首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitric oxide and promotion of cardiac myocyte apoptosis   总被引:1,自引:0,他引:1  
The removal of damaged, superfluous or energy-starved cells is essential for biological homeostasis, and occurs in every tissue type. Programmed cell death occurs through several closely regulated signal pathways, including apoptosis, in which cell components are broken down and packaged into small membrane-bound fragments that are then removed by neighbouring cells or phagocytes. This process is activated in the cardiac myocyte in response to a variety of stresses, including oxidative and nitrosative stress, and involves mitochondria-derived signals. Loss of cardiac myocytes through apoptosis has been shown to induce cardiomyopathy in a variety of gene-targeted animal models. Because cardiac myocytes have strictly limited ability to regenerate, sustained programmed cell death is likely to contribute to the development and progression of heart failure in a variety of myocardial diseases. At the same time, the cardiac myocyte possesses a number of mechanisms for defence against short-term haemodynamic and oxidative stresses. Our laboratory has recently examined the role of nitric oxide (NO) as a regulator of the programmed death of cardiac myocytes, and the potential contribution of NO and NO-dependent signalling to the loss of myocytes in heart failure. We will review the role of c-Jun N-terminal kinase in response to oxidative and nitrosative stress, and summarise evidence for its role as a cytoprotective mechanism. We will also review evidence implicating NO in the pathophysiology of heart failure, in the context of the extensive and sometimes contradictory body of research on NO and cell survival.  相似文献   

2.
Role of apoptosis in cardiovascular disease   总被引:2,自引:0,他引:2  
Apoptosis plays a key role in the pathogenesis in a variety of cardiovascular diseases due to loss of terminally differentiated cardiac myocytes. Cardiac myocytes undergoing apoptosis have been identified in tissue samples from patients suffering from myocardial infarction, diabetic cardiomyopathy, and end-stage congestive heart failure. Apoptosis is a highly regulated program of cell death and can be mediated by death receptors in the plasma membrane, as well as the mitochondria and the endoplasmic reticulum. The cell death program is activated in cardiac myocytes by various stressors including cytokines, increased oxidative stress and DNA damage. Many studies have demonstrated that inhibition of apoptosis is cardioprotective and can prevent the development of heart failure. This review provides a current overview of the evidence of apoptosis in cardiovascular diseases and discusses the molecular pathways involved in cardiac myocyte apoptosis.  相似文献   

3.
Cardiac failure is a frequent cause of death in the aging human population. Telomere attrition occurs with age, and is proposed to be causal for the aging process. To determine whether telomere shortening leads to a cardiac phenotype, we studied heart function in the telomerase knockout mouse, Terc-/-. We studied Terc-/- mice at the second, G2, and fifth, G5, generation. Telomere shortening in G2 and G5 Terc-/- mice was coupled with attenuation in cardiac myocyte proliferation, increased apoptosis and cardiac myocyte hypertrophy. On a single-cell basis, telomere shortening was coincidental with increased expression of p53, indicating the presence of dysfunctional telomeres in cardiac myocytes from G5 Terc-/- mice. The impairment in cell division, the enhanced cardiac myocyte death and cellular hypertrophy, are concomitant with ventricular dilation, thinning of the wall and cardiac dysfunction. Thus, inhibition of cardiac myocyte replication provoked by telomere shortening, results in de-compensated eccentric hypertrophy and heart failure in mice. Telomere shortening with age could also contribute to cardiac failure in humans, opening the possibility for new therapies.  相似文献   

4.
Cardiac myocyte apoptosis underlies the pathophysiology of cardiomyopathy, and plays a critical role in the transition from myocardial hypertrophy to heart failure. Angiotensin II (Ang II) induces cardiac myocyte apoptosis and hypertrophy which contribute to heart failure possibly through enhanced oxidative stress; however, the mechanisms underlying the activation of both pathways and their interactions remain unclear. In the present study, we have investigated whether overexpression of the antioxidant protein heme oxygenase-1 (HO-1) protects against apoptosis and hypertrophy in cultured rat cardiac myocytes treated with Ang II. Our findings demonstrate that Ang II (100 nM, 24 h) alone upregulates HO-1 expression and induces both myocyte hypertrophy and apoptosis, assessed by measuring terminal deoxynucleotidyltransferase dUTP nick-end labelling (TUNEL) staining, caspase-3 activity and mitochondrial membrane potential. Ang II elicited apoptosis was augmented in the presence of tin protoporphyrin, an inhibitor of HO activity, while HO-1 gene transfer to myocytes attenuated Ang II-mediated apoptosis but not hypertrophy. Adenoviral overexpression of HO-1 was accompanied by a significant increase in Ang II induced phosphorylation of Akt, however, Ang II-mediated p38 mitogen activated protein kinase (MAPK) phosphorylation was attenuated. Inhibition of phosphotidylinositol-3-kinase enhanced myocyte apoptosis elicited by Ang II, however, p38MAPK inhibition had no effect, suggesting that overexpression of HO-1 protects myocytes via augmented Akt activation and not through modulation of p38MAPK activation. Our findings identify the signalling pathways by which HO-1 gene transfer protects against apoptosis and suggest that overexpression of HO-1 in cardiomyopathies may delay the transition from myocyte hypertrophy to heart failure.  相似文献   

5.
Decreases in cardiac Na/K-ATPase have been documented in patients with heart failure. Reduction of Na/K-ATPase α1 also contributes to the deficiency in cardiac contractility in animal models. Our previous studies demonstrate that reduction of cellular Na/K-ATPase causes cell growth inhibition and cell death in renal proximal tubule cells. To test whether reduction of Na/K-ATPase in combination with increased cardiotonic steroids causes cardiac myocyte death and cardiac dysfunction, we examined heart function in Na/K-ATPase α1 heterozygote knock-out mice (α1(+/-)) in comparison to wild type (WT) littermates after infusion of marinobufagenin (MBG). Adult cardiac myocytes were also isolated from both WT and α1(+/-) mice for in vitro experiments. The results demonstrated that MBG infusion increased myocyte apoptosis and induced significant left ventricle dilation in α1(+/-) mice but not in their WT littermates. Mechanistically, it was found that in WT myocytes MBG activated the Src/Akt/mTOR signaling pathway, which further increased phosphorylation of ribosome S6 kinase (S6K) and BAD (Bcl-2-associated death promoter) and protected cells from apoptosis. In α1(+/-) myocytes, the basal level of phospho-BAD is higher compared with WT myocytes, but MBG failed to induce further activation of the mTOR pathway. Reduction of Na/K-ATPase also caused the activation of caspase 9 but not caspase 8 in these cells. Using cultures of neonatal cardiac myocytes, we demonstrated that inhibition of the mTOR pathway by rapamycin also enabled MBG to activate caspase 9 and induce myocyte apoptosis.  相似文献   

6.
7.
Hepatocyte growth factor (HGF) has been proposed as an endogenous cardioprotective agent against oxidative stress. The mechanism of HGF action in the heart, however, has not yet been elucidated. The present study demonstrates that HGF protects adult cardiac myocytes against oxidative stress-induced apoptosis. HGF, at the concentrations which can be detected in the plasma of humans subsequent to myocardial infarction, effectively attenuated death of isolated adult rat cardiac myocytes and cultured HL-1 cardiac muscle cells induced by apoptosis-inducing oxidative stress stimuli such as daunorubicin, serum deprivation, and hydrogen peroxide. We identified expression of c-Met HGF receptor in adult cardiac myocytes, which can be rapidly tyrosine phosphorylated in response to HGF treatment. HGF also activated MEK, p44/42 MAPK, and p90RSK. To determine if MEK-MAPK pathway may be involved in the mechanism of HGF-mediated cardiac myocyte protection, effects of a specific MEK inhibitor, PD98059, were studied. Pretreatment of cells with PD98059 partially blocked HGF signaling for protection against hydrogen peroxide-induced cell death. Thus, HGF protects cardiac myocytes against oxidative stress, in part, via activating MEK-MAPK pathway.  相似文献   

8.
An inexorable loss of terminally differentiated heart muscle cells is a crucial causal factor for heart failure. Here, we have provided several lines of evidence to demonstrate that mitofusin-2 (Mfn-2; also called hyperplasia suppressor gene), a member of the mitofusin family, is a major determinant of oxidative stress-mediated cardiomyocyte apoptosis. First, oxidative stress with H(2)O(2) led to concurrent increases in Mfn-2 expression and apoptosis in cultured neonatal rat cardiomyocytes. Second, overexpression of Mfn-2 to a level similar to that induced by H(2)O(2) was sufficient to trigger myocyte apoptosis, which is associated with profound inhibition of Akt activation without altering ERK1/2 signaling. Third, Mfn-2 silencing inhibited oxidative stress-induced apoptosis in H9C2 cells, a cardiac muscle cell line. Furthermore, Mfn-2-induced myocyte apoptosis was abrogated by inhibition of caspase-9 (but not caspase-8) and by overexpression of Bcl-x(L) or enhanced activation of phosphatidylinositol 3-kinase-Akt, suggesting that inhibition of Akt signaling and activation of the mitochondrial death pathway are essentially involved in Mfn-2-induced heart muscle cell apoptosis. These results indicate that increased cardiac Mfn-2 expression is both necessary and sufficient for oxidative stress-induced heart muscle cell apoptosis, suggesting that Mfn-2 deregulation may be a crucial pathogenic element and a potential therapeutic target for heart failure.  相似文献   

9.
10.
11.
Necrosis is an ancient topic which gains new attraction in the research area these years. There is no doubt that some necrosis can be regulated by genetic manipulation other than an accidental cell death resulting from physical or chemical stimuli. Recent advances in the molecular mechanism underlying the programmed necrosis show a fine regulation network which indicates new therapy targets in human diseases. Heart diseases seriously endanger our health and have high fatality rates in the patients. Cell death of cardiac myocytes is believed to be critical in the pathogenesis of heart diseases. Although necrosis is likely to play a more important role in cardiac cell death than apoptosis, apoptosis has been paid much attention in the past 30 years because it used to be considered as the only form of programmed cell death. However, recent findings of programmed necrosis and the related signalling pathways have broadened our horizon in the field of programmed cell death and promote new pharmacological application in the treatment of heart diseases. In this review, we summarize the advanced progress in these signalling pathways and discuss the pathos‐physiological relevance and therapeutic implication of targeting necrosis in heart diseases treatment.  相似文献   

12.
The present study was carried out to determine whether beneficial effects of carvedilol in congestive heart failure (CHF) are mediated via its beta-adrenergic blocking, antioxidant, and/or alpha-adrenergic blocking action. Rabbits with heart failure induced by rapid cardiac pacing were randomized to receive subcutaneous carvedilol, metoprolol, propranolol plus doxazosin, or placebo pellets for 8 wk and compared with sham-operated rabbits without pacing. We found rapid cardiac pacing produced clinical heart failure, left ventricular dilation, and decline of left ventricular fractional shortening. This was associated with an increase in left ventricular end-diastolic pressure, decrease in left ventricular first derivative of left ventricular pressure, and myocyte hypertrophy. Tissue oxidative stress measured by GSH/GSSG was increased in the heart with increased oxidation product of mitochondrial DNA, 8-oxo-7,8-dihydro-2'-deoxyguanosine, increase of Bax, decrease of Bcl-2, and increase of apoptotic myocytes as measured by anti-single-stranded DNA monoclonal antibody. Administration of carvedilol and metoprolol, which had no effect in sham animals, attenuated cardiac ventricular remodeling, cardiac hypertrophy, oxidative stress, and myocyte apoptosis in CHF. In contrast, propranolol plus doxazosin, which has less antioxidant effects, produced smaller effects on left ventricular function and myocyte apoptosis. In all animals, GSH/GSSG correlated significantly with changes of left ventricular end-diastolic dimension (r = -0.678, P < 0.0001), fractional shortening (r = 0.706, P < 0.0001), and apoptotic myocytes (r = -0.473, P = 0.0001). Thus our findings suggest antioxidant and antiapoptotic actions of carvedilol and metoprolol are important determinants of clinical beneficial effects of beta-receptors in the treatment of CHF.  相似文献   

13.

Background  

The mannose 6-phosphate/insulin-like growth factor-II receptor (M6P/IGF2R) is a multi-functional protein that has been implicated in regulation of cell growth and apoptosis. Cardiac myocytes express relatively high levels of M6P/IGF2R, and cardiomyocyte apoptosis has been identified in a variety of cardiovascular disorders, such as myocardial infarction and heart failure. However, involvement of M6P/IGF2R in the pathogenesis of these conditions has not been determined. Thus, the objective of this study was to determine the role of M6P/IGF2R in regulation of cardiac myocyte growth and apoptosis.  相似文献   

14.
Increases in NADPH oxidase activity, oxidative stress, and myocyte apoptosis coexist in failing hearts. In cardiac myocytes in vitro inhibition of NADPH oxidase reduces apoptosis. In this study, we tested the hypothesis that NADPH oxidase inhibition reduces myocyte apoptosis and improves cardiac function in heart failure after myocardial infarction (MI). Rabbits with heart failure induced by MI and sham-operated animals were randomized to orally receive apocynin, an inhibitor of NADPH oxidase (15 mg per day) or placebo for 4 weeks. Left ventricular (LV) dimension and function were assessed by echocardiography and hemodynamics. Myocardial NADPH oxidase activity was measured by superoxide dismutase-inhibitable cytochrome c reduction assay, NADPH oxidase subunit p47phox expression by Western blot and immunofluorescence analysis, myocardial oxidative stress evaluated by 8-hydroxydeoxyguanosine (8-OHdG) and 4-hydroxy-2-nonenal (4-HNE) using immunohistochemistry, and myocyte apoptosis by TUNEL assay. MI rabbits exhibited LV dilatation and systolic dysfunction measured by LV fractional shortening and the maximal rate of LV pressure rise (dP/dt). These changes were associated with increases in NADPH oxidase activity, p47phox protein expression, 8-OHdG expression, 4-HNE expression, myocyte apoptosis, and Bax protein and a decrease in Bcl-2 protein. Apocynin reduced NADPH oxidase activity, p47phox protein, oxidative stress, myocyte apoptosis, and Bax protein, increased Bcl-2 protein, and ameliorated LV dilatation and dysfunction after MI. The results suggest that inhibition of NADPH oxidase may represent an attractive therapeutic approach to treat heart failure.  相似文献   

15.
16.
Poly(ADP-ribose) polymerase-1 (PARP), a chromatin-bound enzyme, is activated by cell oxidative stress. Because oxidative stress is also considered a main component of angiotensin II-mediated cell signaling, it was postulated that PARP could be a downstream target of angiotensin II-induced signaling leading to cardiac hypertrophy. To determine a role of PARP in angiotensin II-induced hypertrophy, we infused angiotensin II into wild-type (PARP(+/+)) and PARP-deficient mice. Angiotensin II infusion significantly increased heart weight-to-tibia length ratio, myocyte cross-sectional area, and interstitial fibrosis in PARP(+/+) but not in PARP(-/-) mice. To confirm these results, we analyzed the effect of angiotensin II in primary cultures of cardiomyocytes. When compared with PARP(-/-) cardiomyocytes, angiotensin II (1 microM) treatment significantly increased protein synthesis in PARP(+/+) myocytes, as measured by (3)H-leucine incorporation into total cell protein. Angiotensin II-mediated hypertrophy of myocytes was accompanied with increased poly-ADP-ribosylation of nuclear proteins and depletion of cellular NAD content. When cells were treated with cell death-inducing doses of angiotensin II (10-20 microM), robust myocyte cell death was observed in PARP(+/+) but not in PARP(-/-) myocytes. This type of cell death was blocked by repletion of cellular NAD levels as well as by activation of the longevity factor Sir2alpha deacetylase, indicating that PARP induction and subsequent depletion of NAD levels are the sequence of events causing angiotensin II-mediated cardiomyocyte cell death. In conclusion, these results demonstrate that PARP is a nuclear integrator of angiotensin II-mediated cell signaling contributing to cardiac hypertrophy and suggest that this could be a novel therapeutic target for the management of heart failure.  相似文献   

17.
18.
Apoptosis plays a significant role in maladaptive remodeling and ventricular dysfunction following ischemia-reperfusion injury. There is a critical need for novel approaches to inhibit apoptotic cell death following reperfusion, as this loss of cardiac myocytes can progressively lead to heart failure. We investigated the ability and signaling mechanisms of a high-molecular-weight polyethylene glycol-based copolymer, PEG 15-20, to protect cardiac myocytes from hypoxia-reoxygenation (H-R)-induced cell death and its efficacy in preserving ventricular function following extended hypothermic ischemia and warm reperfusion as relevant to cardiac transplantation. Pretreatment of neonatal rat ventricular myocytes with a 5% PEG solution led to a threefold decline in apoptosis after H-R relative to untreated controls. There was a similar decline in caspase-3 activity in conjunction with inhibition of cytochrome c release from the inner mitochondrial membrane. Treatment with PEG also reduced reactive oxygen species production after H-R, and sarcolemmal lipid-raft architecture was preserved, consistent with membrane stabilization. Cell survival signaling was upregulated after H-R with PEG, as demonstrated by increased phosphorylation of Akt, GSK-3β, and ERK1/2. There was also maintenance of cardiac myocyte β-adrenergic signaling, which is critical for myocardial function. PEG 15-20 was very effective in preserving left ventricular function following prolonged hypothermic ischemia and warm reperfusion. PEG 15-20 has a potent protective antiapoptotic effect in cardiac myocytes exposed to H-R injury and may represent a novel therapeutic strategy to decrease myocardial cell death and ventricular dysfunction at the time of reperfusion during acute coronary syndrome or following prolonged donor heart preservation.  相似文献   

19.
The role of inducible nitric-oxide synthase (iNOS) in the pathogenesis of heart failure is still a matter of controversy. In contrast to early reports favoring a contribution of iNOS because of the negative inotropic and apoptotic potential of NO, more recent clinical and experimental data question a causative role. Here we report that transgenic mice with cardiac specific iNOS-overexpression and concomitant myoglobin-deficiency (tg-iNOS+/myo-/-) develop signs of heart failure with cardiac hypertrophy, ventricular dilatation, and interstitial fibrosis. In addition, reactivation of the fetal gene expression program typical for heart failure occurs. The structural and molecular changes are accompanied by functional depression such as reduced contractility, ejection fraction, and cardiac energetics. Our findings indicate that excessive cardiac NO formation can cause heart failure; however, under normal circumstances myoglobin constitutes the important barrier that efficiently protects the heart from nitrosative stress.  相似文献   

20.
Poly(ADP-ribose) polymerase-1 (PARP-1) plays a pivotal role in regulating genome stability, cell cycle progression, and cell survival. However, overactivation of PARP has been shown to contribute to cell death and organ failure in various stress-related disease conditions. In this study, we examined the role of PARP in the development and progression of cardiac hypertrophy. We measured the expression of PARP in mouse hearts with physiological (swimming exercise) and pathological (aortic banding) cardiac hypertrophy as well as in human heart samples taken at the time of transplantation. PARP levels were elevated both in swimming and banded mice hearts and demonstrated a linear positive correlation with the degree of cardiac hypertrophy. A dramatic increase (4-fold) of PARP occurred in 6-wk banded mice, accompanied by apparent signs of ventricular dilation and myocyte cell death. PARP levels were also elevated (2- to 3-fold) in human hearts with end-stage heart failure compared with controls. However, we found no evidence of caspase-mediated PARP cleavage in either mouse or human failing hearts. Overexpression of PARP in primary cultures of cardiac myocytes led to suppression of gene expression and robust myocyte cell death. Furthermore, data obtained from the analysis of PARP knockout mice revealed that these hearts produce an attenuated hypertrophic response to aortic banding compared with controls. Together, these results demonstrate a role for PARP in the onset and progression of cardiac hypertrophy and suggest that some events related to cardiac hypertrophy growth and progression to heart failure are mediated by a PARP-dependent mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号