of F- (10 mM) in the presence of Al3+ (2 microM) was similar to that of GTP gamma S. The G protein inhibitor, guanosine 5'-O-(2-thiodiphosphate), inhibited the GTP gamma S-stimulated AA release by about 80% at pH 8.0 and by 100% at pH 9.0. To determine a possible contribution to AA mobilization by the phospholipase C and diacylglycerol lipase pathway, the effects of neomycin, a phospholipase C inhibitor, were investigated. 100 microM neomycin did not inhibit the GTP gamma S-stimulated AA release at pH 8.0 and only slightly so (17%) at pH 9.0. At pH 8.0 in the presence of Ca2+ the released fatty acids consisted mainly of arachidonic and docosahexaenoic acids (80 and 8%, respectively). GTP gamma S had no effect on the fatty acid profile but only on their quantity. These results provide evidence of G protein regulation of phospholipase A2 activity in isolated platelet membranes.  相似文献   

14.
Porins, a family of hydrophobic proteins located in the outer membrane of cell-wall of Gram-negative bacteria, were shown to stimulate the synthesis and release of platelet-activating factor (PAF), a 1-O-alkyl-2-acetyl-sn-glycerol-3-phosphorylcholine mediator of inflammation and endotoxic shock produced by polymorphonuclear neutrophils. PAF synthesis was independent either from contamination by LPS or generation of TNF. Experiments with labeled precursors demonstrated that PAF was synthesized via the remodeling pathway that involves acetylation of 1-O-alkyl-sn-glyceryl-3-phosphorylcholine generated from 1-O-alkyl-2-acyl-sn-glyceryl-3-phosphorylcholine by phospholipase A2 (PLA2) activity. Porins, indeed, induced a sustained PLA2-dependent mobilization of [14C]arachidonic acid that was inhibited by p-bromodiphenacylbromide. p-Bromodiphenacylbromide, an inhibitor of PLA2, also blocked PAF synthesis by preventing the mobilization of 2-lyso-PAF, the substrate for PAF-specific acetyltransferase. The addition of 2-lyso-PAF restored PAF synthesis. The activity of acetyl CoA:2-lyso-PAF acetyltransferase was transiently increased in porin-stimulated PMN and the [3H]acetyl group was incorporated in the synthetized PAF after cell preincubation with [3H]acetyl CoA. The activation of PAF synthesis by porins as well as its release were dependent on extracellular Ca2+. Porins by forming trans-membrane channels determined a sustained influx of 45Ca2+ into the cytosol. As shown by inhibitors of Ca(2+)-calmodulin complexes, calmodulin mediated the Ca(2+)-dependent activation of enzymes involved in PAF synthesis.  相似文献   

15.
Stimulation of rat Kupffer cells in primary culture with platelet-activating factor (PAF) caused a rapid hydrolysis of phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 4-phosphate with a concomitant increase in the levels of myo-inositol 1,4,5-trisphosphate and myo-inositol 1,4-bisphosphate. This phospholipase C-mediated hydrolysis of polyphosphoinositides was independent of extracellular Ca2+ but was inhibited by the intracellular Ca2+ antagonist TMB-8. A second slower response to PAF was characterized by deacylation of PI leading to the accumulation of glycerophosphoinositol (GPI). PAF-induced GPI synthesis was not inhibited by TMB-8. These effects of PAF were accompanied by initial transient mobilization of Ca2+ from intracellular stores followed by a rather slow influx of Ca2+ from the extracellular medium. PAF-stimulated deacylation and phosphodiesteric hydrolysis of inositol lipids were differentially affected by cholera toxin and pertussis toxin. Pretreatment of the Kupffer cells with either of these toxins caused inhibition of phospholipase C activity. Pertussis toxin also inhibited PAF-stimulated deacylation. However, cholera toxin itself stimulated GPI release and addition of PAF to the cholera toxin-treated cells caused a further increase in GPI release. Phorbol ester inhibited PAF-induced phosphodiesteric hydrolysis of phosphoinositides, but not deacylation. PAF-induced metabolism of phosphoinositides was inhibited by the PAF antagonist, U66985. These results suggest that PAF-induced phosphodiesteric hydrolysis and deacylation of inositol phospholipids are regulated via distinct mechanisms involving activation of separate G-proteins in rat Kupffer cells. Also the regulation of phosphoinositide metabolism by Ca2+ mobilization from two separate Ca2+ pools is indicated by this study.  相似文献   

16.
Pertussis toxin as a probe of neutrophil activation   总被引:11,自引:0,他引:11  
In reviewing our own and other work, it is clear that pertussis toxin treatment of neutrophils causes a time- and concentration-dependent inhibition of granule enzyme secretion induced by formylmethionylleucylphenylalanine (fMet-Leu-Phe), C5a, leukotriene (LT) B4 and platelet-activating factor (PAF). Chemotaxis, O2- generation, aggregation, and arachidonic acid production induced by fMet-Leu-Phe are also inhibited by pertussis toxin. Granule enzyme release caused by A23187 or phorbol 12-myristate 13-acetate is not inhibited. The inhibition of neutrophil function correlates closely with the NAD-ribosylation of a 41,000-dalton protein in the neutrophil plasma membrane, presumably the GTP-binding regulatory protein Ni. Pertussis toxin treatment prevents or obtunds the increased influx of Ca2+ induced by fMet-Leu-phe and LTB4, but not that caused by stimulation of neutrophils with PAF. Pertussis toxin prevents the receptor-induced breakdown of polyphosphoinositides in intact neutrophils and isolated membrane and prevents or decreases the production of inositol 1,4,5-trisphosphate (IP3) and 1,2-diacylglycerol. The hypothesis advanced by us and others is that pertussis toxin interacts with a GTP-binding regulatory protein identical or similar to Ni, which couples receptor-chemotactic factor interaction to phospholipase C activation. Inhibition of the activation prevents the production of IP3 and the resulting release of Ca2+ from intracellular stores and of 1,2-diacylglycerol and thus, the activation of protein kinase C. The lack of these two mediators is the immediate cause of the depression of neutrophil activation resulting from pertussis toxin. Some of the limitations and uncertainties of our present knowledge with respect to this hypothesis are discussed.  相似文献   

17.
Studies were performed to examine a potential role for a guanine nucleotide-binding protein in epidermal growth factor (EGF)-stimulated phospholipase A2 (PLA2) activity. EGF increased prostaglandin E2 (PGE2) production in intact or saponin-permeabilized rat inner medullary collecting tubule (RIMCT) cells. Incubation of permeabilized cells with guanosine 5'-O-(thiotriphosphate) (GTP gamma S) enhanced and with guanosine 5'-O-(2-thiodiphosphate) (GDP beta S) inhibited the response to EGF. GDP beta S had no effect on ionomycin-stimulated PGE2 production. Exposure of intact cells to 25 mM NaF + 10 microM AlCl3 enhanced both basal and EGF-stimulated PGE2 production. Pertussis toxin ADP-ribosylated a 41-kDa protein in RIMCT cell membranes. Pretreatment of cells with pertussis toxin (100 ng/ml for 16 h) eliminated the response to EGF in intact cells and the response to EGF + GTP gamma S in permeabilized cells. Pertussis toxin had no effect on the response to ionomycin. The effect of pertussis toxin was not due to alterations in cAMP as cellular cAMP levels were unaffected by pertussis toxin both in the basal state and in the presence of EGF. PGE2 production in response to EGF was not transduced by a G protein coupled to phospholipase C (PLC) as neomycin, which inhibited PLC, did not decrease EGF-stimulated PGE2 production. Also, PGE2 production was not increased by inositol trisphosphate and did not require the presence of extracellular Ca2+. In contrast to EGF-stimulated PLC activity, stimulation of PLA2 by EGF was not susceptible to inhibition by phorbol 12-myristate 13-acetate. These results clearly demonstrate the existence of a PLA2-specific pertussis toxin-inhibitable guanine nucleotide-binding protein coupled to the EGF receptor in RIMCT cells.  相似文献   

18.
A mechanism by which protein kinase C potentiates arachidonic acid (AA) liberation in rabbit platelets was examined using [3H]AA-labeled, saponin (7 micrograms/ml)-permeabilized rabbit platelets. Pretreatment of the [3H]AA-labeled platelets with 4 beta-phorbol 12-myristate 13-acetate (PMA, 10-40 nM) or 1,2-dioctanoylglycerol (DOG, 20 microM) enhanced [3H]AA liberation induced by an addition of Ca2+ (1 mM) after cell permeabilization, whereas 4 alpha-phorbol 12,13-didecanoate (80 nM) did not exert such an effect. The potentiating effects of PMA and DOG were inhibited by staurosporine (200 nM). PMA (40 nM) also potentiated [3H]AA liberation induced by guanosine 5'-[gamma-thio]triphosphate (GTP gamma S, 100 microM), 5'-guanylyl imidodiphosphate (200 microM) or NaF (20 mM) plus AlCl3 (10 microM) in the presence of Ca2+ (100 microM). The enhancement by PMA of the GTP gamma S-induced AA liberation was also inhibited by staurosporine (200 nM). Furthermore, guanosine 5'-[beta-thio]diphosphate (GDP beta S, 0.5-2 mM) suppressed the PMA (40 nM)- and DOG (20 microM)-enhanced, Ca2+ (1 mM)-dependent [3H]AA liberation. This inhibitory effect of GDP beta S was reversed by a further addition of GTP gamma S (200 microM). However, pertussis toxin (0.2-1 micrograms/ml) had no effect on the PMA-enhanced [3H]AA liberation. These results indicate a possibility that protein kinase C may potentiate AA liberation through a guanine-nucleotide-binding protein-mediated mechanism in saponin-permeabilized rabbit platelets.  相似文献   

19.
When human neutrophils, previously labeled in their phospholipids with [14C]arachidonate, were stimulated with the Ca2+-ionophore, A23187, plus Ca2+ in the presence of [3H]acetate, these cells released [14C]arachidonate from membrane phospholipids, produced 5-hydroxy-6,8,11,14-[14C]eicosatetraenoic acid (5-HETE) and 14C-labeled 5S,12R-dihydroxy-6-cis,8,10-trans, 14-cis-eicosatetraenoic acid ([14C]leukotriene B4), and incorporated [3H]acetate into platelet-activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine). Ionophore A23187-induced formation of these radiolabeled products was greatly augmented by submicromolar concentrations of exogenous 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid (5-HPETE), 5-HETE, and leukotriene B4. In the absence of ionophore A23187, these arachidonic acid metabolites were virtually ineffective. Nordihydroguaiaretic acid (NDGA) and several other lipoxygenase/cyclooxygenase inhibitors (butylated hydroxyanisole, 3-amino-1-(3-trifluoromethylphenyl)-2-pyrazoline and 1-phenyl-2-pyrazolidinone) caused parallel inhibition of [14C]arachidonate release and [3H]PAF formation in a dose-dependent manner. Specific cyclooxygenase inhibitors, such as indomethacin and naproxen, did not inhibit but rather slightly augmented the formation of these products. Furthermore, addition of 5-HPETE, 5-HETE, or leukotriene B4 (but not 8-HETE or 15-HETE) to neutrophils caused substantial relief of NDGA inhibition of [3H]PAF formation and [14C]arachidonate release. As opposed to [3H]acetate incorporation into PAF, [3H]lyso-PAF incorporation into PAF by activated neutrophils was little affected by NDGA. In addition, NDGA had no effect on lyso-PAF:acetyl-CoA acetyltransferase as measured in neutrophil homogenate preparations. It is concluded that in activated human neutrophils 5-lipoxygenase products can modulate PAF formation by enhancing the expression of phospholipase A2.  相似文献   

20.
Neomycin is a potent agent for arachidonic acid release in human platelets   总被引:6,自引:0,他引:6  
Neomycin (10 microM - 1 mM) was found to induce considerable release of [3H]arachidonic acid from phosphatidylinositol, phosphatidylcholine and phosphatidylethanolamine in saponin-permeabilized human platelets prelabeled with [3H]arachidonic acid. The magnitude of arachidonate liberation was almost equal to that induced by A23187 (400 nM) or even greater than that caused by thrombin (1 U/ml). Moreover, neomycin enhanced arachidonic acid release induced by thrombin. Since no significant formation of diacylglycerol and phosphatidic acid via phospholipase C was observed, the arachidonate liberation was considered to be mainly catalyzed by phospholipase A2 action. Addition of neomycin (100 microM) to 45Ca2+-preloaded platelets elicited 45Ca2+ mobilization from intracellular stores. These results indicate evidence that neomycin evokes Ca2+ mobilization from internal stores, which leads to activation of phospholipase A2 to release arachidonic acid in human platelets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号