首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The nature of the primary signals important for the addition of xylose to serines on the core protein of the cartilage chondroitin sulfate proteoglycan has been investigated. The importance of consensus sequence elements (Acidic-Acidic-Xxx-Ser-Gly-Xxx-Gly) in the natural acceptor was shown by the significant decrease in acceptor capability of peptide fragments derived by digestion of deglycosylated core protein with Staphylococcus aureus V8 protease, which cleaves within the consensus sequence, compared to the similar reactivity of trypsin-derived peptide fragments, in which consensus sequences remain intact. A comparison of the acceptor efficiencies (Vmax/Km) of synthetic peptides containing the proposed xylosylation consensus sequence and the natural acceptor (deglycosylated core protein) was then made by use of the in vitro xylosyltransferase assay. The two types of substrates were found to have nearly equivalent acceptor efficiencies and to be competitive inhibitors of each other's acceptor capability, with Km = Kiapparent. These results suggest that the artificial peptides containing the consensus sequence are analogues of individual substitution sites on the core protein and allowed the kinetic mechanism of the xylosyltransferase reaction to be investigated, with one of the artificial peptides as a model substrate. The most probable kinetic mechanism for the xylosyltransferase reaction was found to be an ordered single displacement with UDP-xylose as the leading substrate and the xylosylated peptide as the first product released. This represents the first reported formal kinetic mechanism for this glycosyltransferase and the only one reported for a nucleotide sugar:protein transferase.  相似文献   

2.
Human UDP-d-xylose:proteoglycan core protein beta-d-xylosyltransferase (EC, XT) initiates the biosynthesis of glycosaminoglycan lateral chains in proteoglycans by transfer of xylose from UDP-xylose to specific serine residues of the core protein. In this study, we report the first isolation of the XT and present the first partial amino acid sequence of this enzyme. We purified XT 4,700-fold with 1% yield from serum-free JAR choriocarcinoma cell culture supernatant. The isolation procedure included a combination of ammonium sulfate precipitation, heparin affinity chromatography, ion exchange chromatography, and protamine affinity chromatography. Among other proteins an unknown protein was detected by matrix-assisted laser desorption ionization mass spectrometry-time of flight analysis in the purified sample. The molecular mass of this protein was determined as 120 kDa by SDS-polyacrylamide gel electrophoresis. The isolated protein was enzymatically cleaved by trypsin and endoproteinase Lys-C. Eleven peptide fragments were sequenced by Edman degradation. Searches with the amino acid sequences in protein and EST data bases showed no homology to known sequences. XT was enriched by immunoaffinity chromatography with an immobilized antibody against a synthetic peptide deduced from the sequenced peptide fragments and was specifically eluted with the antigen. In addition, XT was purified alternatively with an aprotinin affinity chromatography and was detected by Western blot analysis in the enzyme-containing fraction.  相似文献   

3.
4.
Biosynthesis of chondroitin sulfate. Chain termination   总被引:4,自引:0,他引:4  
Incubation of chick embryo epiphyseal microsomal preparations with either UDP-[14C]GlcUA or UDP-[14C]-GalNAc plus exogenous chondroitin 6-sulfate resulted in the incorporation of either a single [14C]GlcUA or a [14C]GalNAc onto the nonreducing ends of the exogenous glycosaminoglycan. Degradation by chondroitinase ABC yielded the terminal products [14C]Di-OS, [14C]Di-6S, and [14C]GalNAc. Incubations of the microsomal preparations with either UDP-[14C]GlcUA or UDP-GalN[3H]Ac without exogenous chondroitin 6-sulfate resulted in the addition of a single sugar onto the nonreducing end of endogenous chondroitin sulfate. Degradation by chondroitinase ABC yielded the terminal products [14C]Di-OS, [14C]Di-6S, and GalN[3H]Ac in a molar ratio of approximately 1:1:3.5. Incubations of the microsomal preparations with both UDP-[14C]-GlcUA and UDP-GalN[3H]Ac together resulted in formation of [14C,3H]chondroitin chains added to the endogenous chondroitin sulfate. Degradation by chondroitinase ABC resulted in products with a molar ratio of [14C,3H]Di-OS to GalN[3H]Ac varying from approximately 1:1.5 to 1:3. The results of these experiments indicate that chondroitin 6-sulfate terminates at its nonreducing end in a mixture of GlcUA and GalNAc (some sulfated). GalNAc is somewhat more frequent as the terminal sugar and adds more readily to endogenous acceptors.  相似文献   

5.
Monolayer cultures of embryonic chick chondrocytes were incubated with 35SO42- in the presence and absence of 1.0 mM p-nitrophenyl-beta-d-xyloside for 2 days. The relative amounts of chondroitin sulfate proteoglycan and free polysaccharide chains were measured following gel filtration on Sephadex G-200. Synthesis of beta-xyloside-initiated polysaccharide chains was accompanied by an apparent decrease in chondroitin sulfate proteoglycan production by the treated cultures. When levels of cartilage-specific core protein were determined by a radioimmunoassay, similar amounts of core protein were found in both beta-xyloside and control cultures, indicating that decreased synthesis of core protein is not responsible for the observed decrease in chondroitin sulfate proteoglycan production. Activity levels of the chain-initiating glycosyltransferases (UDP-D-xylose: core protein xylosyltransferase and UDP-D-galactose:D-xylose galactosyltransferase) as well as the extent of xylosylation of core protein were found to be similar in cell extracts from both culture types. Furthermore, beta-xylosides did not inhibit the xylosyltransferase reaction in cell-free studies. In contrast, the beta-xylosides effectively competed with several galactose acceptors, including an enzymatically synthesized xylosylated core protein acceptor, in the first galactosyltransferase reaction.  相似文献   

6.
A microsomal preparation from chick embryo epiphyseal cartilage was incubated with UDP-[14C]glucuronic acid and UDP-N-acetylgalactosamine to form [14C] chondroitin-labeled proteoglycan. Two [14C]proteoglycan populations were obtained which differed in size, [14C]glycosaminoglycan content, and susceptibility to alkali. One population of [14C]proteoglycan appeared near the void volume on Sepharose 2B, while the other population was smaller, similar in size to monomer proteoglycan. The larger [14C]proteoglycan contained long [14C]chondroitin chains added to short primers; these chains were in part resistant to alkali cleavage from protein. The smaller [14C]proteoglycan contained mainly [14C]chondroitin chains of intermediate length added to endogenous chondroitin sulfate; these chains were all susceptible to alkali cleavage from protein. The larger [14C]proteoglycan may represent a precursor proteoglycan present at the site of glycosaminoglycan chain synthesis.  相似文献   

7.
8.
The potential relationship of an intact membrane organization for the synthesis of chondroitin and chondroitin 4-sulfate was examined after modification of a mouse mast cell microsomal system with the nonionic detergent, Triton X-100. The results indicated that Triton X-100 had no effect on the rate of polymerization but had a slight effect on the size of glycosaminoglycan chains. An "all or nothing" pattern of sulfation of newly formed chondroitin was obtained in both the presence and the absence of Triton X-100, and this pattern did not change whether sulfation was initiated concurrent with or subsequent to polymerization. Sulfation of exogenous [14C]chondroitin and exogenous proteo[3H]chondroitin by the microsomal system required Triton X-100 but still produced an all or nothing pattern rather than a random sulfation pattern. When a 100,000 x g supernatant fraction was utilized for sulfation of [14C]chondroitin or proteo[3H]chondroitin, Triton X-100 was not needed, and a partial sulfation pattern was obtained. However, it was similar to the all or nothing pattern in that it still produced two populations, with some chains nonsulfated and others approximately 50% sulfated. When chondroitin hexasaccharide was used with 3'-phosphoadenylylphospho[35S]sulfate, multiple GalNAc residues of the individual hexasaccharides were found to be sulfated. This was relatively independent of Triton X-100 or the concentration of the hexasaccharide acceptors. With soluble enzyme, sulfation of multiple GalNAc residues on the individual hexasaccharide molecules was even greater, so that trisulfated products were found. These results suggest that efficient sulfation of chondroitin is related to enzyme-substrate interaction more than to membrane organization.  相似文献   

9.
Silbert JE  Sugumaran G 《IUBMB life》2002,54(4):177-186
Chondroitin sulfate and dermatan sulfate are synthesized as galactosaminoglycan polymers containing N-acetylgalactosmine alternating with glucuronic acid. The sugar residues are sulfated to varying degrees and positions depending upon the tissue sources and varying conditions of formation. Epimerization of any of the glucuronic acid residues to iduronic acid at the polymer level constitutes the formation of dermatan sulfate. Chondroitin/dermatan glycosaminoglycans are covalently attached by a common tetrasaccharide sequence to the serine residues of core proteins while they are adherent to the inner surface of endoplasmic reticulum/Golgi vesicles. Addition of the first sugar residue, xylose, to core proteins begins in the endoplasmic reticulum, followed by the addition of two galactose residues by two distinct glycosyl transferases in the early cis/medial regions of the Golgi. The linkage tetrasaccharide is completed in the medial/trans Golgi by the addition of the first glucuronic acid residue, followed by transfer of N-acetylgalactosamine to initiate the formation of a galactosaminoglycan rather than a glucosaminoglycan. This specific N-acetylgalactosaminyl transferase is different from the chondroitin synthase involved in generation of the repeating disaccharide units to form the chondroitin polymer. Sulfation of the chondroitin polymer by specific sulfotransferases occurs as the polymer is being formed. All the enzymes in the pathway for synthesis have been cloned, with the exception of the glucuronyl to iduronyl epimerase involved in the formation of dermatan residues.  相似文献   

10.

Background

Chondroitin sulfate proteoglycans (CSPGs) are principal pericellular and extracellular components that form regulatory milieu involving numerous biological and pathophysiological phenomena. Diverse functions of CSPGs can be mainly attributed to structural variability of their polysaccharide moieties, chondroitin sulfate glycosaminoglycans (CS-GAG). Comprehensive understanding of the regulatory mechanisms for CS biosynthesis and its catabolic processes is required in order to understand those functions.

Scope of review

Here, we focus on recent advances in the study of enzymatic regulatory pathways for CS biosynthesis including successive modification/degradation, distinct CS functions, and disease phenotypes that have been revealed by perturbation of the respective enzymes in vitro and in vivo.

Major conclusions

Fine-tuned machineries for CS production/degradation are crucial for the functional expression of CS chains in developmental and pathophysiological processes.

General significance

Control of enzymes responsible for CS biosynthesis/catabolism is a potential target for therapeutic intervention for the CS-associated disorders.  相似文献   

11.
12.
13.
UDP-D-Galactose:D-xylose galactosyltransferase, a membrane-bound enzyme which catalyzes the second glycosyl transfer reaction in the biosynthesis of chondroitin sulfate chains, has been solubilized and partially purified from embryonic chick cartilage. Solubilization was effected by treatment of a particulate fraction of a homogenate (sedimenting between 10,000 and 100,000 times g) with the nonionic detergent Nonidet P-40 (0.5%) and KCl (0.5 M) or by the alkali-detergent method described previously (Helting, T. (1971) J. Biol. Chem. 246, 815-822). The applicability of the salt-detergent procedure as a general method for solubilization of membrane-bound glycosyltransferases was tested by assay of four other glycosyltransferases involved in chondroitin sulfate synthesis (UDP-D-xylose:core protein xylosyltransferase, UDP-D-galactose:4-O-beta-D-galactosyl-D-xylose galactosyltransferase, UDP-D-glucuronic acid: 3-O-beta-D-galactosyl-D-galactose glucuronosyltransferase, and UDP-N-acetyl-D-galactosamine: (GlcUA-GalNAc-4-sulfate)4 N-acetylgalactosaminyltransferase). In each case, greater than 70% of the activity was solubilized and, on gel chromatography on Sephadex G-200, the enzymes appeared largely in included positions and partially separated from each other. After partial purification by gel chromatography on Sephadex G-200, UDP-D-galactose:D-xylose galactosyltransferase was purified further by chromatography on one of several affinity matrices, i.e. xylosylated core protein of cartilage proteoglycan coupled to CNBr-activated Sepharose, a core protein matrix saturated with UDP-D-xylose:core protein xylosyltransferase or UDP-D-xylose:core protein xylosyltransferase covalently bound to Sepharose. The specific activities of the enzyme preparations obtained by these procedures were approximately 1000-fold greater than that of the crude homogenate.  相似文献   

14.
Phosphotransacetylase from Clostridium kluyveri was purified using a C8-(6-aminohexyl)-amino-desulfo-coenzyme A-Sepharose column. The method of synthesis of the affinity matrix is described. A crude extract was treated with ammonium sulfate and chromatographed on the desulfo-coenzyme A-Sepharose column. Using this method the enzyme was purified 83-fold and was found to be 73% pure. A new method for the determination of the purity of phosphotransacetylase by activity staining of polyacrylamide gels with 5,5′-dithiobis(2-nitrobenzoic acid) is described.  相似文献   

15.
16.
A one-step procedure using affinity chromatography has been shown to purify to apparent homogeneity acetate kinase from a commercially available preparation and to partially purify the enzyme from a crude, cell-free extract. Since the gel's capacity for enzyme adsorption is controlled by the thermodynamics of ligand-enzyme interaction, maximization of the adsorption isotherm was attempted. Enzyme adsorption decreased logarithmically with increasing ionic strength but increased with increasing concentration of MgCl2. These competing effects caused the net adsorption of enzyme to increase to a maximum and then to decrease as the MgCl2 concentration was raised. The results allow a significant improvement in affinity column performance and have important implications for scale-up procedures.  相似文献   

17.
18.
19.
20.
A method is described for the purification of porcine enterokinase by affinity chromatography with p-aminobenzamidine as the ligand. Purification was completed by immunoadsorption with antisera raised to components binding non-biologically to the gel. The final enterokinase preparation was 2.3 times more active than the most active preparation previously described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号