首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Summary A statistically significant decrease in the intensity of catecholamine fluorescence of some carotid body glomus cells was observed after inhibition of the enzyme tyrosine hydroxylase by injection of 80 mg/kg -methyl-paratyrosine. The intensity of the formaldehyde-induced fluorescence was measured in individual glomus cells. The maximum decrease in the intensity was observed 4 to 6h after the -methyltyrosine injection. This suggests a rapid turnover in the catecholamines of the carotid body.  相似文献   

2.
Synopsis Carotid bodies of adult albino rats were examined using the formaldehyde-induced fluorescence (FIF) method for the demonstration of fluorogenic monaomines and staining with I% Toluidine Blue for morphological observations.In the carotid body of normal controls, most glomus (principal or type I) cells exhibited a FIF presumably due to catecholamines. The intensity of the fluorescence was weak in most cells, while some glomus cells were non-fluorescent and others exhibited a moderate or intense FIF. The sustentacular (satellite, supporting or type II) cells were essentially non-fluorescent.One week after the administration of a single intraperitoneal injection of the long-acting glucocorticoid 6-methylprednisolone sypionate (400 mg/kg) or after seven intraperitoneal injections of the water-soluble glucocorticoid hydrocortisone sodium succinate (40 mg/kg daily for a week), a distinct increase was observed in the FIF of the glomus cells. No non-fluorescent glomus cells were observed after treatment with either glucocorticoid, and the intensity of most fluorescent glomus cells was moderate or intense.It is concluded that glucocorticoids cause an increased storage of catecholamines in the glomus cells of the carotid body of the adult rat, an observation of interest in view of the fact that such changes due to glucocorticoids have as yet been reported only in catecholamine-storing cells of newborn rats.  相似文献   

3.
Summary Development and distribution of chromogranin A and tyrosine hydroxylase in the carotid body and glomus cells located in and around arteries were examined in chickens at various developmental stages by an immunohistochemical staining. In 9-day-old embryos, numerous cells immunoreactive for tyrosine hydroxylase were already detected in the connective tissue surrounding the carotid body. Some of these cells also showed immunoreactivity for chromogranin A. At 10 days of incubation, a few cells immunoreactive for tyrosine hydroxylase and chromogranin A were detected within the carotid body parenchyma. At 12 days of incubation, almost all glomus cells of the carotid body were intensely immunoreactive for these substances. Furthermore, numerous tyrosine hydroxylase- and chromogranin A-immunoreactive cells were observed in the wall of the common carotid artery, along the whole length of the carotid body artery, and around the roots of the inferior thyroid artery, the ascending esophageal artery and the esophagotracheobronchial artery; the cells already exhibited adult pattern of distribution at this stage of development. Thereafter, glomus cells immunoreactive for both substances gradually increased in number and in intensity of immunoreactivity with age, although the cells located in the wall of the common carotid artery lost immunoreactivity for tyrosine hydroxylase after hatching.  相似文献   

4.
Y Kameda  T Amano  T Tagawa 《Histochemistry》1990,94(6):609-616
Development and distribution of chromogranin A and tyrosine hydroxylase in the carotid body and glomus cells located in and around arteries were examined in chickens at various developmental stages by an immunohistochemical staining. In 9-day-old embryos, numerous cells immunoreactive for tyrosine hydroxylase were already detected in the connective tissue surrounding the carotid body. Some of these cells also showed immunoreactivity for chromogranin A. At 10 days of incubation, a few cells immunoreactive for tyrosine hydroxylase and chromogranin A were detected within the carotid body parenchyma. At 12 days of incubation, almost all glomus cells of the carotid body were intensely immunoreactive for these substances. Furthermore, numerous tyrosine hydroxylase- and chromogranin A-immunoreactive cells were observed in the wall of the common carotid artery, along the whole length of the carotid body artery, and around the roots of the inferior thyroid artery, the ascending esophageal artery and the esophagotracheobronchial artery; the cells already exhibited adult pattern of distribution at this stage of development. Thereafter, glomus cells immunoreactive for both substances gradually increased in number and in intensity of immunoreactivity with age, although the cells located in the wall of the common carotid artery lost immunoreactivity for tyrosine hydroxylase after hatching.  相似文献   

5.
Arthur Hess 《Tissue & cell》1976,8(2):381-387
The glomus cells of the rat carotid body reveal an intense fluorescence after exposure to paraformaldehyde vapor and contain catecholamines. After initial fixation in glutaraldehyde, many granulated vesicles are seen in the glomus cells. After initial fixation in osmium tetroxide, most of the vesicles are depleted of their dense interiors and granulated vesicles occur infrequently. Administration of 6-hydroxydopamine followed by initial fixation in osmium tetroxide leads to the reappearance of dense interiors in virtually all vesicles. 6-Hydroxydopamine apparently is taken up by the membrane pump of the glomus cell and is incorporated into the amine storage granules, thereby displacing the endogenous monoamines. Osmium tetroxide does not dissolve the 6-hydroxydopamine from the vesicles, as it apparently does for the normal vesicular contents. The 6-hydroxydopamine does not fluoresce, hence 6-hydroxydopamine administration results in a decreased intensity of formaldehyde induced fluorescence in the glomus cells. Administration of reserpine after 6-hydroxydopamine treatment (and subsequent initial fixation in osmium tetroxide) depletes the previously restored dense material from the vesicles of the glomus cells. 6-Hydroxydopamine acts like a monoamine in that it is taken up by the glomus cell, incorporated into the vesicles, and can be depleted from the vesicles by reserpine.  相似文献   

6.
Neurochemical and morphological changes in the carotid body are induced by chronic hypoxia, leading to regulation of ventilation. In this study, we examined the time courses of changes in immunohistochemical intensity for tyrosine hydroxylase (TH) and cellular volume of glomus cells in rats exposed to hypoxia (10% O2) for up to 24 hr. Grayscale intensity for TH immunofluorescence was significantly increased in rats exposed to hypoxia for 12, 18, and 24 hr compared with control rats (p<0.05). The transectional area of glomus cells was not significantly different between experimental groups. The TH fluorescence intensity of the glomus cells exhibited a strong negative correlation with the transectional area in control rats (Spearman''s ρ = −0.70). This correlation coefficient decreased with exposure time, and it was lowest for the rats exposed to hypoxia for 18 hr (ρ = −0.18). The histogram of TH fluorescence intensity showed a single peak in control rats. The peaks were gradually shifted to the right and became less pronounced in hypoxia-exposed rats, suggesting that a hypoxia-induced increase in TH immunoreactivity occurred uniformly in glomus cells. In conclusion, this study demonstrates that short-term hypoxia induces an increase in TH protein expression in rat carotid body glomus cells. (J Histochem Cytochem 58:839–846, 2010)  相似文献   

7.
The catecholamine content and morphology of the superior cervical and the hypogastric ganglion and the carotid body were studied in Spontaneously Hypertensive Rats (SHR) before (at the age of 6 weeks) and after (at the age of 20 weeks) becoming hypertensive, with Wistar Kyoto (WKY) rats as controls. The study was performed by formaldehyde-induced fluorescence method combined with quantitative microfluorimetry of catecholamines. At the age of 6 weeks the only significant difference observed between the rat strains was a greater number of small intensely fluorescent (SIF) cells in the superior cervical ganglion of SHR. At the age of 20 weeks the fluorescence intensity was higher in the principal neurons of the superior cervical ganglion and in glomus cells of the carotid body of SHR compared to WKY. The volumes of superior cervical ganglion and carotid body were larger in 20-week-old SHR compared to WKY. In the hypogastric ganglion differences were not found between SHR and WKY rats. The present results show differences in the superior cervical ganglion and in the carotid body of adult SHR compared to controls. These differences develop during the time period when the SHR become hypertensive, and might be functionally significant in the regulation or maintenance of the increased blood pressure in SHR rats.  相似文献   

8.
Summary The catecholamine content and morphology of the superior cervical and the hypogastric ganglion and the carotid body were studied in Spontaneously Hypertensive Rats (SHR) before (at the age of 6 weeks) and after (at the age of 20 weeks) becoming hypertensive, with Wistar Kyoto (WKY) rats as controls. The study was performed by formaldehyde-induced fluorescence method combined with quantitative microfluorimetry of catecholamines.At the age of 6 weeks the only significant difference observed between the rat strains was a greater number of small intensely fluorescent (SIF) cells in the superior cervical ganglion of SHR. At the age of 20 weeks the fluorescence intensity was higher in the principal neurons of the superior cervical ganglion and in glomus cells of the carotid body of SHR compared to WKY. The volumes of superior cervical ganglion and carotid body were larger in 20-week-old SHR compared to WKY. In the hypogastric ganglion differences were not found between SHR and WKY rats. The present results show differences in the superior cervical ganglion and in the carotid body of adult SHR compared to controls. These differences develop during the time period when the SHR become hypertensive, and might be functionally significant in the regulation or maintenance of the increased blood pressure in SHR rats.  相似文献   

9.
Summary Developmental patterns of immunoreactivity for serotonin and neuropeptide Y were investigated immunohistochemically in the carotid body and glomus cells in the wall of the common carotid artery and around its branches of chickens at various developmental ages. The development of peptidergic nerve fibers was also studied. Serotonin immunoreactivity began to appear in the glomus cells of the carotid body and around arteries at 10 days of incubation and became very intense from 12 days onwards. Neuropeptide Y immunoreactivity also appeared in these cells at 10 days, became intense at 14 days, and was sustained until 20 days. After hatching, neuropeptide Y immunoreactivity in the carotid body rapidly decreased with age and almost cisappeared at posnatal day 10. However, it persisted for life in the glomus cells distributed in the wall of the common carotid artery. Substance P- and calcitonin gene-related peptide (CGRP)-immunoreactive fibers first penetrated into the carotid body parenchyma at 12 days of incubation. These peptidergic nerve fibers in the carotid body and glomus cell groups in and around arteries gradually increased with age, and approached the adult state at 18 days of incubation. Only a few galanin-and vasoactive intestinal peptide (VIP)-immunoreactive fibers were observed in the late embryonic carotid bodies. They rapidly developed after hatching and reached adult numbers at postnatal day 10. During late embryonic and neonatal development, considerable numbers of met-enkephalin-immunoreactive fibers were detected in the connective tissue encircling the carotid body.  相似文献   

10.
Summary Rat carotid bodies were studied electron microscopically after short-term severe hypovolaemia, which is known to induce a marked chemoreceptor activation in the carotid body. Altogether 84 nerve-endings in the hypovolaemic rats' carotid bodies and 91 nerve-endings in the control carotid bodies were investigated. An increased accumulation of the glomus cell granular vesicles near the synaptic specializations of the nerve-endings was observed after hypovolaemia. Moreover, a statistically significant increase in the contacts between the nerve-ending synaptic specializations and the glomus cell granular vesicles was observed after hypovolaemia. A suggestion was made that the glomus cells might act as modulating, probably inhibitory, interneurones, whose catecholamines are responsible for the inhibition.The authors are greatly indebted to lecturer Pekka Korkala Ph.L. from the Department of Psychology for his skilful statistical analysis of the results.  相似文献   

11.
Glomus (Type I) cells of the carotid body of adult rats were studied electron microscopically after fixation with potassium permanganate or with glutaraldehyde and osmium tetroxide. Two permanganate fixation methods (using Krebs-Ringer-glucose, pH 7.0, or acetate buffer, pH 5.0) were compared. Numerous dense-cored vesicles were observed only in about one tenth of the glomus cells when neutral permanganate was used for fixation, although all glomus cells showed such vesicles after fixation with glutaraldehyde and osmium tetroxide. Numerous vesicles with a dense core were observed in about one third of the cells after fixation with acid potassium permanganate. With this fixation, small dense-cored vesicles similar to those in adrenergic nerve terminals were occasionally seen in the cytoplasm of glomus cells. It is tentatively concluded that the amine-storing vesicles of the carotid body are different from those in the small intensely fluorescent (SIF) cells and those in adrenergic nerve terminals.  相似文献   

12.
Summary Glomus (Type I) cells of the carotid body of adult rats were studied electron microscopically after fixation with potassium permanganate or with glutaraldehyde and osmium tetroxide. Two permanganate fixation methods (using Krebs-Ringer-glucose, pH 7.0, or acetate buffer, pH 5.0) were compared. Numerous dense-cored vesicles were observed only in about one tenth of the glomus cells when neutral permanganate was used for fixation, although all glomus cells showed such vesicles after fixation with glutaraldehyde and osmium tetroxide. Numerous vesicles with a dense core were observed in about one third of the cells after fixation with acid potassium permanganate. With this fixation, small dense-cored vesicles similar to those in adrenergic nerve terminals were occasionally seen in the cytoplasm of glomus cells. It is tentatively concluded that the amine-storing vesicles of the carotid body are different from those in the small intensely fluorescent (SIF) cells and those in adrenergic nerve terminals.  相似文献   

13.
It is well established that reciprocal modulation exists between the central nervous system and immune system. Interleukin (IL)-1β, a proinflammatory cytokine secreted at early stage of immune challenge, has been recognized as one of the informational molecules in immune-to-brain communication. However, how this large molecule is transmitted to the brain is still unknown. In recent years it has been reported that the cranial nerves, especially the vagus, may play a pivotal role in this regard. It is proposed that IL-1β may bind to its corresponding receptors located in the glomus cells of the vagal paraganglia and then elicit action potentials in the nerve. The existence of IL-1 receptor type I (IL-1RI) in the vagal paraganglia has been shown. The carotid body, which is the largest peripheral chemoreceptive organ, is also a paraganglion. We hypothesize that the carotid body might play a role similar to the vagal paraganglia because they are architectonically similar. Recently we verified the presence of IL-1RI in the rat carotid body and observed increase firing in the carotid sinus nerve following IL-1β stimulation. The aim of this study was to observe the changes in expression of IL-1RI and tyrosine hydroxylase (TH), a rate-limiting enzyme for catecholamine synthesis, in the glomus cells of the rat carotid body following intraperitoneal injection of IL-1β. The radioimmunoassay result showed that the blood IL-1β level was increased after the intraperitoneal injection of rmIL-1β (750 ng/kg) from 0.48 ± 0.08 to 0.78 ± 0.07 ng/ml (P < 0.05). Immunofluorescence and Western blot analysis showed that the expression of IL-1RI and TH in the rat carotid body was increased significantly following peritoneal IL-1β stimulation. In addition, double immunofluorescence labeling for TH and PGP9.5, a marker for glomus cells, or TH immunofluoresence with hematoxylin-eosin (HE) counterstaining revealed that a considerable number of glomus cells did not display TH immunoreactivity. These data provide morphological evidence for the response of the carotid body to proinflammatory cytokine stimulation. The results also indicate that not all of the glomus cells express detectable TH levels either in normal or in some abnormal conditions. Xi-Jing Zhang and Xi Wang are co-first authors.  相似文献   

14.
TREK-1 is one of the important potassium channels for regulating membrane excitability. To examine the distribution of TREK-1 in the rat carotid body, we performed RT-PCR for mRNA expression and in situ hybridization and immunohistochemistry for tissue distribution of TREK-1. RT-PCR detected mRNA expression of TREK-1 in the carotid body. Furthermore, in situ hybridization revealed the localization of TREK-1 mRNA in the glomus cells. TREK-1 immunoreactivity was mainly distributed in the glomus cells and nerve fibers in the carotid body. TREK-1 may modulate potassium current of glomus cells and/or afferent nerve endings in the rat carotid body.  相似文献   

15.
The difference between dopamine and noradrenaline after ordinary histofluorescent procedures cannot be discerned. Reserpine treatment results in depletion of fluorescent material from dopaminergic and noradrenergic peripheral nervous structures. Administration of reserpine, 1 mg/kg subcutaneously for 3 hr, followed by intraperitoneal injection of 200 mg/kg levodopa methyl ester on 0.9% saline for 90 min, result in refluorescence of dopaminergic (glomus cells of the carotid body) but not noradrenergic (sympathetic ganglion cells, nerves of atrial heart muscle and blood vessels) structures. Hence, the sequential administration of these readily available drugs and the application of ordinary histofluorescent techniques result in a simple procedure for distinguishing dopamine from noradrenaline in the fluorescence microscope.  相似文献   

16.
The carotid body is an arterial chemoreceptor organ that senses arterial pO(2) and pH. Previous studies have indicated that both reactive oxygen species (ROS) and nitric oxide (NO) are important potential mediators that may be involved in the response of the carotid body to hypoxia. However, whether their production by the chemosensitive elements of the carotid body is indeed oxygen-dependent is currently unclear. Thus, we have investigated their production under normoxic (20% O(2)) and hypoxic (1% O(2)) conditions in slice preparations of the rat carotid body by using fluorescent indicators and confocal microscopy. NO-synthesizing enzymes were identified by immunohistochemistry and histochemistry, and the subcellular localization of the NO-sensitive indicator diaminofluorescein was determined by a photoconversion technique and electron microscopy. Glomus cells of the carotid body responded to hypoxia by increases in both ROS and NO production. The hypoxia-induced increase in NO generation required (to a large extent, but not completely) extracellular calcium. Glomus cells were immunoreactive to endothelial NO synthase but not to the neuronal or inducible isoforms. Ultrastructurally, the NO-sensitive indicator was observed in mitochondrial membranes after exposure to hypoxia. The data show that glomus cells respond to exposure to hypoxia by the enhanced production of both ROS and NO. NO production by glomus cells is probably mediated by endothelial NO synthase, which is activated by calcium influx. The presence of NO indicator in mitochondria suggests the hypoxic regulation of mitochondrial function via NO in glomus cells.  相似文献   

17.
Summary Histochemical studies were made in the cat's carotid body using two fluorescence techniques: the formaldehyde condensation (HCOH) method and the trihydroxyindole (THI) method. A number of pharmacologic agents known to alter catecholamine metabolism or binding were used to evaluate their effect on the amines found in the glomus cells. After treatment with reserpine, both histochemical techniques showed a reduction and eventual disappearance of fluorescence from the glomus cells. Treatment with a monoamine oxidase inhibitor (iproniazid) or with dopamine beta hydroxylase inhibitor (disulfiran) enhanced the glomus cell fluorescence. The observed increase was greater with the THI than with the HCOH technique. A few yellow fluorescent cells were found following a combination of reserpine and iproniazid treatments. A reduction in fluorescence with both techniques was obtained following DOPA decarboxylase inhibitors (MK-485). It is concluded that some of the glomus cells contain only dopamine while others contain norepinephrine or a combination of norepinephrine and dopamine. In addition the presence of DOPA in some cells following treatment with pharmacologic agents may account for some of the results. Finally, the few yellow fluorescent cells found probably contain 5-hydroxytryptamine.Supported by a grant from the Life Insurance Medical Research Fund, USPHS General Research Support Grant and USPHS Career Development Award (K3-GM-15, 457).  相似文献   

18.
Summary The localization of acetylcholinesterase (AChE) was investigated at the cellular and subcellular levels in dissociated cell cultures of the carotid body of the neonatal rat, prepared by the methods of Fishman and Schaffner (1984). In the presence of iso-OMPA, which blocks non-specific cholinesterase, staining was confined almost exclusively to glomus-cell clusters and occasional isolated cells. These clusters grow as discrete islands scattered throughout the culture and display typical catecholamine (CA) fluorescence as in vivo. AChE staining was abolished or reduced by the cholinesterase inhibitors eserine (30–100 M), or (the poorly lipid soluble) echothiophate (8 (M). Processing of the same culture sequentially for the demonstration of both AChE and CA revealed that glomus-cell clusters and individual glomus cells were consistently positive for both. In electron micrographs AChE reaction product was associated intracellularly with the nuclear envelope and cytoplasm of glomus cells (identified by their characteristic dense cored granules), as well as extracellularly with the boundaries of contiguous glomus cells. Significantly, reaction product occurred in some glomus cell profiles that had both dense-cored and clear (cholinergic-like) vesicles. These findings are discussed in the context of a possible dual (adrenergic/cholinergic) function status of glomus cells in the rat's carotid body.  相似文献   

19.
The distribution and ultrastructural characteristics of calbindin D-28k immunoreactive nerve fibers were examined in the carotid body of the normoxic control rats by light and electron microscopy, and the abundance of calbindin D-28k fibers in the carotid body was compared in normoxic and chronically hypoxic rats (10% O2 and 3.0-4.0% CO2 for 3 months). Calbindin D-28k immunoreactivity was recognized in nerve fibers within the carotid body. Calbindin D-28k immunoreactive nerve fibers appeared as thin processes with many varicosities. They were distributed around clusters of glomus cells, and around blood vessels. Immunoelectron microscopy revealed that the calbindin D-28k immunoreactive nerve terminals are in close apposition with the glomus cells, and membrane specialization is visible in some terminals. Some dense-cored vesicles in the glomus cells were aggregated in this contact region. The chronically hypoxic carotid bodies were found to be enlarged several fold, and a relative abundance of calbindin D-28k fibers was lesser than in the normoxic carotid bodies. When expressed by the density of varicosities per unit area of the parenchyma, the density of calbindin D-28k fibers associated with the glomus cells in chronically hypoxic carotid bodies was decreased by 70%. These immunohistochemical findings indicate a morphological basis for involvement of calcium binding protein in the neural pathway that modulates carotid body chemoreception.  相似文献   

20.
The carotid body consists of chemoreceptive glomus cells, sustentacular cells and nerve endings. The murine carotid body, located at the carotid bifurcation, is always joined to the superior cervical ganglion of the sympathetic trunk. Glomus cells and sympathetic neurons are immunoreactive for the TuJ1, PGP9.5, tyrosine hydroxylase (TH) and neuropeptide Y (NPY) markers. Glomus cells are also immunoreactive for serotonin (5-HT). A targeted mutation of Mash1, a mouse homolog of the Drosophila achaete-scute complex, results in the elimination of sympathetic ganglia. In Mash1 null mutant mice, the carotid body primordium forms normally in the wall of the third arch artery at embryonic day (E) 13.0 and continues to develop, although the superior cervical ganglion is completely absent. However, no cells in the mutant carotid body display the TuJ1, PGP 9.5, TH, NPY and 5-HT markers throughout development. The absence of glomus cells was also confirmed by electron microscopy. The carotid body of newborn null mutants is composed of mesenchymal-like cells and nerve fibers. Many cells immunoreactive for the S-100 protein, a sustentacular cell marker, appear in the mutant carotid body during fetal development. The Mash1 gene is thus required for the genesis of glomus cells but not for sustentacular cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号