首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A series of molecular dynamics simulations of prepolymerization mixtures for phenylalanine anilide imprinted co-(ethylene glycol dimethacrylate-methacrylic acid) molecularly imprinted polymers have been employed to investigate the mechanistic basis for template selective recognition in these systems. This has provided new insights on the mechanisms underlying template recognition, in particular the significant role played by the crosslinking agent. Importantly, the study supports the occurrence of template self-association events that allows us to resolve debate between the two previously proposed models used to explain this system's underlying recognition mechanisms. Moreover, the complexity of the molecular level events underlying template complexation is highlighted by this study, a factor that should be considered in rational molecularly imprinted polymer design, especially with respect to recognition site heterogeneity.  相似文献   

2.
We present a new concept of synthesis for preparation of molecularly imprinted polymers using a functionalized initiator to replace the traditional functional monomer. Using propranolol as a model template, a carboxyl-functionalized radical initiator was demonstrated to lead to high-selectivity polymer particles prepared in a standard precipitation polymerization system. When a single enantiomer of propranolol was used as template, the imprinted polymer particles exhibited clear chiral selectivity in an equilibrium binding experiment. Unlike the previous molecular imprinting systems where the active free radicals can be distant from the template-functional monomer complex, the method reported in this work makes sure that the actual radical polymerization takes place in the vicinity of the template-associated functional groups. The success of using functional initiator to synthesize molecularly imprinted polymers brings in new possibilities to improve the functional performance of molecularly imprinted synthetic receptors.  相似文献   

3.
Haginaka J 《Bioseparation》2001,10(6):337-351
HPLC-based separations of amino acids and peptides, nucleotide bases, drugs, sugars and steroids using molecularly imprinted polymers (MIPs) have been reviewed in this article. The molecular recognition mechanisms of the template molecules on the MIPs in organic and aqueous eluents were discussed. Furthermore, new polymerization methods suitable for preparations of HPLC columns and packing materials using molecular imprinting techniques, and their applications to HPLC-based separations are also dealt with.  相似文献   

4.
A convenient and simple approach for the preparation of molecularly imprinted polymers (MIPs) based on polyamide (nylon‐6) was developed. The polymer matrix formation occurred during the transition of nylon from dissolved to solid state in the presence of template molecules in the initial solution. 2,2,2‐Trifluoroethanol (TFE) was chosen as a main solvent for the polyamide. It provides a high solubility of nylon and does not significantly change the structure of biopolymers. The alteration of the polymer matrix structure after the addition of different types of porogens in the nylon/TFE solution was investigated. The structured polymers in the form of films and microparticles were prepared in the chosen optimal conditions. Different model biomolecular templates (of low‐ and high‐molecular weight) were used for the preparation of MIPs, which were shown to specifically recognize these molecules upon binding experiments. The binding of the template molecules to MIPs was monitored using spectrophotometric, radioisotopic, or fluorometric detection. The selectivity coefficients of the MIPs were estimated to be 1.4–4.6 depending on the type of templates and conditions of the polymer matrix formation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
In the present study, the effect of constituting amino acid residue numbers of oligopeptide derivatives, which are candidate materials to construct molecular recognition sites, on chiral recognition ability was investigated. Chiral recognition sites were formed from oligopeptide derivatives, of which constituting amino acid residue numbers were three to six, by adopting an alternative molecular imprinting. It was made clear that the number four, in other words, the tetrapeptide derivative, is the best candidate material to form a chiral recognition site.  相似文献   

6.
7.
Membrane separations using molecularly imprinted polymers   总被引:7,自引:0,他引:7  
This review presents an overview on the promising field of molecularly imprinted membranes (MIM). The focus is onto the separation of molecules in liquid mixtures via membrane transport selectivity. First, the status of synthetic membranes and membrane separation technology is briefly summarized, emphasizing the need for novel membranes with higher selectivities. Innovative principles for the preparation of membranes with improved or novel functionality include self-assembly or supramolecular aggregation as well as the use of templates. Based on a detailed analysis of the literature, the main established preparation methods for MIM are outlined: simultaneous membrane formation and imprinting, or preparation of imprinted composite membranes. Then, the separation capability of MIM is discussed for two different types, as a function of their barrier structure. Microporous MIM can continuously separate mixtures based on facilitated diffusion of the template, or they can change their permeability in the presence of the template ("gate effect"). Macroporous MIM can be developed towards molecule-specific membrane adsorbers. Emerging further combinations of molecularly imprinted polymers (MIPs), especially MIP nanoparticles or microgels, with membranes and membrane processes are briefly outlined as well. Finally, the application potential for advanced MIM separation technologies is summarized.  相似文献   

8.
Ribonuclease A (RNase A) is an RNA-cleaving enzyme characterized by its high conformational stability and strong catalytic activity. This enzyme is ubiquitous in living organisms and is difficult to inactivate. In polymerase chain reaction (PCR) RNase activity is removed by adding inhibitors. Molecularly imprinted polymers (MIPs) with high selectivity, high stability, low cost and facile synthesis could prove useful in extraction of target molecules, such as RNase A, from reaction mixtures. In this investigation, MIPs were synthesized from the monomers styrene and polyethyleneglycol 400 dimethacrylate (PEG400DMA) in several different ratios. Styrene as a functional monomer gave MIPs with a higher affinity for RNase A than other functional monomers tested, according to both enzyme-linked immnuosorbent assay (ELISA) and isothermal titration calorimetry (ITC). The optimum volume ratio of styrene/PEG400DMA was 20/100 at 25 degrees C, and this ratio maximized the rebinding efficiency of RNase A to MIPs. Isothermal titration calorimetry was also used, and could be useful to design the composition of molecularly imprinted polymers for various target molecules.  相似文献   

9.
Biomimetic testosterone receptors were synthesized via molecular imprinting for use as antibody mimics in immunoassays. As evaluated by radioligand binding assays, imprinted polymers prepared in acetonitrile were very specific for testosterone because the nonimprinted control polymers bound virtually no radiolabeled testosterone. The polymers present an appreciable affinity, with association constants of K(a) = 3.3 x 10(7) M(- 1) (high-affinity binding sites). The binding characteristics of the polymers were also evaluated in aqueous environment to study their viabilities as alternatives to antibodies in molecularly imprinted sorbent assays. Compared with the testosterone-specific antibodies present in commercial kits, our molecularly imprinted polymers are somewhat less sensitive but show a high selectivity.  相似文献   

10.
A potential problem associated with molecularly imprinted polymer (MIP) sorbents is that of cross-reactivity. In this study three MIPs (imprinted with Boc-L-phenylalanine, Boc-L-alanine, Boc-L-glutamic acid) plus a non-imprinted control were prepared and examined for their ability to bind differentially the enantiomers of boc-protected phenylalanine in an effort to quantify cross-reactivity and to develop a predictive model. Batch rebinding studies showed a degree of predictability for a number of MIP-ligand pairs, but other combinations showed unexpectedly high levels of cross-reactivity. Despite the general acceptance of heterogeneity of MIP binding sites, many previous studies report linear Scatchard plots, which is indicative of binding site homogeneity. The data from this study produced curves, clearly demonstrating heterogeneity. The theoretical and practical implications of this heterogeneity are discussed. Chirality 9:233–237, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
Novel molecularly imprinted polymers (MIPs) for the recognition of nitrofurantoin (NFT) were prepared by photoinitiated polymerisation in polar solvent using 2,6-bis(methacrylamido) pyridine (BMP) as the functional monomer and carboxyphenyl aminohydantoin (CPAH) as the analogue of the template. The binding constants of the complex between BMP and nitrofurantoin or CPAH in DMSO were determined with 1H NMR titration to be 630 ± 104 and 830 ± 146 M−1, respectively. To study the influence of the functional monomer, two polymer compositions were prepared containing the template, the functional monomer and the crosslinker in the molar ratio 1:1:12 for MIP1 and 1:4:20 for MIP2, respectively. The imprinting factor at saturation concentration of nitrofurantoin, which is the ratio of the amount bound to the MIP and the non-imprinted control polymer (NIP), was determined to be 2.47 for MIP1 and 2.49 for MIP2. The cross reactivity of the imprinted polymers seems to be determined by the ability to form hydrogen bonds to the functional monomer while the shape of the molecule has no real influence.  相似文献   

12.
Molecularly imprinted polymeric membranes with tetrapeptide residue H-Asp(OcHex)-Asp(OcHex)-Asp(OcHex)-Asp(OcHex)-CH2- (DDDD) or H-Glu(OBzl)-Glu(OBzl)-Glu(OBzl)-Glu(OBzl)-C H2- (EEEE) were prepared during membrane preparation (casting) processing in the presence of print molecules. The Boc-L-Trp imprinted polymeric membranes thus obtained showed adsorption selectivity toward Ac-L-Trp from its racemic mixtures. From adsorption isotherms of Ac-Trp, the chiral recognition site, that had been formed by the presence of print molecules in the membrane preparation process, exclusively recognized Ac-L-Trp that possessed the same configuration of the print molecule. The affinity constants between chiral recognition sites in the membrane and Ac-L-Trp was determined to be 1.00 × 104 mol–1 dm3 and 1.08 × 104 mol–1 dm3 for the DDDD and EEEE membranes, respectively. Enantioselective electrodialysis could be attained by applying an optimum potential difference to give permselectivity, with a value close to its adsorption selectivity.  相似文献   

13.
A novel molecularly imprinted polymer (MIP) system selective for D-phenylalanine is described where polymerization is performed in aqueous solution. The unique polymer system comprises a hydrophobic moiety-selective functional monomer, polymerizable beta-cyclodextrin, an electrostatic interacting functional monomer, 2-acryloylamido-2-methylpropane sulfonic acid (AMPSA), and the crosslinking agent N,N'-diacryloylpiperazine. Chromatographic evaluation of polymer-ligand recognition characteristics demonstrated ligand selectivity by the MIP and that optimal recognition was achieved through a balance of hydrophobic and electrostatic ligand-polymer interactions, indicating that recognition in these systems is regulated by enthalpy-entropy compensation. The imprinting effect was shown to be sufficient to reverse the inherent selectivity of cyclodextrin for L-phenylalanine.  相似文献   

14.
It is a fact that molecular imprinting techniques have reached tremendous importance in the research of new artificial recognition systems. These methods resemble the mechanism of natural recognition, generally based on non-covalent interactions, but improving their stability by means of a simple and inexpensive technique. Molecular imprinting polymers (MIPs) are easily obtained by copolymerisation of suitable functional monomers and crosslinkers in the presence of the print molecule. Removal of the template leaves a polymer that selectively recognises it. In this work, different imprinted polymers for chloramphenicol (CAP) obtained using different monomers and polymerisation conditions were tested in a HPLC system, in order to obtain a highly selective material for CAP. The optimised MIP was then used as recognition phase in a fluorescent competitive flow assay to determine chloramphenicol.  相似文献   

15.
Protein-responsive imprinted polymers with specific shrinking and rebinding   总被引:1,自引:0,他引:1  
Stimuli-responsive protein imprinted polymers were obtained via a combination of molecular imprinting and reversible stimuli-responsive polymer using lysozyme or cytochrome c as template, N-isopropylacrylamide (NIPA) as major monomer, methacrylic acid (MAA) and acrylamide (AAm) as functional co-monomers, and N,N-methylenebisacrylamide (MBAAm) as crosslinker. The molecularly imprinted polymers (MIPs) can respond not only to external stimuli such as temperature and salt concentration, but also to the corresponding template protein with significant specific volume shrinking. This specific shrinking behavior was attributed to the synergistic effect of multiple-site weak interactions (electrostatic force, hydrogen bonding and hydrophobic interaction) and the cavity effect. The MIPs showed highly selective adsorption of template proteins with specific shrinking compared with the non-imprinted polymers. The results indicated that the MIPs seemed to change shape to accommodate the conformation of the template protein leading to the formation of a shape complementary cavity.  相似文献   

16.
A simplified computational model was proposed to simulate the synthesis of molecularly imprinted polymers (MIP), removal of template and recognition of the template and its analogues by MIP. The MIPs with nicotinamide and iso-nicotinamide as templates were prepared using methacrylic acid as functional monomer. Based on our computational model, the interaction energies between the monomer and the template or its analogues were calculated, which were well correlated with the retention factors and imprinting factors obtained on HPLC columns packed with the corresponding MIP particles. The imprinting effects of the template and its analogues were also investigated from the viewpoint of conformational analysis. The computational data were successfully used to predict the chromatographic behaviour of some chemicals in separation on HPLC columns. We believe that the computational method will find application in designing monomers for MIP synthesis and in studying recognition of templates and their analogues on MIP.  相似文献   

17.
In the present study, we immobilized acetylcholinesterase (AChE) enzyme onto acetylcholine removed imprinted polymer and acetylcholine containing polymer. First, the polymers were produced with acetylcholine, substrate of AChE, by dispersion polymerization. Then, the enzyme was immobilized onto the polymers by using two different methods: In the first method (method A), acetylcholine was removed from the polymer, and then AChE was immobilized onto this polymer (acetylcholine removed imprinted polymer). In the second method (method B), AChE was immobilized onto acetylcholine containing polymer by affinity. In method A, enzyme‐specific species (binding sites) occurred by removing acetylcholine from the polymer. The immobilized AChE reached 240% relative specific activity comparison with free AChE because the active enzyme molecules bounded onto the polymer. Transmission electron microscopy results were taken before and after immobilization of AChE for the assessment of morphological structure of polymer. Also, the experiments, which include optimum temperature (25–65°C), optimum pH (3–10), thermal stability (4–70°C), kinetic parameters, operational stability and reusability, were performed to determine the characteristic of the immobilized AChE. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
The aim of this study was to rationalise retention behaviour of a chiral solute on molecularly imprinted polymer (MIP) HPLC stationary phases in terms of variation of the mobile phase. It is generally held that the most important interaction governing the separation of enantiomers on such materials is H-bonding, and that retention times increase with decreasing H-bonding potential of the mobile phase. Previous studies have largely concerned mobile phases containing chloroform with acetic acid as a polar modifier. Boc-L-Phenylalanine (Boc-L-Phe-OH) MIPs were prepared, processed, and packed into HPLC columns, which were then used to investigate the retention characteristics of Boc-L-Phe-OH and Boc-D-Phe-OH with a range of mobile phases. The main observations were as follows: (1) in chloroform-based mobile phases there was generally a linear relationship between the H-bond donator factor of the polar modifier and capacity (K′). Results also indicated a hydrogen bond donor parameter value for a polar modifier at which retention became concentration independent; (2) For given values of K′L, K′D varied depending on the polar modifier, indicating that enantiomer resolution was solvent dependent; (3) Using mobile phases based on solvents of lower polarity/H-bonding potential than chloroform, substantial increases in K′ were observed, although enantioselectivity was greatly reduced. Chirality 9:238–242, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

19.
Molecular imprinting is an established method for the creation of artificial recognition sites in synthetic materials through polymerization and cross-linking in the presence of template molecules. Removal of the templates leaves cavities that are complementary to the template molecules in size, shape, and functionality. In recent years, various theoretical and computational models have been developed as tools to aid in the design of molecularly imprinted polymers (MIPs) or to provide insight into the features that determine MIP performance. These studies can be grouped into two general approaches-screening for possible functional monomers for particular templates and macromolecular models focusing on the structural characterization of the imprinted material. In this review, we pay special attention to coarse-grained models that characterize the functional heterogeneity in imprinted pores, but also cover recent advances in atomistic and first principle studies. We offer a critical assessment of the potential impact of the various models towards improving the state-of-the-art of molecular imprinting.  相似文献   

20.
A highly selective polymer has been prepared for the selective separation of nucleotides by the surface imprinting polymerization. A dialkyl quaternary ammonium chloride was effective as the functional molecule for recognizing the difference in the structure of nucleotides. Adsorptive behavior of the ionic species of the structural analogues, inosine-5'-monophosphoric acid (IMP) and guanosine-5'-monophosphoric acid (GMP), could be controlled by changing the pH condition. Surface imprinting polymers were prepared under different pH conditions; pH 9.0 and pH 8.5. The IMP-imprinted polymers exhibited higher template effect for IMP than for a structural analogue, GMP. A reference polymer prepared without the imprint molecule neither exhibit any selectivity to IMP nor to GMP. The adsorption behavior was quantitatively evaluated by the binding constants for the IMP-imprinted polymer. The imprinting polymer was found to recognize a small structural difference in nucleotides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号