首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Differential effects of magnesium on tubulin-nucleotide interactions   总被引:1,自引:0,他引:1  
Magnesium-depleted 2-(N-morpholino)ethanesulfonate (Mes), glutamate, tubulin and microtubule-associated proteins were prepared and used to study the effects of exogenously added MgCl2 on tubulin-nucleotide interactions in 0.1 M Mes with microtubule-associated proteins and in 1.0 M glutamate. Endogenous levels of Mg2+ in the systems studied were approximately stoichiometric with the tubulin concentrations and largely derived from the tubulin. We examined the effects of added Mg2+ on tubulin polymerization, GDP inhibition of polymerization, binding of GDP and GTP to tubulin, and GTP hydrolysis. Exogenously added Mg2+ had markedly different effects on these reactions. The order of their sensitivity for a requirement for added Mg2+ was as follows: GTP binding greater than GTP hydrolysis greater than polymerization greater than GDP binding. Inhibition of polymerization by GDP varied inversely with the Mg2+ concentration and was greatest in the absence of the cation. These results indicate that GDP and GDP-Mg2+ interact with similar affinity at the exchangeable site, while GTP-Mg2+ has a higher affinity for tubulin than does free GTP. Nevertheless, under appropriate conditions, free GTP can interact sufficiently well with tubulin to permit both nucleation and elongation reactions.  相似文献   

2.
Guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) and the two diastereoisomers of guanosine 5'-O-(2-thiotriphosphate) (GTP beta S) were prepared enzymatically, and their interactions with tubulin and microtubule-associated proteins (MAPs) in 0.1 M 2-(N-morpholino)ethanesulfonate, 0.5 mM MgCl2 were examined. GTP gamma S did not support microtubule assembly but instead inhibited the reaction. This analog was 1.5-2 times more potent than GDP in inhibiting both tubulin polymerization and GTP hydrolysis under conditions in which these reactions were dependent on MAPs. In contrast to the analog's inhibitory effects on polymerization and hydrolysis, however, radiolabeled GTP gamma S was only feebly bound by purified tubulin at 0 degrees C relative to the binding of GDP and GTP. There was a marked increase in the amount of GTP gamma S bound when the reaction temperature was raised to 37 degrees C or when MAPs were included in the reaction mixture. Only when both MAPs were present and the higher reaction temperature was used did the binding of GTP gamma S exceed that of GDP. Since substitution of sulfur for oxygen in a molecule should decrease its hydrophilic properties, these findings suggest that the exchangeable nucleotide binding site of tubulin becomes more hydrophobic at higher temperatures and in the presence of MAPs. The two isomers of GTP beta S were able to support MAP-dependent polymerization, although a 50-100-fold higher concentration of the analogs as compared to GTP was required. Neither isomer of GTP beta S had a significant inhibitory effect on GTP hydrolysis dependent on tubulin + MAPs.  相似文献   

3.
Glutamate- and nucleotide-dependent polymerization of purified calf brain tubulin was used as a model system to study interactions of ribose-modified GDP and GTP analogs with tubulin. Earlier studies (Hamel, E., and Lin, C.M.(1981) Proc. Natl. Acad. Sci. U.S.A. 78,3368-3372) were extended to three additional sets of analogs: the di- and triphosphate derivatives of 9-beta-D-arabinofuranosylguanine (araGDP and araGTP) and acycloguanosine (9-(2-hydroxyethoxymethyl)guanine) (acycloGDP and acycloGTP), as well as the periodate-oxidized and borohydride-reduced derivatives of GDP and GTP (ox-redGDP and ox-redGTP). Disruption of the ribose ring in ox-redGTP resulted in major loss of activity relative to GTP in supporting tubulin polymerization, although the analog's deficiency may result from an inability to displace GDP from the exchangeable site rather than a direct effect on the polymerization reaction itself. The poor activity of ox-redGTP could be largely reversed if nucleoside diphosphate kinase was added to the reaction mixture. Removal of the 2' and 3' carbons entirely, in the form of acycloGTP, resulted in only minimal loss of activity relative to GTP. AraGTP, on the other hand, was more active than GTP in supporting tubulin polymerization. All three GDP analogs were much less effective than GDP in inhibiting tubulin polymerization, although araGDP was significantly more inhibitory than acycloGDP or ox-redGDP. Relative inhibitory activity of these and additional GDP analogs was the same whether GTP or a GTP analog was used to support tubulin polymerization.  相似文献   

4.
GDP inhibits paclitaxel-induced tubulin assembly without GTP when the tubulin bears GDP in the exchangeable site (E-site). Initially, we thought inhibition was mediated through the E-site, since small amounts of GTP or Mg2+, which favors GTP binding to the E-site, reduced inhibition by GDP. We thought trace GTP released from the nonexchangeable site (N-site) by tubulin denaturation was required for polymer nucleation, but microtubule length was unaffected by GDP. Further, enhancing polymer nucleation reduced inhibition by GDP. Other mechanisms involving the E-site were eliminated experimentally. Upon finding that ATP weakly inhibited paclitaxel-induced assembly, we concluded that another ligand binding site was responsible for these inhibitory effects, and we found that GDP was not binding at the taxoid, colchicine, or vinca sites. There may therefore be a lower affinity site on tubulin to which GDP can bind distinct from the E- and N-sites, possibly on α-tubulin, based on molecular modeling studies.  相似文献   

5.
Effects of pH on tubulin-nucleotide interactions   总被引:1,自引:0,他引:1  
Significant GTP-independent, temperature-dependent turbidity development occurs with purified tubulin stored in the absence of unbound nucleotide, and this can be minimized with a higher reaction pH. Since microtubule assembly is optimal at lower pH values, we examined pH effects on tubulin-nucleotide interactions. While the lowest concentration of GTP required for assembly changed little, GDP was more inhibitory at higher pH values. The amounts of exogenous GTP bound to tubulin at all pH values were similar, but the amounts of exogenous GDP bound and endogenous GDP (i.e., GDP originally bound in the exchangeable site) retained by tubulin rose as reaction pH increased. Endogenous GDP was more efficiently displaced by exogenous GTP than GDP at all pH values, but displacement by GTP was 10-15% greater at pH 6 than at pH 7. Dissociation constants for GDP and GTP were about 1.0 microM at pH 6 and 0.02 microM at pH 7. A small increase in the affinity of GDP relative to that of GTP occurs at pH 7 as compared to pH 6, together with a 50-fold absolute increase in the affinity of both nucleotides for tubulin at pH 7. The time courses of microtubule assembly and GTP hydrolysis were compared at pH 6 and pH 7. At pH 6, the two reactions were simultaneous in onset and initially stoichiometric. At pH 7, although the reactions began simultaneously, hydrolysis seemed to lag substantially behind assembly. Unhydrolyzed radiolabeled GTP was not incorporated into microtubules, however, indicating that GTP hydrolysis is actually closely coupled to assembly. The apparent lag in hydrolysis probably results from a methodological artifact rather than incorporation of GTP into the microtubule with delayed hydrolysis.  相似文献   

6.
Glutamate- and nucleotide-dependent polymerization of purified calf brain tubulin was used as a model system to study interactions of ribose-modified GDP and GTP analogs with tubulin. Earlier studies (Hamel, E., and Lin, C.M. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 3368–3372) were extended to three additional sets of analogs: the di- and triphosphate derivatives of 9-β-D-arabinofuranosylguanine (araGDP and araGTP) and acycloguanosine (9-(2-hydroxyethoxymethyl)guanine) (acycloGDP and acycloGTP), as well as the periodate-oxidized and borohydride-reduced derivatives of GDP and GTP (ox-redGDP and ox-redGTP). Disruption of the ribose ring in ox-redGTP resulted in major loss of activity relative to GTP in supporting tubulin polymerization, although the analog's deficiency may result from an inability to displace GDP from the exchangeable site rather than a direct effect on the polymerization reaction itself. The poor activity of ox-redGTP could be largely reversed if nucleoside diphosphate kinase was added to the reaction mixture. Removal of the 2′ and 3′ carbons entirely, in the form of acycloGTP, resulted in only minimal loss of activity relative to GTP. AraGTP, on the other hand, was more active than GTP in supporting tubulin polymerization. All three GDP analogs were much less effective than GDP in inhibiting tubulin polymerization, although araGDP was significantly more inhibitory than acycloGDP or ox-redGDP. Relative inhibitory activity of these and additional GDP analogs was the same whether GTP or a GTP analog was used to support tubulin polymerization.  相似文献   

7.
E Hamel  C M Lin 《Biochemistry》1990,29(11):2720-2729
Recently it was proposed [O'Brien, E. T., & Erickson, H. P. (1989) Biochemistry 28, 1413-1422] that tubulin polymerization supported by guanosine 5'-(beta,gamma-imidotriphosphate) [p(NH)ppG], guanosine 5'-(beta,gamma-methylenetriphosphate) [p(CH2)ppG], and ATP might be due to residual GTP in reaction mixtures and that these nucleotides would probably support only one cycle of assembly. Since we had observed polymerization with these three compounds, we decided to study these reactions in greater detail in two systems. The first contained purified tubulin and a high concentration of glycerol, the second tubulin and microtubule-associated proteins (MAPs). In both systems, reactions supported by nucleotides other than GTP were most vigorous at lower pH values. In the glycerol system, repeated cycles of polymerization were observed with ATP and p(CH2)ppG, but not with p(NH)ppG. With p(NH)ppG, a single cycle of polymerization was observed, and this was caused by contaminating GTP. In the MAPs system, repeated cycles of polymerization were observed with both nonhydrolyzable GTP analogues, even without contaminating GTP, but ATP was not active at all in this system. Binding to tubulin of p(NH)ppG, p(CH2)ppG, and, to a lesser extent, ATP was demonstrated indirectly, since high concentrations of the three nucleotides displaced radiolabeled GDP originally bound in the exchangeable site, with p(NH)ppG the most active of the three compounds in this displacement assay. The failure of GTP-free p(NH)ppG to support tubulin polymerization in our glycerol system even though it displaced GDP from the exchangeable site was further investigated by examining the effects of p(NH)ppG on polymerization and polymer-bound nucleotide with low concentrations of GTP. The two nucleotides appeared to act synergistically in supporting polymerization, so that a reaction occurred with a subthreshold GTP concentration if p(NH)ppG was also in the reaction mixture. Analysis of radiolabeled exchangeable-site nucleotide in polymers formed in reaction mixtures containing both GTP and p(NH)ppG demonstrated that p(NH)ppG which entered polymer did so primarily at the expense of GDP originally bound in the exchangeable site rather than at the expense of GTP. It appears that in the glycerol reaction condition, tubulin-p(NH)ppG cannot initiate tubulin polymerization but that it can participate in polymer elongation. ATP and p(CH2)ppG also entered the exchangeable site during polymerization without GTP in glycerol, as demonstrated by displacement of radiolabeled GDP from polymer when these alternate nucleotides were used.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Inhibitory effects of ribose-modified GDP and GTP analogs on tubulin polymerization were examined to explore nucleotide structural requirements at the exchangeable GTP binding site. With microtubule-associated proteins and Mg2+, GTP-supported polymerization was only modestly inhibited by GDP, and still weaker inhibitory activity was found with two analogs, dGDP and 9-β-D-arabinofuranosylguanine-5′-diphosphate (araGDP). Omission of Mg2+ significantly enhanced the inhibitory effects of GDP, dGDP and araGDP and resulted in weak inhibition of the reaction by several other GDP analogs. The relative inhibitory activity of the GDP analogs had no discernable relationship to the relative activity of cognate GTP analogs in supporting microtubule-associated protein-dependent polymerization. One GTP analog, 2′,3′-dideoxyguanosine 5′-triphosphate (ddGTP), supports polymerization both with and without microtubule-associated proteins. The inhibitory activity of GDP and GDP analogs in ddGTP-supported polymerization was much greater in the absence of microtubule-associated proteins than in their presence; and both reactions were more readily inhibited than was microtubule-associated protein-dependent, GTP-supported polymerization. Microtubule-associated protein-independent, ddGTP-supported polymerization was also potently inhibited by GTP and a number of GTP analogs. GTP was in fact twice as inhibitory as GDP. The relative inhibitory activity of the GTP analogs was comparable to the relative inhibitory activity of the cognate GDP analogs and very different from their relative activity in supporting polymerization.  相似文献   

9.
With microtubule-associated proteins (MAPs) BeSO4 and MgSO4 stimulated tubulin polymerization as compared to a reaction mixture without exogenously added metal ion, while beryllium fluoride had no effect (E. Hamel et al., 1991, Arch. Biochem. Biophys. 286, 57-69). Effects of both cations were most dramatic at GTP concentrations in the same molar range as the tubulin concentration. We have now compared effects of beryllium and magnesium on tubulin-nucleotide interactions in both unpolymerized tubulin and in polymer. Polymer formed with magnesium had properties similar to those of polymer formed without exogenous cation, except for a 20% lower stoichiometry of exogenous GTP incorporated into the latter. In both polymers the incorporated GTP was hydrolyzed to GDP. Stoichiometry of GTP incorporation into polymers formed with beryllium or magnesium was identical, but much of the GTP in the beryllium polymer was not hydrolyzed. The beryllium polymer was more stable than the magnesium polymer. Beryllium also differed from magnesium in only weakly enhancing the binding of GTP in the exchangeable site of unpolymerized tubulin, while neither cation affected GDP exchange at the site. If both cations were present in a reaction mixture, polymer stability was little changed from that of the beryllium polymer, but most of the GTP incorporated into polymer was hydrolyzed. Six additional metal salts (AlCl3, CdCl2, CoCl2, MnCl2, SnCl2, and ZnCl2) also stimulated MAP-dependent tubulin polymerization, but enhanced polymer stability did not correlate with polymer GTP content. We postulate that enhanced polymer stability is a consequence of cation binding directly to tubulin and/or polymer while deficient GTP hydrolysis in the presence of beryllium, as well as aluminum and tin, is a consequence of tight binding of cation to GTP in the exchangeable site.  相似文献   

10.
The role of GTP hydrolysis in microtubule dynamics has been reinvestigated using an analogue of GTP, guanylyl-(alpha, beta)-methylene-diphosphonate (GMPCPP). This analogue binds to the tubulin exchangeable nucleotide binding site (E-site) with an affinity four to eightfold lower than GTP and promotes the polymerization of normal microtubules. The polymerization rate of microtubules with GMPCPP-tubulin is very similar to that of GTP-tubulin. However, in contrast to microtubules polymerized with GTP, GMPCPP-microtubules do not depolymerize rapidly after isothermal dilution. The depolymerization rate of GMPCPP-microtubules is 0.1 s-1 compared with 500 s-1 for GDP-microtubules. GMPCPP also completely suppresses dynamic instability. Contrary to previous work, we find that the beta--gamma bond of GMPCPP is hydrolyzed extremely slowly after incorporation into the microtubule lattice, with a rate constant of 4 x 10(-7) s-1. Because GMPCPP hydrolysis is negligible over the course of a polymerization experiment, it can be used to test the role of hydrolysis in microtubule dynamics. Our results provide strong new evidence for the idea that GTP hydrolysis by tubulin is not required for normal polymerization but is essential for depolymerization and thus for dynamic instability. Because GMPCPP strongly promotes spontaneous nucleation of microtubules, we propose that GTP hydrolysis by tubulin also plays the important biological role of inhibiting spontaneous microtubule nucleation.  相似文献   

11.
E Hamel  J K Batra  C M Lin 《Biochemistry》1986,25(22):7054-7062
Using highly purified calf brain tubulin bearing [8-14C]guanosine 5'-diphosphate (GDP) in the exchangeable nucleotide site and heat-treated microtubule-associated proteins (both components containing negligible amounts of nucleoside diphosphate kinase and nonspecific phosphatase activities), we have found that a significant proportion of exchangeable-site GDP in microtubules can be incorporated directly during guanosine 5'-triphosphate (GTP) dependent polymerization of tubulin, without an initial exchange of GDP for GTP and subsequent GTP hydrolysis during assembly. The precise amount of GDP incorporated directly into microtubules is highly dependent on specific reaction conditions, being favored by high tubulin concentrations, low GTP and Mg2+ concentrations, and exogenous GDP in the reaction mixture. Minimum effects were observed with changes in reaction pH or temperature, changes in concentration of microtubule-associated proteins, alteration of the sulfonate buffer, or the presence of a calcium chelator in the reaction mixture. Under conditions most favorable for direct GDP incorporation, about one-third of the GDP in microtubules is incorporated directly (without GTP hydrolysis) and two-thirds is incorporated hydrolytically (as a consequence of GTP hydrolysis). Direct incorporation of GDP occurs in a constant proportion throughout elongation, and the amount of direct incorporation probably reflects the rapid equilibration of GDP and GTP at the exchangeable site that occurs before the onset of assembly.  相似文献   

12.
Nucleotide binding and phosphorylation in microtubule assembly in vitro.   总被引:4,自引:0,他引:4  
Two non-hydrolyzable analogs of GTP, guanylyl-β,γ-methylene diphosphonate and guanylyl imidodiphosphate, have been found to induce rapid and efficient microtubule assembly in vitro by binding at the exchangeable site (E-site) on tubulin. Characterization of microtubule polymerization by several criteria, including polymerization kinetics, nucleotide binding to depolymerized and polymerized microtubules, and microtubule stability, reveals strong similarities between microtubule assembly induced by GTP and non-hydrolyzable GTP analogs. Nucleoside triphosphates which bind weakly or not at all to tubulin, such as ATP, UTP and CTP, are shown to induce microtubule assembly by means of a nucleoside diphosphate kinase (NDP-kinase, EC 2.7.4.6.) activity which is not intrinsic to tubulin. The NDP-kinase mediates microtubule polymerization by phosphorylating tubulin-bound GDP in situ at the E-site. Although hydrolysis of exchangeably bound GTP occurs, it is found to be uncoupled from the polymerization reaction. The non-exchangeable nucleotide binding site on tubulin (N-site) is not directly involved in microtubule assembly in vitro. The N-site is shown to contain almost exclusively GTP which is not hydrolyzed during microtubule assembly. A scheme is presented in which GTP acts as an allosteric effector at the E-site during microtubule assembly in vitro.  相似文献   

13.
M F Carlier  D Didry  D Pantaloni 《Biochemistry》1987,26(14):4428-4437
The tubulin concentration dependence of the rates of microtubule elongation and accompanying GTP hydrolysis has been studied over a large range of tubulin concentration. GTP hydrolysis followed the elongation process closely at low tubulin concentration and became gradually uncoupled at higher concentrations, reaching a limiting rate of 35-40 s-1. The kinetic parameters for microtubule growth were different at low and high tubulin concentrations. Elongation of microtubules has also been studied in solutions containing GDP and GTP in variable proportions. Only traces of GTP present in GDP were necessary to confer a high stability (low critical concentration) to microtubules. Pure GDP-tubulin was found unable to elongate microtubules in the absence of GTP but blocked microtubule ends with an equilibrium dissociation constant of 5-6 microM. These data were accounted for by a model within which, in the presence of GTP-tubulin at high concentration, microtubules grow at a fast rate with a large GTP cap; the GTP cap may be quite short in the region of the critical concentration; microtubule stability is linked to the strong interaction between GTP and GDP subunits at the elongating site; dimeric GDP-tubulin does not have the appropriate conformation to undergo reversible polymerization. These results are discussed with regard to possible role of GDP and GTP and of GTP hydrolysis in microtubule dynamics.  相似文献   

14.
Dolastatin 10, a potent antimitotic peptide from a marine animal, strongly inhibits microtubule assembly, tubulin-dependent GTP hydrolysis, and the binding of vinca alkaloids to tubulin. In studies of the binding of [3H]vincristine to the protein, with vinblastine as a control for competitive inhibition (Ki, 6.6 microM), we found that the macrolide antimitotic agents maytansine and rhizoxin were also competitive inhibitors (Ki values, 3.1 and 12 microM). Dolastatin 10 and an unrelated peptide antimitotic, phomopsin A, were more potent but noncompetitive inhibitors (Ki values, 1.4 and 2.8 microM). Since maytansine and, to a much lesser extent, vinblastine interfere with nucleotide exchange on tubulin, all drugs were examined for effects on nucleotide interactions at the exchangeable GTP site. Rhizoxin had effects intermediate between those of vinblastine and maytansine. Both peptides inhibited binding of radiolabeled GTP to tubulin even more strongly than did maytansine, but no drug displaced nucleotide from tubulin. The drugs were evaluated for stabilizing effects on the colchicine binding activity of tubulin. The peptides prevented loss of this activity, and vinblastine provided partial protection, while rhizoxin and maytansine did not stabilize tubulin. A tripeptide segment of dolastatin 10 also effectively inhibits tubulin polymerization and GTP hydrolysis. The tripeptide did not significantly inhibit either vincristine binding or nucleotide exchange, nor did it stabilize colchicine binding. These findings are rationalized in terms of a model with two distinct drug binding sites in close physical proximity to each other and to the exchangeable GTP site on beta-tubulin.  相似文献   

15.
We investigated how the self-association of isolated tubulin dimers affects the rate of GTP hydrolysis and the equilibrium of nucleotide exchange. Both reactions are relevant for microtubule (MT) dynamics. We used HPLC to determine the concentrations of GDP and GTP and thereby the GTPase activity of SEC-eluted tubulin dimers in assembly buffer solution, free of glycerol and tubulin aggregates. When GTP hydrolysis was negligible, the nucleotide exchange mechanism was studied by determining the concentrations of tubulin-free and tubulin-bound GTP and GDP. We observed no GTP hydrolysis below the critical conditions for MT assembly (either below the critical tubulin concentration and/or at low temperature), despite the assembly of tubulin 1D curved oligomers and single-rings, showing that their assembly did not involve GTP hydrolysis. Under conditions enabling spontaneous slow MT assembly, a slow pseudo-first-order GTP hydrolysis kinetics was detected, limited by the rate of MT assembly. Cryo-TEM images showed that GTP-tubulin 1D oligomers were curved also at 36 °C. Nucleotide exchange depended on the total tubulin concentration and the molar ratio between tubulin-free GDP and GTP. We used a thermodynamic model of isodesmic tubulin self-association, terminated by the formation of tubulin single-rings to determine the molar fractions of dimers with exposed and buried nucleotide exchangeable sites (E-sites). Our analysis shows that the GDP to GTP exchange reaction equilibrium constant was an order-of-magnitude larger for tubulin dimers with exposed E-sites than for assembled dimers with buried E-sites. This conclusion may have implications on the dynamics at the tip of the MT plus end.  相似文献   

16.
The dissociation constants for GTP and GDP with tubulin were determined to be equal to 1.1 ± 0.4 × 10?7 M and 1.5 ± .6 × 10?7 (4°), respectively. A lower limit for the dissociation constant for ATP was established as equal to 6 × 10?4 M. The equivalent binding of GTP and GDP is not readily consistent with a mechanism in which the role of GTP in microtubule assembly is to bind to the protein to induce a conformation which is able to polymerize. An ATP-induced polymerization of tubulin apparently involves a transphosphorylation reaction in which GTP is formed and mediates the assembly. For this reaction to occur with desalted tubulin trace amounts of GDP are required; in the reaction of 0.1 mM ATP with 22.0 μM tubulin, 0.1 μM GDP induces about 80% as much tubule formation as is seen with 0.1 mM GTP alone.  相似文献   

17.
We have examined the effects of a number of organic anions, which stabilize tubulin, on tubulin polymerization, associated GTP hydrolysis, and polymer morphology. While microtubule-associated proteins, as well as glycerol, induced formation of typical microtubules in a reaction coupled to GTP hydrolysis at an initial 1:1 stoichiometry, the organic anions had varying effects. Only 2-(N-morpholino)ethanesulfonate induced formation of structures with the morphology of microtubules. With glutamate, fructose 1,6-bisphosphate, piperazine-N-N'-bis(2-ethanesulfonate), glutarate, and glucose 1-phosphate, the predominant structures formed were sheets of parallel protofilaments rather than microtubules. Creatine phosphate induced the formation of clusters of rings. GTP hydrolysis was closely coupled to polymerization only with glutamate. With creatine phosphate, there was minimal GTP hydrolysis. With all other organic anions, GTP hydrolysis substantially exceeded polymerization at all time points, with the onset of hydrolysis significantly preceding the onset of turbidity development. Nevertheless, the rate of GTP hydrolysis was a sigmoidal function of tubulin concentration under all conditions examined, suggesting that tubulin-tubulin interactions are required for hydrolysis. All anion-induced reactions were temperature dependent and cold reversible, but only the creatine phosphate induced reaction was not inhibited by GDP, CA2+, or colchicine and did not require GTP.  相似文献   

18.
The essential cell division protein, FtsZ, from Mycobacterium tuberculosis has been expressed in Escherichia coli and purified. The recombinant protein has GTPase activity typical of tubulin and other FtsZs. FtsZ polymerization was studied using 90 degrees light scattering. The mycobacterial protein reaches maximum polymerization much more slowly ( approximately 10 min) than E. coli FtsZ. Depolymerization also occurs slowly, taking 1 h or longer under most conditions. Polymerization requires both Mg(2+) and GTP. The minimum concentration of FtsZ needed for polymerization is 3 microM. Electron microscopy shows that polymerized M. tuberculosis FtsZ consists of strands that associate to form ordered aggregates of parallel protofilaments. Ethyl 6-amino-2, 3-dihydro-4-phenyl-1H-pyrido[4,3-b][1,4]diazepin-8-ylcarbamate+ ++ (SRI 7614), an inhibitor of tubulin polymerization synthesized at Southern Research Institute, inhibits M. tuberculosis FtsZ polymerization, inhibits GTP hydrolysis, and reduces the number and sizes of FtsZ polymers.  相似文献   

19.
A persistent ATPase/GTPase activity has been found to be associated with highly recycled bovine brain microtubules. A GTP regeneration system was introduced to minimize the inhibitory effects of this hydrolase on microtubule polymerization. The characteristics of the ATPase indicate that it is not involved in GTP-induced mictrotubule polymerization, but is directly involved in ATP-induced polymerization. ATP-induced polymerization was also shown to require stoichiometric amounts of GDP, but higher levels of GDP inhibited both microtubule formation and the ATPase activity. An ammonium sulfate fractionation procedure was devised to separate microtubule protein into an ATPase-rich fraction and a pure tubulin fraction. The pure tubulin fraction polymerized in the presence of GTP, but not in the presence of ATP and GDP. In contrast, the ATPase-rich fraction polymerized with either ATP or GTP. It is still not known whether the microtubule associated ATPase plays a significant role in cellular microtubule function.  相似文献   

20.
GDP state of tubulin: stabilization of double rings   总被引:9,自引:0,他引:9  
W D Howard  S N Timasheff 《Biochemistry》1986,25(25):8292-8300
Purified tubulin, with GDP occupying the exchangeable nucleotide binding site, has been examined conformationally and for its ability to self-associate into double rings. The circular dichroism spectrum increased by ca. 10% in negative amplitude between 205 and 225 nm over the spectrum of tubulin in the GTP state, but there were no significant shape changes. This indicates that replacement of GTP by GDP induces tubulin to adopt a more ordered conformation. The sedimentation coefficients of tubulin alpha-beta dimers in the GDP and GTP states were identical, with s20,w = 5.8 S. A sedimentation velocity study of tubulin in the GDP state showed that, in the presence of magnesium ions, this protein undergoes a reversible Gilbert-type self-association. The end product of this reaction was found to be 26 subunit double rings identical with those described by Frigon and Timasheff [(1975) Biochemistry 14, 4567-4599] for a similar polymerization of tubulin in the GTP state. Analysis of the data showed that Tu-GDP has a much stronger propensity for the formation of double rings than Tu-GTP, the corresponding equilibrium with constants for the 26Tu in equilibrium Tu26 being 4.2 X 10(119) M-25 and 2.27 X 10(109) M-25 for Tu-GDP and Tu-GTP, respectively. This leads to Tu-GTP being predominantly in the form of alpha-beta dimers and Tu-GDP in the form of double rings under normal experimental conditions used in the study of microtubule assembly.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号