首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tissue pieces from the caput epididymidis of the rat were incubated in vitro with (35S) methionine to produce radioactive secretory proteins. The radioactive secretory proteins so formed were tested for their ability to bind to washed rat spermatozoa collected from the rete testis and cauda epididymidis, and to rat erythrocytes. The sperm and erythrocytes bound approximately 5% of the total radioactive protein. Binding was protein-specific in that only selected proteins became associated with the cells. Binding was not cell-specific, however, since testicular spermatozoa, caudal spermatozoa, and erythrocytes all bound the same proteins to a similar degree.  相似文献   

2.
Rana MS  Knapp JE  Holland RA  Riggs AF 《Proteins》2008,70(2):553-561
Extensive measurements of oxygen binding by some vertebrate hemoglobins (Hbs) have suggested an unusually high degree of cooperativity with reported Hill coefficients, n(H), greater than 4.0. We have reexamined this possibility of "super-cooperativity" with chicken Hb components A (alpha(A) (2)beta(2)) and D (alpha(D) (2)beta(2)). Prior studies have shown that component D but not A self-associates to dimers of tetramers upon deoxygenation. This self-association is reflected in the oxygen equilibrium of Hb D which shows a maximal n(H), greater than 4.0 at approximately 4 mM heme concentration. In contrast, component A has maximal n(H) value below 3. The value of the maximal n(H) for Hb D increases linearly with the fraction of octamer present in the deoxy Hb. We anticipate that deoxygenation-dependent self-association will be shown to be a general property of Hb D from birds and reptiles. Neither oxygen equilibria nor sedimentation measurements show any evidence that components A and D interact to form a complex when deoxygenated. We have also reexamined the oxygen equilibria of Hbs of an embryonic marsupial, the wallaby. The equilibria in red cells have been reported to have Hill coefficients as high as 5-6. Although our oxygen equilibrium measurements of solutions of unfractionated wallaby Hb at a concentration of approximately 1 mM show no n(H) values greater than approximately 3.0, sedimentation velocity measurements provide clear evidence for deoxygenation-dependent self-association.  相似文献   

3.
In solution, the oxygen affinity of hemoglobin in the T quaternary structure is decreased in the presence of allosteric effectors such as protons and organic phosphates. To explain these effects, as well as the absence of the Bohr effect and the lower oxygen affinity of T-state hemoglobin in the crystal compared to solution, Rivetti C et al. (1993a, Biochemistry 32:2888-2906) suggested that there are high- and low-affinity subunit conformations of T, associated with broken and unbroken intersubunit salt bridges. In this model, the crystal of T-state hemoglobin has the lowest possible oxygen affinity because the salt bridges remain intact upon oxygenation. Binding of allosteric effectors in the crystal should therefore not influence the oxygen affinity. To test this hypothesis, we used polarized absorption spectroscopy to measure oxygen binding curves of single crystals of hemoglobin in the T quaternary structure in the presence of the "strong" allosteric effectors, inositol hexaphosphate and bezafibrate. In solution, these effectors reduce the oxygen affinity of the T state by 10-30-fold. We find no change in affinity (< 10%) of the crystal. The crystal binding curve, moreover, is noncooperative, which is consistent with the essential feature of the two-state allosteric model of Monod J, Wyman J, and Changeux JP (1965, J Mol Biol 12:88-118) that cooperative binding requires a change in quaternary structure. Noncooperative binding by the crystal is not caused by cooperative interactions being masked by fortuitous compensation from a difference in the affinity of the alpha and beta subunits. This was shown by calculating the separate alpha and beta subunit binding curves from the two sets of polarized optical spectra using geometric factors from the X-ray structures of deoxygenated and fully oxygenated T-state molecules determined by Paoli M et al. (1996, J Mol Biol 256:775-792).  相似文献   

4.
The biochemical and biophysical characterization of the mitochondrial creatine kinase (Mi-CK) from chicken cardiac muscle is reviewed with emphasis on the structure of the octameric oligomer by electron microscopy and on its membrane binding properties. Information about shape, molecular symmetry and dimensions of the Mi-CK octamer, as obtained by different sample preparation techniques in combination with image processing methods, are compared. The organization of the four dimeric subunits into the Mi-CK complex as apparent in the end-on projections is discussed and the consistently observed high binding affinity of the four-fold symmetric end-on faces towards many support films and towards each other is outlined. A study on the oligomeric state of the enzyme in solution and in intact mitochondria, using chemical crosslinking reagents, is presented together with the results of a search for a possible linkage of Mi-CK with the adenine nucleotide translocator (ANT). The nature of Mi-CK binding to model membranes, demonstrating that rather the octameric than the dimeric subspecies is involved in lipid interaction and membrane contact formation, is resumed and put into relation to our structural observations. The findings are discussed in light of a possiblein vivo function of the Mi-CK octamer bridging the gap between outer and inner mitochondrial membranes at the contact sites.  相似文献   

5.
Summary Hemin catalyses the oxidation of dithiothreitol. One mole of oxygen is consumed for every 2 moles of dithiothreitol oxidized and the product is shown by spectral studies to be the intramolecular disulphide. The reaction shows a specificity for dithiol and for free heme moieties. Hemin molecules exhibit cooperativity in oxygen reduction. Oxygen radicals do not seem to be involved. H2O2 is not required for this oxidation of dithiothreitol and does not appear to be an intermediate in the reduction of O2 to H2O. However, an independent minor reaction involving a 2-electron transfer with the formation of H2O2 also occurs. These studies on the hemin-catalyzed oxidation of dithiothreitol provide a chemical model for a direct 4-electron reduction of O2 to H2O.Abbreviations HMGCoA 3-hydroxy-3-methylglutaryl coenzyme A - DTT dithiothreitol - Tris-HCl tris(hydroxymethyl)-aminomethane hydrochloride - HEPES N-2,hydroxylethypiperazine-N-2-ethane-sulphonic acid  相似文献   

6.
The thermal induction of chemiluminescence of luminol-horseradish peroxidase-labeled erythrocytes from pigs, rats, and man was studied. The luminescent responses of rat, porcine, and human erythrocytes to heating were linear in respect to logs of counts per minute versus temperature. Landrace-Duroc crossbred pigs with a history of malignant hyperthermia (porcine stress syndrome) and Poland-China-miniature pigs inbred for malignant hyperthermia (MH) yielded erythrocytes with high-level thermochemiluminescence (TCL). Sprague-Dawley rat erythrocytes were intermediate in their production of TCL. Normal human and MH-resistant miniature swine erythrocytes produced low-level TCL. However, pretreatment of human erythrocytes with 1-chloro-2,4-dinitrobenzene (CDNB) resulted in high-level TCL. Furthermore, halothane enhanced the TCL of CDNB-treated human erythrocytes and Landrace-Duroc porcine erythrocytes that were not treated with CDNB. Red blood cells from pigs susceptible to the porcine stress syndrome demonstrated a TCL response very similar to CDNB-treated erythrocytes.  相似文献   

7.
8.
Cooperative binding of ligands to proteins can serve to increase their efficiency and to regulate their activity. Thus, understanding of the mechanism of cooperativity is one of the central concerns of molecular biology. For the tetrameric human hemoglobin (HbA), the cooperative mechanism involves a reasonably well understood combination of tertiary and quaternary changes that occur during the binding process. The dimeric hemoglobin of Scapharca (HbI), which is composed of subunits with the same fold as in HbA, is also highly cooperative but the structural changes on ligand binding are small. A re-orientation of Phe97 in the binding pocket and changes in the number of interfacial water molecules have been implicated in the cooperative mechanism. To explore the role of these factors, we have investigated models of partially liganded intermediate states of HbI with molecular dynamics simulation methods. Since, unlike HbA, no structures for intermediates are available, they were constructed by combining subunits from the unliganded and liganded dimers. Two structurally distinct intermediates were examined, and it was shown that the transition between the two intermediates is directly coupled to the number of interfacial water molecules. Further, it was found that there is a well-defined water channel that connects the interface between the subunits to bulk water. The bottleneck (gate) of the channel, which can be open or closed, is made of hydrophilic residues. The implication of the present results for the cooperative mechanism of HbI is discussed.  相似文献   

9.
Oxidation of NADH by decavanadate, a polymeric form vanadate with a cage-like structure, in presence of rat liver microsomes followed a biphasic pattern. An initial slow phase involved a small rate of oxygen uptake and reduction of 3 of the 10 vanadium atoms. This was followed by a second rapid phase in which the rates of NADH oxidation and oxygen uptake increased several-fold with a stoichiometry of NADH: O2 of 11. The burst of NADH oxidation and oxygen uptake which occurs in phosphate, but not in Tris buffer, was prevented by SOD, catalase, histidine, EDTA, MnCl2 and CuSO4, but not by the hydroxyl radical quenchers, ethanol, methanol, formate and mannitol. The burst reaction is of a novel type that requires the polymeric structure of decavanadate for reduction of vanadium which, in presence of traces of H2O2, provides a reactive intermediate that promotes transfer of electrons from NADH to oxygen.  相似文献   

10.
Sequential addition of vanadyl sulfate to a phosphate-buffered solution of H2O2 released oxygen only after the second batch of vanadyl. Ethanol added to such reaction mixtures progressively decreased oxygen release and increased oxygen consumption during oxidation of vanadyl by H2O2. Inclusion of ethanol after any of the three batches of vanadyl resulted in varying amounts of oxygen consumption, a property also shared by other alcohols (methanol, propanol and octanol). On increasing the concentration of ethanol, vanadyl sulfate or H2O2, both oxygen consumption and acetaldehyde formation increased progressively. Formation of acetaldehyde decreased with increase in the ratio of vanadyl:H2O2 above 2:1 and was undetectable with ethanol at 0.1 mM. The reaction mixture which was acidic in the absence of phosphate buffer (pH 7.0), released oxygen immediately after the first addition of vanadyl and also in presence of ethanol soon after initial rapid consumption of oxygen, with no accompanying acetaldehyde formation. The results underscore the importance of some vanadium complexes formed during vanadyl oxidation in the accompanying oxygen-transfer reactions.  相似文献   

11.
Kang LL  Huang YX  Liu WJ  Zheng XJ  Wu ZJ  Luo M 《Biopolymers》2008,89(11):951-959
Raman confocal microscopy, including the techniques of point Raman spectra, line mapping, 2D mapping, and time-dependent spectrum monitoring performed with 514.5 nm excitation light, was used in a comparative study on the distribution and oxidation states of hemoglobin (Hb) in young and old mature erythrocytes. It is demonstrated that in contrast to the homogeneous distribution of the Hb in young cells, there are more Hb distribution around the cell membrane in old erythrocyte. The proteins exhibit some extent of aggregation and conformational change, present less ability of oxidation, and lower oxygenation speed than the Hb in young erythrocytes. Our results also provide the first direct evidence of some intermediate oxygenated states of Hb between the two fully oxygenated (R) and deoxygenated (T) states in living erythrocyte, and give detail information about the conformational change of the intracellular Hb with time during the reoxygenation process. (c) 2008 Wiley Periodicals, Inc. Biopolymers 89: 951-959, 2008.This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com.  相似文献   

12.
The oxidation of polyunsaturated fatty acids (PUFAs) by reactive oxygen species (ROS) is linked to aging and to many diseases. We herein employ initiating peroxyl radical (ROO•) derived from the decomposition of 2,2′-azobis(2-amidinopropane dihydrochloride), hydroxyl radical generated by the Fenton reaction and peroxyl radical (ROO•) and alkoxyl radical (LO•) derived from PUFAs by addition of Cu2+ as ROS sources to oxidize glycerides under alkaline conditions in the presence of methanol instead of being treated traditionally by diazomethane (CH2N2) under acidic conditions (pH=2.0), to obtain corresponding methyl esters for the combination of gas chromatography with mass spectrometry determination. It was found that all the PUFAs in the membrane are perfectly preserved after oxidation by ROS, even though sufficient time is available for the interaction between human erythrocytes and ROS. This indicates that ROS do not damage PUFAs during reaction time. However, three products (cholesta-4,6-dien-3-ol, cholesta-4,6-dien-3-one, and cholesta-3,5-dien-7-one) are produced from the oxidation of cholesterol within this time frame. This qualitative finding, suggests that the cholesterol in the membrane of human erythrocytes is more susceptible to ROS-induced oxidation than are PUFAs, and compels us to re-evaluate the physiological roles of cholesterol and PUFAs in the human erythrocyte membrane.  相似文献   

13.
Radioactive chromium accumulated in human erythrocytes exists in two forms: one bound to macromolecules, e.g., hemoglobin, and one in a low molecular weight form. Both forms are released from cells either spontaneously or as a result of toxic induction.  相似文献   

14.
In this article, a recombinant cyclohexanone monooxygenase (CHMO), overexpressed in Escherichia coli has been used to study the oxidation of bicyclo[3.2.0]hept-2-en-6-one to its two corresponding lactones at very high enantiomeric excess. The reaction is a useful model for the study of biocatalytic oxidations to create optically pure molecules. The major limitations to a highly productive biocatalytic oxidation in this case are oxygen supply, product inhibition, and biocatalyst stability. In this article, we investigate the effects of whole cell biocatalyst concentration on the rate of reaction at a range of scales from shake flasks to 75 L bioreactors. At low cell concentrations (<2 g(dcw)/L) the maximum specific rate (0.65 g/g(dcw).h) is observed. However, at higher cell concentrations (> 2 g(dcw)/L), the reaction becomes oxygen limited and both the specific rate and absolute rate decrease with further increases in cell concentration. The role of oxygen limitation in reducing the rate of reaction with scale was investigated by increasing the maximum oxygen transfer rate in the reactor at a high cell concentration and observing the increase in product formation rate. We propose a qualitative model demonstrating the relationship between oxygen limitation, biocatalyst concentration, and the rate of reaction. This conceptual model will be a useful guide in the industrial scale-up of whole cell mediated Baeyer-Villiger biocatalysis.  相似文献   

15.
In a recent study, ultrahigh molecular weight (Mw ) glutaraldehyde-polymerized bovine hemoglobins (PolybHbs) were synthesized with low O2 affinity and exhibited no vasoactivity and a slight degree of hypertension in a 10% top-load model.(1) In this work, we systematically investigated the effect of varying the glutaraldehyde to hemoglobin (G:Hb) molar ratio on the biophysical properties of PolybHb polymerized in either the low or high O2 affinity state. Our results showed that the Mw of the resulting PolybHbs increased with increasing G:Hb molar ratio. For low O2 affinity PolybHbs, increasing the G:Hb molar ratio reduced the O2 affinity and CO association rate constants in comparison to bovine hemoglobin (bHb). In contrast for high O2 affinity PolybHbs, increasing the G:Hb molar ratio led to increased O2 affinity and significantly increased the CO association rate constants compared to unmodified bHb and low O2 affinity PolybHbs. The methemoglobin level and NO dioxygenation rate constants were insensitive to the G:Hb molar ratio. However, all PolybHbs displayed higher viscosities compared to unmodified bHb and whole blood, which also increased with increasing G:Hb molar ratio. In contrast, the colloid osmotic pressure of PolybHbs decreased with increasing G:Hb molar ratio. To preliminarily evaluate the ability of low and high O2 affinity PolybHbs to potentially oxygenate tissues in vivo, an O2 transport model was used to simulate O2 transport in a hepatic hollow fiber (HF) bioreactor. It was observed that low O2 affinity PolybHbs oxygenated the bioreactor better than high O2 affinity PolybHbs. This result points to the suitability of low O2 affinity PolybHbs for use in tissue engineering and transfusion medicine. Taken together, our results show the quantitative effect of varying the oxygen saturation of bHb and G:Hb molar ratio on the biophysical properties of PolybHbs and their ability to oxygenate a hepatic HF bioreactor. We suggest that the information gained from this study can be used to guide the design of the next generation of hemoglobin-based oxygen carriers (HBOCs) for use in tissue engineering and transfusion medicine applications.  相似文献   

16.
Susceptibility of methionine residues to oxidation is a significant issue of protein therapeutics. Methionine oxidation may limit the product's clinical efficacy or stability. We have studied kinetics of methionine oxidation in the Fc portion of the human IgG2 and its impact on the interaction with FcRn and Protein A. Our results confirm previously published observations for IgG1 that two analogous solvent‐exposed methionine residues in IgG2, Met 252 and Met 428, oxidize more readily than the other methionine residue, Met 358, which is buried inside the Fc. Met 397, which is not present in IgG1 but in IgG2, oxidizes at similar rate as Met 358. Oxidation of two labile methionines, Met 252 and Met 428, weakens the binding of the intact antibody with Protein A and FcRn, two natural protein binding partners. Both of these binding partners share the same binding site on the Fc. Additionally, our results shows that Protein A may serve as a convenient and inexpensive surrogate for FcRn binding measurements.  相似文献   

17.
As a hemoglobin (Hb)-based oxygen carrier (HBOC), Hb suffers from the disadvantages of short half-life, renal toxicity and vasoactivity. Because dextran is a macromolecule that can be easily derivatized with various chemical moieties, conjugation of Hb with dextran can effectively increase the size of Hb and overcome the disadvantages of Hb. Thus, a dextran-bovine Hb (bHb) conjugate (dex-bHb) was prepared by conjugation of bHb with periodate-oxidized dextran here. As an important functional amino acid residue of bHb, Cys-93(β) was reversibly protected by 4,4′-dithiodipyridine to avoid reaction with periodate-oxidized dextran. Dex-bHb showed significantly higher hydrodynamic volume and higher viscosity than bHb. Conjugation with dextran stabilized the R state of bHb and slightly altered the heme environment of bHb. Conjugation with dextran decreased the P50 of bHb, lowered the sensitivity to the allosteric effectors and slightly decreased the autoxidation rate of bHb. Thus, dex-bHb was expected to act as a potent HBOC with low oxidative toxicity.  相似文献   

18.
Hemoglobins (Hbs) reversibly bind gaseous diatomic ligands (e.g., O2) as the sixth heme axial ligand of the penta-coordinate deoxygenated form. Selected members of the Hb superfamily, however, display a functionally relevant hexa-coordinate heme Fe atom in their deoxygenated state. Endogenous heme hexa-coordination is generally provided in these Hbs by the E7 residue (often His), which thus modulates accessibility to the heme distal pocket and reactivity of the heme toward exogenous ligands. Such a pivotal role of the E7 residue is prominently shown by analysis of the functional and structural properties of insect Hbs. Here, we report the 2.6 A crystal structure of oxygenated Gasterophilus intestinalis Hb1, a Hb known to display a penta-coordinate heme in the deoxygenated form. The structure is analyzed in comparison with those of Drosophila melanogaster Hb, exhibiting a hexa-coordinate heme in its deoxygenated derivative, and of Chironomus thummi thummi HbIII, which displays a penta-coordinate heme in the deoxygenated form. Despite evident structural differences in the heme distal pockets, the distinct molecular mechanisms regulating O2 binding to the three insect Hbs result in similar O(2 affinities (P50 values ranging between 0.12 torr and 0.46 torr).  相似文献   

19.
When oxygen binds to one of the subunits of hemoglobin, the oxygen affinity of the other subunits is enhanced. This cooperative interaction of the subunits is initiated by the movement of the heme plane toward the proximal side when oxygen binds to the heme. This motion is transmitted to the surface of the globin through a “reaction channel” consisting of a group of atoms whose motion is well correlated. Considering the detailed geometry and X-ray diffraction data of the mean square displacement of the atoms surrounding the heme, a simple model for the heme plane oscillations is developed. Using this model, the natural frequency of oscillations is shown to be ≈5 × 1011 Hz. This result, along with the recent experimental data on the kinetics of the conformational changes of the heme, points to the possibility of radiation influencing the oxygen affinity of hemoglobin. If such an effect exists, it is likely that the oxygen affinity will be enhanced by the radiation.  相似文献   

20.
Nicotine, a major component of cigarette smoke, plays an important role in the development of cardiovascular disease and lung cancer in smokers. This study was designed to determine the in vitro effects of nicotine and its metabolite cotinine on the susceptibility of LDL to oxidation and hemoglobin glycosylation. Three different concentrations of each one (10, 15, 25 g/ml) were used. Our data show that nicotine and cotinine are inhibitors for Cu2+-induced LDL oxidation but also they increase the glycosylation degree of hemoglobin. Nicotine at final concentrations of (10, 15, 25 g/ml) increases the rate of hemoglobin glycosylation 25, 32 and 47%, respectively, and cotinine at final concentrations increase the rate of glycosylation 8, 10 and 12%, respectively. Therefore promoting hemoglobin glycosylation is one of the alternations caused by smoking that increase risk of cardiovascular disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号