首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
I J Lin  Y C Lou  M T Pai  H N Wu  J W Cheng 《Proteins》1999,37(1):121-129
Hepatitis delta virus (HDV) is a satellite virus of the hepatitis B virus (HBV) which provides the surface antigen for the viral coat. The RNA genome of HDV encodes two proteins: the small delta antigen and the large delta antigen. The two proteins resemble each other except for the presence of an additional 19 amino acids at the C terminus of the latter species. We have found that the N-terminal leucine-repeat region of hepatitis delta antigen (HDAg) binds to the autolytic domain of HDV genomic RNA and attenuates its autolytic activity. A 27-residue polypeptide corresponding to residues 24-50 of HDAg, designated dAg(24-50), was synthesized, and its solution structure was found to be an alpha-helix by circular dichroism and (1)H-nuclear magnetic resonance (NMR) techniques. Binding affinity of dAg(24-50) with HDV genomic RNA was found to increase with its alpha-helical content, and it was further confirmed by modifying its N- and C-terminal groups. Furthermore, the absence of RNA binding activity in the mutant peptides, dAgM(24-50am) and dAgM(Ac24-50am), in which Lys38, Lys39, and Lys40 were changed to Glu, indicates a possible involvement of these residues in their binding activity. Structural knowledge of the N-terminal leucine-repeat region of HDAg thus provides a molecular basis for the understanding of its role in the interaction with RNA. Proteins 1999;37:121-129.  相似文献   

2.
Hepatitis delta virus (HDV) is a satellite virus of the hepatitis B virus (HBV) which provides the surface antigen for the viral coat. Our results show that the N-terminal leucine-repeat region of hepatitis delta antigen (HDAg), encompassing residues 24–50, binds to the autolytic domain of HDV genomic RNA and attenuates its autolytic activity. The solution conformation of a synthetic peptide corresponding to residues 24–50 of HDAg as determined by two-dimensional 1H NMR and circular dichroism techniques is found to be an -helix. The local helix content of this peptide was analyzed by NOEs and coupling constants. Mutagenesis studies indicate that Lys38, Lys39, and Lys40 within this -helical peptide may be directly involved in RNA binding. A structural knowledge of the N-terminal leucine-repeat region of HDAg thus provides a molecular basis for understanding its role in the interaction with RNA.  相似文献   

3.
It has previously been shown that human hepatitis virus delta antigen has an RNA-binding activity (Chang et al., J. Virol. 62:2403-2410, 1988). In the present study, the specificity of such an RNA-protein interaction was demonstrated by expressing various domains of the delta antigen in Escherichia coli as TrpE fusion proteins and testing their RNA-binding activities in a Northwestern protein-RNA immunoblot assay and RNA gel mobility shift assay. Hepatitis delta virus (HDV) RNA bound specifically to the delta antigen in the presence of an excess amount of unrelated RNAs and a relatively high salt concentration. Both genome- and antigenome-sense HDV RNAs and at least two different regions of HDV genomic RNA bound to the delta antigen. Surprisingly, these two different regions of HDV genomic RNA could compete with each other for delta antigen binding, although they do not have common nucleotide sequences. In contrast, this binding could not be competed with by other viral or cellular RNA. Since both the genomic and antigenomic HDV RNAs had strong intramolecular complementary sequences, these results suggest that the binding of delta antigen is probably specific for a secondary structure unique to the HDV RNA. By expressing different subdomains of the delta antigen, we found that the middle one-third of delta antigen was responsible for binding HDV RNA. Neither the N-terminal nor the C-terminal domain bound HDV RNA. Binding between the delta antigen and HDV RNA was also demonstrated within the HDV particles isolated from the plasma of a human delta hepatitis patient. This in vivo binding resisted treatment with 0.1% sodium dodecyl sulfate and 0.5% Nonidet P-40. In addition, we showed that the antiserum from a human patient with delta hepatitis reacted with all three subdomains of the delta antigen, indicating that all of the domains are immunogenic in vivo. These studies demonstrated the specific interaction between delta antigen and HDV RNA.  相似文献   

4.
Hepatitis delta virus (HDV) infection of individuals infected with hepatitis B virus (HBV) is associated with more severe liver damage and an increased risk of fulminant disease. HDV is a single-stranded RNA virus that encodes a single protein, the delta antigen, which is expressed in two forms, small (S-HDAg) and large (L-HDAg). Here we show that although HDV ribonucleoproteins are mainly detected in the nucleus, they are also present in the cytoplasm of cells infected with HDV or transfected with HDV cDNA. Making use of an heterokaryon assay, we demonstrate that HDV ribonucleoproteins shuttle continuously between the nucleus and the cytoplasm. In the absence of HDV RNA, both forms of the delta antigen are retained in the nucleus, whereas in the absence of the delta antigen, HDV RNA is predominantly detected in the cytoplasm. Coexpression of HDV RNA and S-HDAg (which binds to the viral RNA and contains a nuclear localization signal) results in nuclear accumulation of the viral RNA. This suggests that HDV RNA mediates export of viral particles to the cytoplasm whereas the delta antigen triggers their reimport into the nucleus.  相似文献   

5.
Ribonucleoprotein complexes of hepatitis delta virus.   总被引:14,自引:13,他引:1       下载免费PDF全文
W S Ryu  H J Netter  M Bayer    J Taylor 《Journal of virology》1993,67(6):3281-3287
Human hepatitis delta virus (HDV) is a subviral satellite agent of hepatitis B virus (HBV). The envelope proteins of HDV are provided by the helper virus, HBV, but very little is known about the internal structure of HDV. The particles contain multiple copies of the delta antigen and an unusual RNA genome that is small, about 1,700 nucleotides in length, single stranded, and circular. By using UV cross-linking, equilibrium density centrifugation, and immunoprecipitation, we obtained evidence consistent with the interpretation that delta antigen and genomic RNA form a stable ribonucleoprotein (RNP) complex within the virion. Furthermore, electron-microscopic examination of the purified viral RNP revealed a roughly spherical core-like structure with a diameter of 18.7 +/- 2.5 nm. We also isolated HDV-specific RNP structures from the nuclei of cells undergoing HDV genome replication; both the genome and antigenome (a complement of the genome) of HDV were found to be in such complexes. From the equilibrium density analyses of the viral and nuclear RNPs, we were able to deduce the number of molecules of delta antigen per molecule of HDV RNA. For virions, this number was predominantly ca. 70, which was larger than for the nuclear RNPs, which were more heterogeneous, with an average value of ca. 30.  相似文献   

6.
Jayan GC  Casey JL 《Journal of virology》2005,79(17):11187-11193
RNA editing of the hepatitis delta virus (HDV) antigenome at the amber/W site by the host RNA adenosine deaminase ADAR1 is a critical step in the HDV replication cycle. Editing is required for production of the viral protein hepatitis delta antigen long form (HDAg-L), which is necessary for viral particle production but can inhibit HDV RNA replication. The RNA secondary structural features in ADAR1 substrates are not completely defined, but base pairing in the 20-nucleotide (nt) region 3' of editing sites is thought to be important. The 25-nt region 3' of the HDV amber/W site in HDV genotype I RNA consists of a conserved secondary structure that is mostly base paired but also has asymmetric internal loops and single-base bulges. To understand the effect of this 3' region on the HDV replication cycle, mutations that either increase or decrease base pairing in this region were created and the effects of these changes on amber/W site editing, RNA replication, and virus production were studied. Increased base pairing, particularly in the region 15 to 25 nt 3' of the editing site, significantly increased editing; disruption of base pairing in this region had little effect. Increased editing resulted in a dramatic inhibition of HDV RNA synthesis, mostly due to excess HDAg-L production. Although virus production at early times was unaffected by this reduced RNA replication, at later times it was significantly reduced. Therefore, it appears that the conserved RNA secondary structure around the HDV genotype I amber/W site has been selected not for the highest editing efficiency but for optimal viral replication and secretion.  相似文献   

7.
Cloned hepatitis delta virus cDNA is infectious in the chimpanzee.   总被引:12,自引:12,他引:0  
A head-to-tail trimer of a full-length cDNA clone of the hepatitis delta virus (HDV) genome was examined for infectivity by direct inoculation into the liver of a chimpanzee that was already infected with hepatitis B virus. Five weeks after inoculation, a marked elevation of serum alanine aminotransferase activity was observed, followed by the appearance of high levels of HDV RNA and antigen in both liver and serum and a high level of viral particles in the serum. A transient suppression of hepatitis B virus replication was evident during the acute phase of HDV infection. Seroconversion for antibodies to delta antigen occurred 3 weeks after the onset of the disease. These results demonstrate that a typical HDV infection can be initiated by inoculation of a susceptible animal with recombinant HDV cDNA.  相似文献   

8.
9.
J C Wu  P J Chen  M Y Kuo  S D Lee  D S Chen    L P Ting 《Journal of virology》1991,65(3):1099-1104
The hepatitis delta virus (HDV) is a defective virus with a coat composing of the surface antigen of its helper virus, hepatitis B virus (HBV). Replication of HDV in the absence of HBV has been shown in cell cultures by transient transfection of the HDV plasmid. However, the formation and release of HDV virions have not been observed. In this report, a human hepatoma cell line HuH-7 was transiently cotransfected with HDV and HBV plasmids. The production of monomeric and multimeric antigenomic RNAs of HDV in the transfected cells indicated replication of the HDV genome. The major 3.5- and 2.1-kb RNAs of HBV were also expressed. Virions of both HDV and HBV were released from the cotransfected cells, as shown by the detection of monomeric genomic HDV RNA and partially double-stranded HBV DNA in the culture medium. Thus, this is the first report that describes the assembly and the release of HDV viral particles in an in vitro cell culture. The HDV virions released possessed physicochemical properties identical to those of the HDV virions found in infected human serum. Furthermore, expression of both the 3.5- and 2.1-kb RNAs of HBV was shown to be dramatically decreased by the presence of HDV, indicating suppression of the expression of HBV genes by HDV. The amount of HBV virions released was similarly suppressed by HDV. Cotransfection of HBV with an expression plasmid of the HDV delta antigen remarkably reduced the levels of the 3.5- and 2.1-kb HBV RNAs, indicating that suppression of the expression of HBV RNAs by HDV occurs via the action of the delta antigen. This HBV- and HDV-cotransfected human hepatoma cell line should provide an excellent system for the study of the function of the delta antigen and the interaction between HDV and its helper, HBV.  相似文献   

10.
Editing on the genomic RNA of human hepatitis delta virus.   总被引:5,自引:2,他引:3       下载免费PDF全文
H Zheng  T B Fu  D Lazinski    J Taylor 《Journal of virology》1992,66(8):4693-4697
It has been shown previously that during replication of the genome of human hepatitis delta virus (HDV), a specific nucleotide change occurs to eliminate the termination codon for the small delta antigen (G. Luo, M. Chao, S.-Y. Hsieh, C. Sureau, K. Nishikura, and J. Taylor, J. Virol. 64:1021-1027, 1990). This change creates an extension in the length of the open reading frame for the delta antigen from 195 to 214 amino acids. These two proteins, the small and large delta antigens, have important and distinct roles in the life cycle of HDV. To further investigate the mechanism of this specific nucleotide alteration, we developed a sensitive assay involving the polymerase chain reaction to monitor changes on HDV RNA sequences as they occurred in transfected cells. We found that the substrate for the sequence change was the viral genomic RNA rather than the antigenomic RNA. This sequence change occurred independently of genome replication or the presence of the delta antigen. Less than full-length genomic RNA could act as a substrate, but only if it also contained a corresponding RNA sequences from the other side of the rodlike structure, which is characteristic of HDV. We were also able to reproduce the HDV base change in vitro, by addition of purified viral RNA to nuclear extracts of cells from a variety of species.  相似文献   

11.
Assembly of hepatitis delta virus particles.   总被引:25,自引:22,他引:3       下载免费PDF全文
W S Ryu  M Bayer    J Taylor 《Journal of virology》1992,66(4):2310-2315
Hepatitis delta virus (HDV) is a subviral satellite of hepatitis B virus (HBV). Since the RNA genome of HDV can replicate in cultured cells in the absence of HBV, it has been suggested that the only helper function of HBV is to supply HBV coat proteins in the assembly process of HDV particles. To examine the factors involved in such virion assembly, we transiently cotransfected cells with various hepadnavirus constructs and cDNAs of HDV and analyzed the particles released into the medium. We report that the HDV genomic RNA and the delta antigen can be packaged by coat proteins of either HBV or the related hepadnavirus woodchuck hepatitis virus (WHV). Among the three co-carboxy-terminal coat proteins of WHV, the smallest form was sufficient to package the HDV genome; even in the absence of HDV RNA, the delta antigen could be packaged by this WHV coat protein. Also, of the two co-amino-terminal forms of the delta antigen, only the larger form was essential for packaging.  相似文献   

12.
The functions of delta antigens (HDAgs) in the morphogenesis of hepatitis delta virus (HDV) have been studied previously. The C terminus of large HDAg has been shown to complex with the small surface antigen (HBsAg) of helper hepatitis B virus, whereas the assembly of small HDAg requires interaction with the N terminus of large HDAg (M.-F. Chang, C.-J. Chen, and S. C. Chang, J. Virol. 68:646-653, 1994). To further examine the molecular mechanisms by which HDAgs are involved in the assembly of HDV RNA, we have cotransfected Huh-7 cells with plasmids representing a longer than unit-length HDV and the small HBsAg cDNAs. We found that HDAg mRNA could be generated from an endogenous promoter within the HDV cDNA that was translated into large HDAg. Large HDAg is capable of complexing with monomeric HDV genomic RNA to form ribonucleoprotein particles (RNPs) and is capable of forming enveloped HDV-like particles in the presence of small HBsAg without undergoing HDV replication. In addition, the middle region from amino acid residues 89 to 145 of large HDAg is required for assembly of the RNPs but is dispensable for assembly of the enveloped particles. RNA assembly is also demonstrated with small HDAg when it is cotransfected with a packaging-defective large HDAg mutant and small HBsAg. Leu-115 within the putative helix-loop-helix structure of the small HDAg is important for the replication of HDV but is not essential for RNA assembly, suggesting that conformational requirements of small HDAg for replication and assembly of viral RNA may be different. Further studies indicate that a 312-nucleotide linear HDV RNA from one end of the HDV and structure is sufficient to form RNP complexes competent for assembly of virus-like particles with large HDAg and small HBsAg.  相似文献   

13.
14.
15.
Casey JL 《Journal of virology》2002,76(15):7385-7397
RNA editing at the amber/W site plays a central role in the replication scheme of hepatitis delta virus (HDV), allowing the virus to produce two functionally distinct forms of the sole viral protein, hepatitis delta antigen (HDAg), from the same open reading frame. Editing is carried out by a cellular activity known as ADAR (adenosine deaminase), which acts on RNA substrates that are at least partially double stranded. In HDV genotype I, editing requires a highly conserved base-paired structure that occurs within the context of the unbranched rod structure characteristic of HDV RNA. This base-paired structure is disrupted in the unbranched rod of HDV genotype III, which is the most distantly related of the three known HDV genotypes and is associated with the most severe disease. Here I show that RNA editing in HDV genotype III requires a branched double-hairpin structure that deviates substantially from the unbranched rod structure, involving the rearrangement of nearly 80 bp. The structure includes a UNCG RNA tetraloop, a highly stable structural motif frequently involved in the folding of large RNAs such as rRNA. The double-hairpin structure is required for editing, and hence for virion formation, but not for HDV RNA replication, which requires the unbranched rod structure. HDV genotype III thus relies on a dynamic conformational switch between the two different RNA structures: the unbranched rod characteristic of HDV RNA and a branched double-hairpin structure that is required for RNA editing. The different mechanisms of editing in genotypes I and III underscore their functional differences and may be related to pathogenic differences as well.  相似文献   

16.
The hepatitis delta virus (HDV) genome is a circular, single-stranded, rod-shaped, 1.7-kb RNA that replicates via a rolling-circle mechanism. Viral ribozymes function to cleave replication intermediates which are then ligated to generate the circular product. HDV expresses two forms of a single protein, the small and large delta antigens (delta Ag-S and delta Ag-L), which associate with viral RNA in a ribonucleoprotein (RNP) structure. While delta Ag-S is required for RNA replication, delta Ag-L inhibits this process but promotes the assembly of the RNP into mature virions. In this study, we have expressed full-length and deleted HDV RNA inside cells to determine the minimal RNA sequences required for self-cleavage, ligation, RNP packaging, and virion assembly and to assess the role of either delta antigen in each of these processes. We report the following findings. (i) The cleavage and ligation reactions did not require either delta antigen and were not inhibited in their presence. (ii) delta Ag-L, in the absence of delta Ag-S, formed an RNP with HDV RNA which could be assembled into secreted virus-like particles. (iii) Full-length HDV RNAs were stabilized in the presence of either delta antigen and accumulated to much higher levels than in their absence. (iv) As few as 348 nucleotides of HDV RNA were competent for circle formation, RNP assembly, and incorporation into virus-like particles. (v) An HDV RNA incapable of folding into the rod-like structure was not packaged by delta Ag-L.  相似文献   

17.
Infection with hepatitis delta virus (HDV) is an important cause of acute and chronic liver disease and can be rapidly fatal. Sequencing of the HDV RNA genome has revealed variability at the C-terminal end of the delta antigen reading frame. One genome type (termed the S genome) synthesizes a 24-kDa protein thought to be required for genome replication. Another genome type (termed the L genome) extends the reading frame by 19 amino acids as a result of a single base change. Replication of the S and L genomes was studied in cultured fibroblasts. While the S genome efficiently initiated genome replication, the L genome did not. Moreover, in a codelivery experiment, L genome RNA inhibited replication of the S genome. Potent trans inhibition was also observed following cotransfection of the S genome and a plasmid encoding the larger delta antigen. Mutational analysis indicated that the inhibitory activity was not a simple function of the large delta antigen reading frame's extra length. Implications for the viral life cycle, clinical infection, and potential treatment are discussed.  相似文献   

18.
Y P Xia  M M Lai 《Journal of virology》1992,66(11):6641-6648
Two forms of hepatitis delta antigen (HDAg) have different roles in the replication cycle of hepatitis delta virus (HDV); the small forms trans activates HDV RNA replication, whereas the large form suppresses it but is needed for virion assembly. To understand the mechanism of these regulatory activities, we studied the possible HDAg oligomerization and its role in HDV replication. In this report, we provide direct biochemical evidence for the in vitro and in vivo formation of homodimers and heterodimers between these two HDAg species. By deletion mutagenesis, we showed that this protein interaction is mediated by the leucine zipper-like sequence residing in the N-terminal one-third of HDAg. Furthermore, site-specific mutants with various substitutions on two of the leucine residues in this stretch of sequence had reduced or no ability to form HDAg dimers. Correspondingly, the small HDAg with mutations in the leucine zipper-like sequence had reduced abilities to trans activate HDV RNA replication. Similar mutations on the leucine zipper-like sequence of the large HDAg also resulted in loss of the ability of large HDAg to inhibit HDV RNA replication. The in vivo biological activities of both forms of HDAg (trans activation and trans-dominant inhibition of HDV RNA replication, respectively) correlated with the extent of HDAg oligomerization in vitro. Thus, we conclude that the small HDAg participates in HDV RNA replication as an oligomer form and that the large HDAg inhibits HDV RNA replication as a result of its complex formation with small HDAg. A "black sheep" model for the mechanism of trans-dominant inhibition by the large HDAg is presented.  相似文献   

19.
20.
The large hepatitis delta antigen (HDAg-L) mediates hepatitis delta virus (HDV) assembly and inhibits HDV RNA replication. Farnesylation of the cysteine residue within the HDAg-L carboxyl terminus is required for both functions. Here, HDAg-L proteins from different HDV genotypes and genotype chimeric proteins were analyzed for their ability to incorporate into virus-like particles (VLPs). Observed differences in efficiency of VLP incorporation could be attributed to genotype-specific differences within the HDAg-L carboxyl terminus. Using a novel assay to quantify the extent of HDAg-L farnesylation, we found that genotype 3 HDAg-L was inefficiently farnesylated when expressed in the absence of the small hepatitis delta antigen (HDAg-S). However, as the intracellular ratio of HDAg-S to HDAg-L was increased, so too was the extent of HDAg-L farnesylation for all three genotypes. Single point mutations within the carboxyl terminus of HDAg-L were screened, and three mutants that severely inhibited assembly without affecting farnesylation were identified. The observed assembly defects persisted under conditions where the mutants were known to have access to the site of VLP assembly. Therefore, the corresponding residues within the wild-type protein are likely required for direct interaction with viral envelope proteins. Finally, it was observed that when HDAg-S was artificially myristoylated, it could efficiently inhibit HDV RNA replication. Hence, a general association with membranes enables HDAg to inhibit replication. In contrast, although myristoylated HDAg-S was incorporated into VLPs far more efficiently than HDAg-S or nonfarnesylated HDAg-L, it was incorporated far less efficiently than wild-type HDAg-L; thus, farnesylation was required for efficient assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号