首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Minichromosome maintenance (MCM) proteins are thought to function as the replicative helicases in archaea. Studies have shown that the MCM complex from the thermoacidophilic euryarchaeon Thermoplasma acidophilum (TaMCM) has some properties not reported in other archaeal MCM helicases. Here, the biochemical properties of the TaMCM are studied. The protein binds single-stranded DNA, has DNA-dependent ATPase activity and ATP-dependent 3′ → 5′ helicase activity. The optimal helicase conditions with regard to temperature, pH and salinity are similar to the intracellular conditions in T. acidophilum. It is also found that about 1,000 molecules of TaMCM are present per actively growing cell. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
3.
Twenty-eight site-directed mutations were introduced into the fission yeast gene (pcn1 +) that encodes proliferating cell nuclear antigen (PCNA) and their in vivo effects analyzed in a strain with a null pcn1 background. Mutants defective in enhancing processivity of DNA polymerase δ have previously been identified. In this study, we assessed all of the mutants for their sensitivities to temperature, hydroxyurea, UV irradiation and methyl methanesulfonate (MMS), and specific mutants were also tested for sensitivity to γ irradiation. One cold-sensitive allele, pcn1-3, was characterized in detail. This mutant had a recessive cold-sensitive cdc phenotype and showed sensitivity to hydroxyurea, UV, and γ irradiation. At the non-permissive temperature pcn1-3 protein was able to form homotrimers in solution and showed increased stimulation of both synthetic activity and processivity of DNA polymerase δ relative to the wild-type Pcn1+ protein. Epistasis analyses indicated that pcn1-3 is defective in the repair pathway involving rad2 + but not defective in the classical nucleotide excision repair pathway involving rad13 + . Furthermore, pcn1-3 is either synthetically or conditionally lethal in null checkpoint rad backgrounds and displays a mitotic catastrophe phenotype in these backgrounds. A model for how pcn1-3 defects may affect DNA repair and replication is presented. Received: 5 July 1997 / Accepted: 10 October 1997  相似文献   

4.

Background  

DNA polymerase δ is essential for eukaryotic DNA replication and also plays a role in DNA repair. The processivity of this polymerase complex is dependent upon its interaction with the sliding clamp PCNA and the polymerase-PCNA interaction is largely mediated through the p66 polymerase subunit. We have analysed the interactions of the human p66 DNA polymerase δ subunit with PCNA and with components of the DNA polymerase δ complex in vivo.  相似文献   

5.
PCNA is well known as a component of DNA replication system and plays important roles in multiple cellular pathways in addition to replication and repair. In this work we have demonstrated the physical and functional interaction between tobacco PCNA and mungbean ddNTP-sensitive DNA polymerase which shares many physicochemical properties with family X-DNA polymerases except with the moderately processive mode of nucleotide incorporation. We have shown here that recombinant PCNA binds directly to mungbean DNA polymerase as revealed in affinity chromatography, pull-down and co-immunoprecipitation approaches. In vitro DNA polymerase activity assay and processivity analyses indicated recombinant PCNA specifically stimulates both activity and processivity of mungbean DNA polymerase. These observations lead to interesting speculation about the functional significance of the ddNTP-sensitive enzyme in replication event in higher plants since the enzyme has been shown to be active and expressed at an elevated level during the endoreduplication stages in developing mungbean seeds.  相似文献   

6.
Bent DNA sites promote the curvature of DNA in both eukaryotic and prokaryotic chromosomes. Here, we investigate the localization and structure of intrinsically bent DNA sites in the extensively characterized Drosophila melanogaster third chromosome DAFC-66D segment (Drosophila amplicon in the follicle cells). This region contains the amplification control element ACE3, which is a replication enhancer that acts in cis to activate the major replication origin ori-β. Through both electrophoretic and in silico analysis, we have identified three major bent DNA sites in DAFC-66D. The bent DNA site (b1) is localized in the ACE3 element, whereas the other two bent DNA sites (b2 and b3) are localized in the ori-β region. Four additional bent DNA sites were identified in the intron of the S18 gene and near the TATA box of the S15, S19, and S16 genes. The identification of DNA bent sites in genomic regions previously characterized as functionally relevant for DNA amplification further supports a function for DNA bent sites in DNA replication in eukaryotes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
NM23-H1 is a metastasis suppressor protein that exhibits 3′-5′ exonuclease activity in vitro. As 3′-5′ exonucleases are generally required for maintenance of genome integrity, this activity represents a plausible candidate mediator of the metastasis suppressor properties of the NM23-H1 molecule. Consistent with an antimutator function, ablation of the yeast NM23 homolog, YNK1, results in increased mutation rates following exposure to UV irradiation and exposure to the DNA damaging agents etoposide, cisplatin, and MMS. In human cells, a DNA repair function is further suggested by increased NM23-H1 expression and nuclear translocation following DNA damage. Also, forced expression of NM23-H1 in NM23-deficient and metastatic cell lines results in coordinate downregulation of multiple DNA repair genes, possibly reflecting genomic instability associated with the NM23-deficient state. To assess the relevance of the 3′-5′ exonuclease activity of NM23-H1 to its antimutator and metastasis suppressor functions, a panel of mutants harboring defects in the 3′-5′ exonuclease and other enzymatic activities of the molecule (NDPK, histidine kinase) have been expressed by stable transfection in the melanoma cell line, 1205Lu. Pilot in vivo metastasis assays indicate 1205Lu cells are highly responsive to the metastasis suppressor effects of NM23-H1, thus providing a valuable model for measuring the extent to which the nuclease function opposes metastasis and metastatic progression.  相似文献   

8.
    
Summary The ultraviolet (UV) sensitivity ofEscherichia coli mutants deficient in the 5′→3′ exonuclease activity of DNA polymerase I is intermediate between that ofpol + strains and mutants which are deficient in the polymerizing activity of pol I (polA1). LikepolA1 mutants, the 5′-exonuclease deficient mutants exhibit increased UV-induced DNA degradation and increased repair synthesis compared to apol + strain, although the increase is not as great as inpolA1 or in the conditionally lethal mutant BT4113ts deficient inboth polymerase I activities. When dimer excision was measured at UV doses low enough to avoid interference from extensive DNA degradation, all three classes of polymerase I deficient mutants were found to remove dimers efficiently from their DNA. We conclude that enzymes alternative to polymerase I can operate in both the excision and resynthesis steps of excision repair and that substitution for either of the polymerase I functions results in longer patches of repair. A model is proposed detailing the possible events in the alternative pathways.  相似文献   

9.
The vaccinia virus DNA polymerase is inherently distributive but acquires processivity by associating with a heterodimeric processivity factor comprised of the viral A20 and D4 proteins. D4 is also an enzymatically active uracil DNA glycosylase (UDG). The presence of an active repair protein as an essential component of the polymerase holoenzyme is a unique feature of the replication machinery. We have shown previously that the A20-UDG complex has a stoichiometry of ~1:1, and our data suggest that A20 serves as a bridge between polymerase and UDG. Here we show that conserved hydrophobic residues in the N' terminus of A20 are important for its binding to UDG. Our data argue against the assembly of D4 into higher order multimers, suggesting that the processivity factor does not form a toroidal ring around the DNA. Instead, we hypothesize that the intrinsic, processive DNA scanning activity of UDG tethers the holoenzyme to the DNA template. The inclusion of UDG as an essential holoenzyme component suggests that replication and base excision repair may be coupled. Here we show that the DNA polymerase can utilize dUTP as a substrate in vitro. Moreover, uracil moieties incorporated into the nascent strand during holoenzyme-mediated DNA synthesis can be excised by the viral UDG present within this holoenzyme, leaving abasic sites. Finally, we show that the polymerase stalls upon encountering an abasic site in the template strand, indicating that, like many replicative polymerases, the poxviral holoenzyme cannot perform translesion synthesis across an abasic site.  相似文献   

10.
Plants are continually exposed to external and internal DNA-damaging agents. Although lesions can be removed by different repair processes, damages often remain in the DNA during replication. Synthesis of template damages requires the replacement of replicative enzymes by translesion synthesis polymerases, which are able to perform DNA synthesis opposite specific lesions. These proteins, in contrast to replicative polymerases, operate at low processivity and fidelity. DNA polymerase η and Rev 1 are two proteins found in eukaryotes that are involved in translesion DNA synthesis. In Arabidopsis, DNA polymerase η and Rev 1 are encoded by AtPOLH and AtREV1 genes, respectively. Transgenic plants over-expressing AtPOLH showed increased resistance to ultraviolet light. Only plants with moderate AtREV1 over-expression were obtained, indicating that this enzyme could be toxic at high levels. Transgenic plants that over-expressed or disrupted AtREV1 showed reduced germination percentage, but the former exhibited a higher stem growth rate than the wild type during development.  相似文献   

11.
The polymerization of nucleotide analogs into DNA is a common strategy used to inhibit DNA synthesis in rapidly dividing tumor cells and viruses. The mammalian DNA polymerases catalyze the insertion of the arabinofuranosyl analogs of dNTPs (aranucleotides) into DNA efficiently, but elongate from the 3′ aranucleotides poorly. Slow elongation provides an opportunity for exonucleases to remove aranucleotides. The exonuclease activity associated with DNA polymerase δ removes araCMP from 3′ termini with the same efficiency that it removes a paired 3′ deoxycytosine suggesting that the proofreading exonucleases associated with DNA polymerases might remove aranucleotides inefficiently. A separate 30 kDa exonuclease has been purified from mammalian cells that removes araCMP from 3′ termini. The activity of this enzyme in the cell could remove aranucleotides from 3′ termini of DNA and decrease the efficacy of the analogs. Inhibition analysis of the purified exonuclease shows that this enzyme is inhibited by thioinosine monophosphate (TIMP) with aK i=17 μM. When high TIMP levels are generated in HL-60 cells, incorporation of araC in DNA is increased about 16-fold relative to total DNA synthesis. This increased araC in DNA is likely a result of exonuclease inhibition in the cell. Thus, exonucleases in cells might play an important role in removing aranucleotides inserted by DNA polymerases.  相似文献   

12.
A new reagent for photoaffinity modification of biopolymers, 5-[E-N-(2-nitro-5-azidobenzoyl)-3-amino-1-propen-1-yl]-2′,3′-dideoxyuridine 5′-triphosphate (NAB-ddUTP), was synthesized. Like a similar derivative of 2′-deoxyuridine 5′-triphosphate (NAB-dUTP), it was shown to be able to effectively substitute for dTTP in the synthesis of DNA catalyzed by eukaryotic DNA polymerase β and to terminate DNA synthesis. A 5′-32P-labeled primer with a photoreactive group at the 3′-terminus was derived from NAB-ddUTP and used for photoaffinity labeling of the human replication protein A (RPA). The covalent attachment of RPA p32 and p70 subunits to the labeled primers was demonstrated. NAB-ddUTP is a promising tool for studying the interaction of proteins of the replicative complex with NA in cellular extracts and living cells during the termination of DNA synthesis.  相似文献   

13.
Summary. Phosphate transport in bacteria occurs via a phosphate specific transporter system (PSTS) that belongs to the ABC family of transporters, a multisubunit system, containing an alkaline phosphatase. DING proteins were characterized due to the N-terminal amino acid sequence DINGG GATL, which is highly conserved in animal and plant isolates, but more variable in microbes. Most prokaryotic homologues of the DING proteins often have some structural homology to phosphatases or periplasmic phosphate-binding proteins. In E. coli, the product of the inducible gene DinG, possesses ATP hydrolyzing helicase enzymic activity. An alkaline phosphorolytic enzyme of the PSTS system was purified to homogeneity from the thermophilic bacterium Thermus thermophilus. N-terminal sequence analysis of this protein revealed the same high degree of similarity to DING proteins especially to the human synovial stimulatory protein P205, the steroidogenesis-inducing protein and to the phosphate ABC transporter, periplasmic phosphate-binding protein, putative (P. fluorescens Pf-5). The enzyme had a molecular mass of 40 kDa on SDS/PAGE, exhibiting optimal phosphatase activity at pH 12.3 and 70 °C. The enzyme possessed characteristics of a DING protein, such as ATPase, ds endonuclease and 3′ phosphodiesterase (3′-exonuclease) activities and binding to linear dsDNA, displaying helicase activity on supercoiled DNA. Purification and biochemical characterization of a T. thermophilus DING protein was achieved. The biochemical properties, N-terminal sequence similarities of this protein implied that the enzyme belongs to the PSTS family and might be involved in the DNA repair mechanism of this microorganism. Authors’ address: Assist. Prof. A. A. Pantazaki, Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece  相似文献   

14.
The hyper-thermophilic archaeon Sulfolobus solfataricus possesses two functional DNA polymerases belonging to the B-family (Sso DNA pol B1) and to the Y-family (Sso DNA pol Y1). Sso DNA pol B1 recognizes the presence of uracil and hypoxanthine in the template strand and stalls synthesis 3–4 bases upstream of this lesion (“read-ahead” function). On the other hand, Sso DNA pol Y1 is able to synthesize across these and other lesions on the template strand. Herein we report evidence that Sso DNA pol B1 physically interacts with DNA pol Y1 by surface plasmon resonance measurements and immuno-precipitation experiments. The region of DNA pol B1 responsible for this interaction has been mapped in the central portion of the polypeptide chain (from the amino acid residue 482 to 617), which includes an extended protease hyper-sensitive linker between the N- and C-terminal modules (amino acid residues Asn482-Ala497) and the α-helices forming the “fingers” sub-domain (α-helices R, R′ and S). These results have important implications for understanding the polymerase-switching mechanism on the damaged template strand during genome replication in S. solfataricus.  相似文献   

15.
The total amount of cellular mitochondrial DNA (mtDNA) varies widely and seems to be related to the nature and metabolic state of tissues and cells in culture. It is not known, however, whether this variation has any significance in vivo, and to which extent it regulates energy production. To better understand the importance of the cellular mtDNA level, we studied the influence of a gradual reduction of mtDNA copy number on oxidative phosphorylation in two models: (a) a control human cell line treated with different concentrations of 2′, 3′-dideoxycytidine, a nucleoside analogue that inhibits mtDNA replication by interfering with mitochondrial DNA polymerase γ, and (b) a cell line derived from a patient presenting mtDNA depletion. The two models were used to construct biochemical and phenotypic threshold curves. Our results show that oxidative phosphorylation activities are under a tight control by the amount of mtDNA in the cell, and that the full complement of mtDNA molecules are necessary to maintain a normal energy production level.  相似文献   

16.
Combined multidimensional nuclear magnetic resonance spectroscopy and electrospray mass spectrometry was used to analyze the platinated DNA adduct of the phase II anticancer drug [{trans-PtCl(NH3)2}2-μ-{trans-Pt(NH3)2(NH2(CH2)6NH2)2}](NO3)4 (BBR3464) with [5′-d(ACG*TATACG*T)-3′]2. Two 1,2-interstrand cross-links were formed by concomitant binding of two trinuclear moieties to the oligonucleotide. The four DNA-bound platinum atoms coordinated in the major groove at N7 positions of guanines in the 3′ → 3′ direction and the central platinum unit is expected to lie in the DNA minor groove. This is the first report of such a DNA lesion. The melting temperature of the adduct is 76 °C and is 42 °C higher than that of the unplatinated DNA. The sugar residues of the platinated bases are in the N-type conformation and the G9 nucleoside is in the syn orientation, while the G3 nucleoside appears to retain the anti configuration. The secondary structure of DNA was significantly changed upon cross-linking of the two BBR3464 molecules. Base destacking occurs between A1/C2 and C2/G3 and weakened stacking is seen for the C8/G9 and G9/T10 bases. The lack of Watson–Crick base pairing is also seen for A1–T10 and C2–G9 base pairs, whereas Watson–Crick base pairs in the central sequence of the DNA (T4 → A7) are well maintained. While DNA repair proteins may “see” different platinated adducts as bulky “lesions”, the subtle differences involved in base pairing and stacking, as summarized here, may extend to their role as a substrate for repair enzymes. Thus, differences in protein recognition and repair efficiency among the various interstrand cross-links are likely and a subject worthy of detailed exploration. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Mitochondrial DNA polymerase (pol gamma) is the sole DNA polymerase responsible for replication and repair of animal mitochondrial DNA. Here, we address the molecular mechanism by which the human holoenzyme achieves high processivity in nucleotide polymerization. We have determined the crystal structure of human pol gamma-beta, the accessory subunit that binds with high affinity to the catalytic core, pol gamma-alpha, to stimulate its activity and enhance holoenzyme processivity. We find that human pol gamma-beta shares a high level of structural similarity to class IIa aminoacyl tRNA synthetases, and forms a dimer in the crystal. A human pol gamma/DNA complex model was developed using the structures of the pol gamma-beta dimer and the bacteriophage T7 DNA polymerase ternary complex, which suggests multiple regions of subunit interaction between pol gamma-beta and the human catalytic core that allow it to encircle the newly synthesized double-stranded DNA, and thereby enhance DNA binding affinity and holoenzyme processivity. Biochemical properties of a novel set of human pol gamma-beta mutants are explained by and test the model, and elucidate the role of the accessory subunit as a novel type of processivity factor in stimulating pol gamma activity and in enhancing processivity.  相似文献   

18.
This article describes a simple method for accurate rapid amplification of complementary deoxyribonucleic acid (cDNA) ends (RACE), the distinctive feature being that only a gene-specific primer is used, without an anchor or adapter primer. Under these conditions, Thermus aquaticus (Taq) polymerase synthesizes cDNA ends exactly, so that amplified products obtain a characteristic structure: a terminal inverted repeat composed of a gene-specific primer and occasionally several nucleotides from its 3′ flanking sequence. These structures suggest a hypothetical mechanism of cDNA end synthesis in which Taq DNA polymerase synthesizes a sequence complementary to the gene-specific primer at the 3′ end of the daughter strand by switching the template to the 5′ terminal region through circularization of the DNA. As a result, the targeted cDNA will be efficiently amplified with only a single gene-specific primer. This technique, which provides highly specific amplification of the 5′ and 3′ ends of a cDNA, is especially useful for isolation of cDNA when the corresponding messenger ribonucleic acid is scarce.  相似文献   

19.
An ORF of 1716 nucleotides, putatively encoding a DNA polymerase, was characterized in the mitochondrial genome of the edible basidiomycete Agrocybe aegerita. The complete gene, named Aa-polB, and its flanking regions were cloned and sequenced from three overlapping restriction fragments. Aa-polB is located between the SSU rDNA (5′ region) and a gene for tRNAAsn (3′ region), and is separated from these genes by two A+T-rich intergenic regions of 1048 (5′ region) and 3864 (3′ region) nucleotides, which lack repeated sequences of mitochondrial or plasmid origin. The deduced Aa-POLB protein shows extensive sequence similarity with the family B DNA polymerases encoded by genomes that rely on protein-primed replication (invertrons). The domains involved in the 3′→5′ exonuclease (Exo I to III) and polymerase (Pol I to Pol V) activities were localized on the basis of conserved sequence motifs. The alignment of the Aa-POLB protein (571 amino acids) with sequences of family B DNA polymerases from invertrons revealed that in Aa-POLB the N-terminal region preceding Exo I is short, suggesting a close relationship with the DNA polymerases of bacteriophages that have linear DNA. The Aa-polB gene was shown to be present in all wild strains examined, which were collected from a wide range of locations in Europe. As shown by RT-PCR, the Aa-polB gene is transcribed in the mitochondria, at a low but significant level. The likelihood of the coexistence of Aa-POLB and Pol γ in the A. aegerita mitochondrion is discussed in the light of recent reports showing the conservation of the nucleus-encoded Pol γ from yeast to human. Received: 13 October 1998 / Accepted: 21 December 1998  相似文献   

20.
DNA helicases use energy derived from nucleoside 5′-triphosphate hydrolysis to catalyze the separation of double-stranded DNA into single-stranded intermediates for replication, recombination, and repair. Escherichia coli helicase II (UvrD) functions in methyl-directed mismatch repair, nucleotide excision repair, and homologous recombination. A previously discovered 2-amino acid substitution of residues 403 and 404 (both Asp → Ala) in the 2B subdomain of UvrD (uvrD303) confers an antimutator and UV-sensitive phenotype on cells expressing this allele. The purified protein exhibits a “hyper-helicase” unwinding activity in vitro. Using rapid quench, pre-steady state kinetic experiments we show the increased helicase activity of UvrD303 is due to an increase in the processivity of the unwinding reaction. We suggest that this mutation in the 2B subdomain results in a weakened interaction with the 1B subdomain, allowing the helicase to adopt a more open conformation. This is consistent with the idea that the 2B subdomain may have an autoregulatory role. The UvrD303 mutation may enable the helicase to unwind DNA via a “strand displacement” mechanism, which is similar to the mechanism used to processively translocate along single-stranded DNA, and the increased unwinding processivity may contribute directly to the antimutator phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号