首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
alpha11beta1 constitutes the most recent addition to the integrin family and has been shown to display a binding preference for interstitial collagens found in mesenchymal tissues. We have previously observed that when alpha11beta1 integrin is expressed in cells lacking endogenous collagen receptors, it can mediate PDGF-BB-dependent chemotaxis on collagen I in vitro. To determine in which cells PDGF and alpha11beta1 might cooperate in regulating cell migration in vivo, we studied in detail the expression and distribution of alpha11 integrin chain in mouse embryos and tested the ability of PDGF isoforms to stimulate the alpha11beta1-mediated cell migration of embryonic fibroblasts. Full-length mouse alpha11 cDNA was sequenced and antibodies were raised to deduced alpha11 integrin amino acid sequence. In the embryonic mouse head, alpha11 protein and RNA were localized to ectomesenchymally derived cells. In the periodontal ligament, alpha11beta1 was expressed as the only detectable collagen-binding integrin, and alpha11beta1 is thus a major receptor for cell migration and matrix organization in this cell population. In the remainder of the embryo, the alpha11 chain was expressed in a subset of mesenchymal cells including tendon/ligament fibroblasts, perichondrial cells, and intestinal villi fibroblasts. Most of the alpha11-expressing cells also expressed the alpha2 integrin chain, but no detectable overlap was found with the alpha1 integrin chain. In cells expressing multiple collagen receptors, these might function to promote a more stable cell adhesion and render the cells more resistant to chemotactic stimuli. Wild-type embryonic fibroblasts activated mainly the PDGF beta receptor in response to PDGF-BB and migrated on collagens I, II, III, IV, V, and XI in response to PDGF-BB in vitro, whereas mutant fibroblasts that lacked alpha11beta1 in their collagen receptor repertoire showed a stronger chemotactic response on collagens when stimulated with PDGF-BB. In the cellular context of embryonic fibroblasts, alpha11beta1 is thus anti-migratory. We speculate that the PDGF BB-dependent cell migration of mesenchymal cells is tightly regulated by the collagen receptor repertoire, and disturbances of this repertoire might lead to unregulated cell migration that could affect normal embryonic development and tissue structure.  相似文献   

3.
We have previously assigned an integrin alpha(2)beta(1)-recognition site in collagen I to the sequence, GFOGERGVEGPOGPA (O = Hyp), corresponding to residues 502-516 of the alpha(1)(I) chain and located in the fragment alpha(1)(I)CB3 (Knight, C. G., Morton, L. F., Onley, D. J., Peachey, A. R., Messent, A. J., Smethurst, P. A., Tuckwell, D. S., Farndale, R. W., and Barnes, M. J. (1998) J. Biol. Chem. 273, 33287-33294). In this study, we show that recognition is entirely contained within the six-residue sequence GFOGER. This sequence, when in triple-helical conformation, readily supports alpha(2)beta(1)-dependent cell adhesion and exhibits divalent cation-dependent binding of isolated alpha(2)beta(1) and recombinant alpha(2) A-domain, being at least as active as the parent collagen. Replacement of E by D causes loss of recognition. The same sequence binds integrin alpha(1) A-domain and supports integrin alpha(1)beta(1)-mediated cell adhesion. Triple-helical GFOGER completely inhibits alpha(2) A-domain binding to collagens I and IV and alpha(2)beta(1)-dependent adhesion of platelets and HT 1080 cells to these collagens. It also fully inhibits alpha(1) A-domain binding to collagen I and strongly inhibits alpha(1)beta(1)-mediated adhesion of Rugli cells to this collagen but has little effect on either alpha1 A-domain binding or adhesion of Rugli cells to collagen IV. We conclude that the sequence GFOGER represents a high-affinity binding site in collagens I and IV for alpha(2)beta(1) and in collagen I for alpha(1)beta(1). Other high-affinity sites in collagen IV mediate its recognition of alpha(1)beta(1).  相似文献   

4.
The alpha 2 beta 1 integrin serves as either a specific cell surface receptor for collagen or as both a collagen and laminin receptor depending upon the cell type. Recently we established that the alpha 2 beta 1 integrin binds to a site within the alpha 1 (I)-CB3 fragment of type I collagen (Staatz, W. D., Walsh, J. J., Pexton, T., and Santoro, S. A. (1990) J. Biol. Chem. 265, 4778-4781). To define the alpha 2 beta 1 recognition sequence further we have prepared an overlapping set of synthetic peptides which completely spans the 148-amino acid alpha 1(I)-CB3 fragment and tested the peptides for ability to inhibit cell adhesion to collagen and laminin substrates. The minimal active recognition sequence defined by these experiments is a tetrapeptide of the sequence Asp-Gly-Glu-Ala (DGEA) corresponding to residues 435-438 of the type I collagen sequence. The DGEA-containing peptides effectively inhibited alpha 2 beta 1-mediated Mg2(+)-dependent adhesion of platelets, which use the alpha 2 beta 1 integrin as a collagen-specific receptor, to collagen but had no effect on alpha 5 beta 1-mediated platelet adhesion to fibronectin or alpha 6 beta 1-mediated platelet adhesion to laminin. In contrast, with T47D breast adenocarcinoma cells, which use alpha 2 beta 1 as a collagen/lamin receptor, adhesion to both collagen and laminin was inhibited by DGEA-containing peptides. Deletion of the alanine residue or substitution of alanine for either the glutamic or aspartic acid residues in DGEA-containing peptides resulted in marked loss of inhibitory activity. These results indicate that the amino acid sequence DGEA serves as a recognition site for the alpha 2 beta 1 integrin complex on platelets and other cells.  相似文献   

5.
Lymphocyte attachment to fibronectin is mainly mediated by the interaction of alpha 5 beta 1 and alpha 4 beta 1 integrins with the RGD and CS-1/Hep II sites, respectively. We have recently shown that the anti-beta 1 mAb TS2/16 can convert the partly active alpha 4 beta 1 present on certain hemopoietic cells that recognizes CS-1 but not Hep II, to a high avidity form that binds both ligands. In this report we have studied whether mAb TS2/16 also affects alpha 4 beta 1 ligand specificity. Incubation of the B cell lines Ramos and Daudi (which lack alpha 5 beta 1) with mAb TS2/16 induced specific attachment to an 80-kD fragment which lacks CS-1 and Hep II and contains the RGD sequence. mAbs anti-alpha 4 and the synthetic peptides CS-1 and IDAPS inhibited adhesion to the 80-kD fragment thus implying alpha 4 beta 1 as the receptor for this fragment. Interestingly, the synthetic peptide GRGDSPC and a 15-kD peptic fibronectin fragment containing the RGD sequence also inhibited B cell adhesion to the 80-kD fragment. Because we have previously shown that RGD peptides do not affect the constitutive function of alpha 4 beta 1, we tested whether TS2/16- activated alpha 4 beta 1 acquired the capacity to recognize RGD. Indeed RGD peptides inhibited TS2/16-treated B cell adhesion to a 38-kD fragment containing CS-1 and Hep II but did not affect binding of untreated cells to this fragment. An anti-fibronectin mAb reactive with an epitope on or near the RGD sequence also efficiently inhibited cell adhesion to the 80-kD fragment, indicating that the RGD sequence is a novel adhesive ligand for activated alpha 4 beta 1. These results emphasize the role of alpha 4 beta 1 as a receptor with different ligand specificities according to the activation state, a fact that may be important for lymphocyte migration, localization, and function.  相似文献   

6.
Functions of alpha3beta1 integrin   总被引:6,自引:0,他引:6  
alpha3beta1 integrin is a laminin receptor with apparently diverse functions. In epithelial cells it acts as a receptor for the basement membrane, whereas in neuronal and possibly tumor cells it mediates migration. Interactions of alpha3beta1 integrin with tetraspanin proteins may provide clues to how it transduces signals that affect cell behavior.  相似文献   

7.
Polymerization of the ECM proteins fibronectin and laminin has been shown to take place in close vicinity to the cell surface and be facilitated by beta(1) integrins (Lohikangas, L., Gullberg, D., and Johansson, S. (2001) Exp. Cell Res. 265, 135-144 and Wennerberg, K., Lohikangas, L., Gullberg, D., Pfaff, M., Johansson, S., and Fassler, R. (1996) J. Cell Biol. 132, 227-238). We have studied the role of collagen receptors, integrins alpha(11)beta(1) and alpha(2)beta(1), and fibronectin in collagen polymerization using fibronectin-deficient mouse embryonic fibroblast cell lines. In contrast to the earlier belief that collagen polymerization occurs via self-assembly of collagen molecules we show that a preformed fibronectin matrix is essential for collagen network formation and that collagen-binding integrins strongly enhance this process. Thus, collagen deposition is regulated by the cells, both indirectly through integrin alpha(5)beta(1)-dependent polymerization of fibronectin and directly through collagen-binding integrins.  相似文献   

8.
The urokinase receptor (uPAR) is linked to cellular migration through its capacity to promote pericellular proteolysis, regulate integrin function, and mediate cell signaling in response to urokinase (uPA) binding. The mechanisms for these activities remain incompletely defined, although uPAR was recently identified as a cis-acting ligand for the beta2 integrin CD11b/CD18 (Mac-1). Here we show that a major beta1 integrin partner for uPAR/uPA signaling is alpha3. In uPAR-transfected 293 cells uPAR complexed (>90%) with alpha3beta1 and antibodies to alpha3 blocked uPAR-dependent vitronectin (Vn) adhesion. Soluble uPAR bound to recombinant alpha3beta1 in a uPA-dependent manner (K(d) < 20 nM) and binding was blocked by a 17-mer alpha3beta1 integrin peptide (alpha325) homologous to the CD11b uPAR-binding site. uPAR colocalized with alpha3beta1 in MDA-MB-231 cells and uPA (1 nM) enhanced spreading and focal adhesion kinase phosphorylation on fibronectin (Fn) or collagen type I (Col) in a pertussis toxin- and alpha325-sensitive manner. A critical role of alpha3beta1 in uPA signaling was verified by studies of epithelial cells from alpha3-deficient mice. Thus, uPAR preferentially complexes with alpha3beta1, promoting direct (Vn) and indirect (Fn, Col) pathways of cell adhesion, the latter a heterotrimeric G protein-dependent mechanism of signaling between alpha3beta1 and other beta1 integrins.  相似文献   

9.
Integrin adhesion receptors have been implicated in bidirectional signal transduction. The dynamic regulation of integrin affinity and avidity as well as post-ligand effects involved in outside-in signaling depends on the interaction of integrins with cytoskeletal and signaling proteins. In this study, we attempted to identify cytoplasmic binding partners of alpha(1)beta(1) integrin. We were able to show that cell adhesion to alpha(1)beta(1)-specific substrates results in the association of phospholipase Cgamma (PLCgamma) with the alpha(1)beta(1) integrin independent of PLCgamma tyrosine phosphorylation. Using peptide-binding assays, the membrane proximal sequences within the alpha(1)beta(1) integrin subunits were identified as binding sites for PLCgamma. In particular, the conserved sequence of beta(1) subunit binds the enzyme very efficiently. Because purified PLCgamma also binds the integrin peptides, binding seems to be direct. Inhibition of PLC by leads to reduced cell adhesion on alpha(1)beta(1)-specific substrates. Cells lacking the conserved domain of the alpha(1) subunit fail to respond to the PLC inhibition, indicating that this domain is necessary for PLC-dependent adhesion modulation of alpha(1)beta(1) integrin.  相似文献   

10.
A synthetic peptide containing amino acid residues 190-201 of thrombospondin-1 (TSP1) promoted adhesion of MDA-MB-435 breast carcinoma cells when immobilized and inhibited adhesion of the same cells to TSP1 when added in solution. Adhesion to this peptide was enhanced by a beta(1) integrin-activating antibody, Mn(2+), and insulin-like growth factor I and was inhibited by an alpha(3)beta(1) integrin function-blocking antibody. The soluble peptide inhibited adhesion of cells to the immobilized TSP1 peptide or spreading on intact TSP1 but at the same concentrations did not inhibit attachment or spreading on type IV collagen or fibronectin. Substitution of several residues in the TSP1 peptide with Ala residues abolished or diminished the inhibitory activity of the peptide in solution, but only substitution of Arg-198 completely inactivated the adhesive activity of the immobilized peptide. The essential residues for activity of the peptide as a soluble inhibitor are Asn-196, Val-197, and Arg-198, but flanking residues enhance the inhibitory activity of this core sequence, either by altering the conformation of the active sequence or by interacting with the integrin. This functional sequence is conserved in all known mammalian TSP1 sequences and in TSP1 from Xenopus laevis. The TSP1 peptide also inhibited adhesion of MDA-MB-435 cells to the laminin-1 peptide GD6, which contains a potential integrin-recognition sequence Asn-Leu-Arg and is derived from a similar position in a pentraxin module. Adhesion studies using recombinant TSP1 fragments also localized beta1 integrin-dependent adhesion to residues 175-242 of this region, which contain the active sequence.  相似文献   

11.
Dermal fibroblasts derived from types I and IV Ehlers-Danlos syndrome (EDS) patients, carrying mutations in COL5A1 and COL3A1 genes, respectively, synthesize aberrant types V and III collagen (COLL) and show defective organization of these proteins into the extracellular matrix (ECM) and high reduction of their functional receptor, the alpha(2)beta(1) integrin, compared with control fibroblasts. EDS cells also show reduced levels of fibronectin (FN) in the culture medium and lack an FN fibrillar network. Finally, EDS cells prevalently organize alpha(v)beta(3) integrin instead of alpha(5)beta(1) integrin. The alpha(v)beta(3) integrin, distributed on the whole EDS cell surface, shows FN binding and assembly properties when the cells are treated with purified FN. Treatment of EDS cells with purified COLLV or COLLIII, but not with FN, restores the control phenotype (COLL(+), FN(+), alpha(v)beta(3)(-), alpha(5)beta(1)(+), alpha(2)beta(1)(+)). Function-blocking antibodies to COLLV, COLLIII, or alpha(2)beta(1) integrin induce in control fibroblasts an EDS-like phenotype (COLL(-), FN(-), alpha(v)beta(3)(+), alpha(5)beta(1)(-), alpha(2)beta(1)(-)). These results show that in human fibroblasts alpha(2)beta(1) integrin organization and function are controlled by its ligand, and that the alpha(2)beta(1)-COLL interaction, in turn, regulates FN integrin receptor recruitment: high alpha(2)beta(1) integrin levels induce alpha(5)beta(1) integrin organization, while low alpha(2)beta(1) integrin levels lead to alpha(v)beta(3) integrin organization.  相似文献   

12.
Divalent cations stabilize the alpha 1 beta 1 integrin I domain.   总被引:1,自引:0,他引:1  
Recent structural and functional analyses of alpha integrin subunit I domains implicate a region in cation and ligand binding referred to as the metal ion-dependent adhesion site (MIDAS). Although the molecular interactions between Mn2+ and Mg2+ and the MIDAS region have been defined by crystallographic analyses, the role of cation in I domain function is not well understood. Recombinant alpha 1 beta 1 integrin I domain (alpha1-I domain) binds collagen in a cation-dependent manner. We have generated and characterized a panel of antibodies directed against the alpha1-I domain, and selected one (AJH10) that blocks alpha 1 beta 1 integrin function for further study. The epitope of AJH10 was localized within the loop between the alpha 3 and alpha 4 helices which contributes one of the metal coordination sites of the MIDAS structure. Kinetic analyses of antibody binding to the I domain demonstrate that divalent cation is required to stabilize the epitope. Denaturation experiments demonstrate that cation has a dramatic effect on the stabilization of the I domain structure. Mn2+ shifts the point at which the I domain denatures from 3.4 to 6.3 M urea in the presence of the denaturant, and from 49.5 to 58.6 degrees C following thermal denaturation. The structural stability provided to the alpha1-I domain by divalent cations may contribute to augmented ligand binding that occurs in the presence of these cations.  相似文献   

13.
Members of the integrin family of adhesion receptors mediate both cell-cell and cell-matrix interactions and have been shown to play vital roles in embryonic development, wound healing, metastasis, and other biological processes. The integrin alpha9beta1 is a receptor for the extracellular matrix proteins osteopontin and tenacsin C and the cell surface immunoglobulin vascular cell adhesion molecule-1. This receptor is widely expressed in smooth muscle, hepatocytes, and some epithelia. To examine the in vivo function of alpha9beta1, we have generated mice lacking expression of the alpha9 subunit. Mice homozygous for a null mutation in the alpha9 subunit gene appear normal at birth but develop respiratory failure and die between 6 and 12 days of age. The respiratory failure is caused by an accumulation of large volumes of pleural fluid which is rich in triglyceride, cholesterol, and lymphocytes. alpha9(-/-) mice also develop edema and lymphocytic infiltration in the chest wall that appears to originate around lymphatics. alpha9 protein is transiently expressed in the developing thoracic duct at embryonic day 14, but expression is rapidly lost during later stages of development. Our results suggest that the alpha9 integrin is required for the normal development of the lymphatic system, including the thoracic duct, and that alpha9 deficiency could be one cause of congenital chylothorax.  相似文献   

14.
The alpha1beta1 integrin is a major cell surface receptor for collagen. Ligand binding is mediated, in part, through a 200 amino acid inserted 'I'-domain contained in the extracellular part of the integrin alpha chain. Integrin I-domains contain a divalent cation binding (MIDAS) site and require cations to interact with integrin ligands. We have determined the crystal structure of recombinant I-domain from the rat alpha1beta1 integrin at 2.2 A resolution in the absence of divalent cations. The alpha1 I-domain adopts the dinucleotide binding fold that is characteristic of all I-domain structures that have been solved to date and has a structure very similar to that of the closely related alpha2beta1 I-domain which also mediates collagen binding. A unique feature of the alpha1 I-domain crystal structure is that the MIDAS site is occupied by an arginine side chain from another I-domain molecule in the crystal, in place of a metal ion. This interaction supports a proposed model for ligand-induced displacement of metal ions. Circular dichroism spectra determined in the presence of Ca2+, Mg2+ and Mn2+ indicate that no changes in the structure of the I-domain occur upon metal ion binding in solution. Metal ion binding induces small changes in UV absorption spectra, indicating a change in the polarity of the MIDAS site environment.  相似文献   

15.
The membrane-distal headpiece of integrins has evolved to specifically bind large extracellular protein ligands, but the molecular architecture of the resulting complexes has not been determined. We used molecular electron microscopy to determine the three-dimensional structure of the ligand-binding headpiece of integrin alpha5beta1 complexed with fragments of its physiological ligand fibronectin. The density map for the unliganded alpha5beta1 headpiece shows a 'closed' conformation similar to that seen in the alphaVbeta3 crystal structure. By contrast, binding to fibronectin induces an 'open' conformation with a dramatic, approximately 80 degrees change in the angle of the hybrid domain of the beta subunit relative to its I-like domain. The fibronectin fragment binds to the interface between the beta-propeller and I-like domains in the integrin headpiece through the RGD-containing module 10, but direct contact of the synergy-region-containing module 9 to integrin is not evident. This finding is corroborated by kinetic analysis of real-time binding data, which shows that the synergy site greatly enhances k(on) but has little effect on the stability or k(off) of the complex.  相似文献   

16.
We have determined the 1.8 Å crystal structure of a triple helical integrin-binding collagen peptide (IBP) with sequence (Gly-Pro-Hyp)2-Gly-Phe-Hyp-Gly-Glu-Arg-(Gly-Pro-Hyp)3. The central GFOGER hexapeptide is recognised specifically by the integrins α2β1, α1β1, α10β1 and α11β1. These integrin/collagen interactions are implicated in a number of key physiological processes including cell adhesion, cell growth and differentiation, and pathological states such as thrombosis and tumour metastasis. Comparison of the IBP structure with the previously determined structure of an identical collagen peptide in complex with the integrin α2-I domain (IBPc) allows the first detailed examination of collagen in a bound and an unbound state. The IBP structure shows a direct and a water-mediated electrostatic interaction between Glu and Arg side-chains from adjacent strands, but no intra-strand interactions. The interactions between IBP Glu and Arg side-chains are disrupted upon integrin binding. A comparison of IBP and IBPc main-chain conformation reveals the flexible nature of the triple helix backbone in the imino-poor GFOGER region. This flexibility could be important to the integrin-collagen interaction and provides a possible explanation for the unique orientation of the three GFOGER strands observed in the integrin-IBPc complex crystal structure.  相似文献   

17.
The leukocyte integrin alpha 4 beta 1 (VLA-4, CD49d/CD29) is a receptor for the extracellular matrix protein fibronectin and the endothelial adhesion protein VCAM-1. We have analyzed the biosynthesis and post-translational modifications of the two subunits of this receptor complex. The alpha 4 subunit was initially synthesized as a single-chain polypeptide that underwent the formation of complex endoglycosidase H-resistant oligosaccharide side chains and which could be proteolytically cleaved into two noncovalently associated fragments. The level and rate of alpha 4 subunit cleavage was dependent on the cell studied. The T cell tumor line HPB-ALL expressed both intact and fragmented alpha 4 on the cell surface. The interleukin-2-dependent natural killer line NK 3.3 and long term interleukin-2-dependent activated T lymphocytes cleaved the alpha 4 polypeptide earlier and more efficiently than did HPB-ALL cells and did not have detectable levels of intact alpha 4 on the cell surface. The proteolysis of alpha 4 was blocked by treating cells with either the lysosomotrophic amine NH4Cl or the carboxylic ionophore monensin. The presence of complex N-linked oligosaccharides did not seem to be necessary for alpha 4 cleavage or for binding of the alpha 4 beta 1 complex to a synthetic peptide corresponding to the binding site for this receptor on fibronectin.  相似文献   

18.
Integrin alpha4beta1 is a major leukocyte adhesion receptor that is a key target for the development of anti-inflammatory therapeutics. With the dual long-term goals of developing a reagent for use in high-throughput inhibitor screening assays and for crystallisation trials and subsequent structure determination, we have generated a recombinant soluble alpha4beta1 receptor. Both subunits were truncated prior to the transmembrane domains by site-directed mutagenesis and expressed using baculovirus infection of insect cells. The molecular weights of the recombinant subunits were as expected for post-translationally unmodified protein. In addition, as observed for the native subunit, a proportion of the alpha4 subunit was proteolytically processed into two fragments. ELISA and solid phase ligand-binding assays were performed to investigate the folding and functionality of the soluble integrin. The data suggest that the receptor was correctly folded and that it bound recombinant ligands with similar kinetics to the native molecule.  相似文献   

19.
20.
KTS-disintegrins are a subfamily of short monomeric disintegrins that are potent and selective inhibitors of alpha1beta1 integrin. The amino acid sequence of the new KTS-disintegrin, viperistatin, differs from previously characterized obtustatin in three residues at position 24 (within the integrin binding loop), 38 (hydrophobic core) and 40 (C-terminal region). Noteworthy, viperistatin is about 25-fold more potent than obtustatin inhibiting the binding of this integrin to collagen IV. Synthetic peptides representing the full-length of integrin-binding loops of these disintegrins showed that the Leu24/Arg substitution appears to be partly responsible for the increased inhibitory activity of viperistatin over obtustatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号