首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
In solution, the oxygen affinity of hemoglobin in the T quaternary structure is decreased in the presence of allosteric effectors such as protons and organic phosphates. To explain these effects, as well as the absence of the Bohr effect and the lower oxygen affinity of T-state hemoglobin in the crystal compared to solution, Rivetti C et al. (1993a, Biochemistry 32:2888-2906) suggested that there are high- and low-affinity subunit conformations of T, associated with broken and unbroken intersubunit salt bridges. In this model, the crystal of T-state hemoglobin has the lowest possible oxygen affinity because the salt bridges remain intact upon oxygenation. Binding of allosteric effectors in the crystal should therefore not influence the oxygen affinity. To test this hypothesis, we used polarized absorption spectroscopy to measure oxygen binding curves of single crystals of hemoglobin in the T quaternary structure in the presence of the \"strong\" allosteric effectors, inositol hexaphosphate and bezafibrate. In solution, these effectors reduce the oxygen affinity of the T state by 10-30-fold. We find no change in affinity (< 10%) of the crystal. The crystal binding curve, moreover, is noncooperative, which is consistent with the essential feature of the two-state allosteric model of Monod J, Wyman J, and Changeux JP (1965, J Mol Biol 12:88-118) that cooperative binding requires a change in quaternary structure. Noncooperative binding by the crystal is not caused by cooperative interactions being masked by fortuitous compensation from a difference in the affinity of the alpha and beta subunits. This was shown by calculating the separate alpha and beta subunit binding curves from the two sets of polarized optical spectra using geometric factors from the X-ray structures of deoxygenated and fully oxygenated T-state molecules determined by Paoli M et al. (1996, J Mol Biol 256:775-792).  相似文献   

2.
《Free radical research》2013,47(1):645-652
Super oxide is produced during the authorization of hemoglobin. Authorization of hemoglobin is, however, facilitated under hypoxic conditions where hemoglobin is only partially oxygenated.

We have recently found that the erythrocyte superoxide dismutase does not fully react with the additional superoxide produced under hypoxic conditions. A leakage of superoxide from the erythrocyte is thus detected, resulting in a potential source for oxyradical damage to tissues.

Detailed studies on intact erythrocytes as a function of oxygen pressure have now been performed. These studies further delineate the hypoxic stress on erythrocytes and the mechanism for the leakage of superoxide. By centrifugation of samples under various oxygen pressures it was possible to show an enhanced rate of lysis at reduced oxygen pressures with a maximum rate in the region of 25 mm Hg. At much lower pressures where the hemoglobin is mostly deoxygenated the rate of lysis was dramatically decreased with almost no lysis detected even after three days. Lysis is shown to be associated with superoxide membrane damage. The formation of superoxide which does not react with endogenous SOD reaches a maximum value at much lower pressures where most of the hemoglobin is deoxygenated. It is suggested that the leakage at low pressure is associated with the formation of superoxide by oxidation of hemoglobin associated with the membrane.  相似文献   

3.
Cooperative binding of ligands to proteins can serve to increase their efficiency and to regulate their activity. Thus, understanding of the mechanism of cooperativity is one of the central concerns of molecular biology. For the tetrameric human hemoglobin (HbA), the cooperative mechanism involves a reasonably well understood combination of tertiary and quaternary changes that occur during the binding process. The dimeric hemoglobin of Scapharca (HbI), which is composed of subunits with the same fold as in HbA, is also highly cooperative but the structural changes on ligand binding are small. A re-orientation of Phe97 in the binding pocket and changes in the number of interfacial water molecules have been implicated in the cooperative mechanism. To explore the role of these factors, we have investigated models of partially liganded intermediate states of HbI with molecular dynamics simulation methods. Since, unlike HbA, no structures for intermediates are available, they were constructed by combining subunits from the unliganded and liganded dimers. Two structurally distinct intermediates were examined, and it was shown that the transition between the two intermediates is directly coupled to the number of interfacial water molecules. Further, it was found that there is a well-defined water channel that connects the interface between the subunits to bulk water. The bottleneck (gate) of the channel, which can be open or closed, is made of hydrophilic residues. The implication of the present results for the cooperative mechanism of HbI is discussed.  相似文献   

4.
    
Oxygen binding by hemoglobin fixed in the T state either by crystallization or by encapsulation in silica gels is apparently noncooperative. However, cooperativity might be masked by different oxygen affinities of alpha and beta subunits. Metal hybrid hemoglobins, where the noniron metal does not bind oxygen, provide the opportunity to determine the oxygen affinities of alpha and beta hemes separately. Previous studies have characterized the oxygen binding by alpha(Ni2+)2beta(Fe2+)2 crystals. Here, we have determined the three-dimensional (3D) structure and oxygen binding of alpha(Fe2+)2beta(Ni2+)2 crystals grown from polyethylene glycol solutions. Polarized absorption spectra were recorded at different oxygen pressures with light polarized parallel either to the b or c crystal axis by single crystal microspectrophotometry. The oxygen pressures at 50% saturation (p50s) are 95 +/- 3 and 87 +/- 4 Torr along the b and c crystal axes, respectively, and the corresponding Hill coefficients are 0.96 +/- 0.06 and 0.90 +/- 0.03. Analysis of the binding curves, taking into account the different projections of the alpha hemes along the optical directions, indicates that the oxygen affinity of alpha1 hemes is 1.3-fold lower than alpha2 hemes. Inspection of the 3D structure suggests that this inequivalence may arise from packing interactions of the Hb tetramer within the monoclinic crystal lattice. A similar inequivalence was found for the beta subunits of alpha(Ni2+)2beta(Fe2+)2 crystals. The average oxygen affinity of the alpha subunits (p50 = 91 Torr) is about 1.2-fold higher than the beta subunits (p50 = 110 Torr). In the absence of cooperativity, this heterogeneity yields an oxygen binding curve of Hb A with a Hill coefficient of 0.999. Since the binding curves of Hb A crystals exhibit a Hill coefficient very close to unity, these findings indicate that oxygen binding by T-state hemoglobin is noncooperative, in keeping with the Monod, Wyman, and Changeux model.  相似文献   

5.
    
Rana MS  Knapp JE  Holland RA  Riggs AF 《Proteins》2008,70(2):553-561
Extensive measurements of oxygen binding by some vertebrate hemoglobins (Hbs) have suggested an unusually high degree of cooperativity with reported Hill coefficients, n(H), greater than 4.0. We have reexamined this possibility of \"super-cooperativity\" with chicken Hb components A (alpha(A) (2)beta(2)) and D (alpha(D) (2)beta(2)). Prior studies have shown that component D but not A self-associates to dimers of tetramers upon deoxygenation. This self-association is reflected in the oxygen equilibrium of Hb D which shows a maximal n(H), greater than 4.0 at approximately 4 mM heme concentration. In contrast, component A has maximal n(H) value below 3. The value of the maximal n(H) for Hb D increases linearly with the fraction of octamer present in the deoxy Hb. We anticipate that deoxygenation-dependent self-association will be shown to be a general property of Hb D from birds and reptiles. Neither oxygen equilibria nor sedimentation measurements show any evidence that components A and D interact to form a complex when deoxygenated. We have also reexamined the oxygen equilibria of Hbs of an embryonic marsupial, the wallaby. The equilibria in red cells have been reported to have Hill coefficients as high as 5-6. Although our oxygen equilibrium measurements of solutions of unfractionated wallaby Hb at a concentration of approximately 1 mM show no n(H) values greater than approximately 3.0, sedimentation velocity measurements provide clear evidence for deoxygenation-dependent self-association.  相似文献   

6.
The thermal induction of chemiluminescence of luminol-horseradish peroxidase-labeled erythrocytes from pigs, rats, and man was studied. The luminescent responses of rat, porcine, and human erythrocytes to heating were linear in respect to logs of counts per minute versus temperature. Landrace-Duroc crossbred pigs with a history of malignant hyperthermia (porcine stress syndrome) and Poland-China-miniature pigs inbred for malignant hyperthermia (MH) yielded erythrocytes with high-level thermochemiluminescence (TCL). Sprague-Dawley rat erythrocytes were intermediate in their production of TCL. Normal human and MH-resistant miniature swine erythrocytes produced low-level TCL. However, pretreatment of human erythrocytes with 1-chloro-2,4-dinitrobenzene (CDNB) resulted in high-level TCL. Furthermore, halothane enhanced the TCL of CDNB-treated human erythrocytes and Landrace-Duroc porcine erythrocytes that were not treated with CDNB. Red blood cells from pigs susceptible to the porcine stress syndrome demonstrated a TCL response very similar to CDNB-treated erythrocytes.  相似文献   

7.
The goal of the work was to asses the effect of peroxynitrite on the affinity of hemoglobin for oxygen in in vitro experiments. It was demonstrated that the incubation of whole venous blood with peroxynitrite increased the affinity of hemoglobin for oxygen. Presumably, this effect is realized through generation of various forms of hemoglobin: heme-oxidized and modified at amino acid residues of the protein. The dependence of the results of hemoglobin-peroxynitrite reactions on carbon dioxide tension and the degree of hemoglobin oxygenation is discussed.  相似文献   

8.
Acellular hemoglobin (Hb)-based O2 carriers (HBOCs) are being investigated as red blood cell (RBC) substitutes for use in transfusion medicine. However, commercial acellular HBOCs elicit both vasoconstriction and systemic hypertension which hampers their clinical use. In this study, it is hypothesized that encapsulation of Hb inside the aqueous core of liposomes should regulate the rates of NO dioxygenation and O2 release, which should in turn regulate its vasoactivity. To test this hypothesis, poly(ethylene glycol) (PEG) conjugated liposome-encapsulated Hb (PEG-LEHs) dispersions were prepared using human and bovine Hb. In this study, the rate constants for O2 dissociation, CO association, and NO dioxygenation were measured for free Hb and PEG-LEH dispersions using stopped-flow UV-visible spectroscopy, while vasoactivity was assessed in rat aortic ring strips using both endogenous and exogenous sources of NO. It was observed that PEG-LEH dispersions had lower O2 release and NO dioxygenation rate constants compared with acellular Hbs. However, no difference was observed in the CO association rate constants between free Hb and PEG-LEH dispersions. Furthermore, it was observed that Hb encapsulation inside vesicles prevented Hb dependent inhibition of NO-mediated vasodilation. In addition, the magnitude of the vasoconstrictive effects of Hb and PEG-LEH dispersions correlated with their respective rates of NO dioxygenation and O2 release. Overall, this study emphasizes the pivotal role Hb encapsulation plays in regulating gaseous ligand binding/release kinetics and the vasoactivity of Hb.  相似文献   

9.
Hemoglobins of three baboons, Theropithecus gelada, Papio hamadryas- and Papio anubis, were purified and their oxygen equilibrium characteristics were studied. (a) Oxygen affinity, as expressed by P50, oxygen partial pressure for 50% oxygen binding, was in the order of gelada hemoglobin > anubis hemoglobin > hamadryas hemoglobin although the differences were small. (b) The presence of 2,3-diphosphoglycerate reduced their oxygen affinity in a similar manner. The effect on baboon hemoglobins was greater than that on human and Japanese monkey hemoglobins. (c) The intensity of the Bohr effect, as expressed by ?ΔlogP50ΔpH, at pH 7·4 agreed well with each other and the value was 0·62 in the presence of 2 mm diphosphoglycerate and 0·52 in its absence. These results indicate that phenotypic adaptation (acclimatory) may play an important role in the adaptation of gelada baboon to high altitudes.  相似文献   

10.
Dimeric bovine hemoglobin (Hb) tetramers were prepared by a one-step solid phase adsorption method. Briefly, Hb was absorbed by the solid phase, Q Sepharose Fast Flow media, followed by reaction with the glutaraldehyde and elution procedure. Then, dimeric bovine Hb tetramers were formed and purified from Hb tetramers by anion-exchange chromatography based on Protein-Pak DEAE 8HR. The dimeric Hb tetramer showed a P50 value of 15.9 mm Hg, oxygen transporting efficiency of 14.2%, and Hill coefficient of 1.72. The number of Bohr protons released for dimeric Hb tetramers was 0.59 H/tetramer, which was 39% of that of native bovine Hb. The number of chloride ions released on oxygenation was 0.60/tetramer for dimeric Hb tetramers, which was 46% of that of native bovine Hb.  相似文献   

11.
Delivery to Macrophages of Interleukin 3 Loaded in Mouse Erythrocytes   总被引:1,自引:0,他引:1  
Mouse carrier erythrocytes containing 125I-interleukin 3 have been prepared and treated with band 3 crosslinking reagents. The incorporation of interleukin 3 by hypotonic treatment into mouse erythrocytes reached levels of about 15% of the interleukin 3 added to the medium being predominantly present in the cytosolic fraction (73%). Uptake fell to about 7.4% when using the same conditions but omitting hypotonic shock. The interaction of band 3 crosslinked interleukin 3 loaded erythrocytes with macrophages was also studied. A high level of incorporation of interleukin 3 into macrophages was observed either from band 3 crosslinked, interleukin 3-loaded erythrocytes or from interleukin 3 loaded erythrocytes. The observations encourage the view that the system may be able to deliver and target cytokines and other growth factors to macrophages.  相似文献   

12.
    
Distribution of radioiron to various tissues after intraperitoneal injections was examined in Atlantic salmon and rainbow trout. Liver and spleen were found to be the major iron storage tissues. Injections of 1 or 5 mg iron as ferric ammonium citrate led to a fall in hemoglobin levels in both species after 2 d. Hemoglobin levels returned to normal levels in rainbow trout after 8 d, but Atlantic salmon had not recovered, and Hb levels fell below 3 g/100 mL. In both species, the fall in Hb was associated with a raise in iron levels in spleen and liver, suggesting damage to erythrocytes. Atlantic salmon liver ferritin showed a two- to threefold increase, while rainbow trout showed a sixfold increase, and a more rapid response. The toxic effect of iron in fish appears to be different from the effect in other vertebrates.  相似文献   

13.
Tissue pieces from the caput epididymidis of the rat were incubated in vitro with (35S) methionine to produce radioactive secretory proteins. The radioactive secretory proteins so formed were tested for their ability to bind to washed rat spermatozoa collected from the rete testis and cauda epididymidis, and to rat erythrocytes. The sperm and erythrocytes bound approximately 5% of the total radioactive protein. Binding was protein-specific in that only selected proteins became associated with the cells. Binding was not cell-specific, however, since testicular spermatozoa, caudal spermatozoa, and erythrocytes all bound the same proteins to a similar degree.  相似文献   

14.
  • 1 Treatment of J-positive (JR) bovine erythrocytes with periodate (0.25 mmol/1 final concentration, 1 hour, room temperature) has no effect on the J activity. Higher periodate concentrations cause spontaneous haemolyses.
  • 2 Treatment of the lipids extracted from (and containing all J activity of) Jcs erythrocytes with periodate leads to a decrease of J activity even with lower periodate concentrations.
  • 3 Treatment of the stroma prepared from Jcs erythrocytes with periodate demonstrated the relative stability of the J antigen up to 0.25 mmol/l periodate. At the same time the sialic acid concentration of stroma is reduced to about 13 % of the initial concentration.
  • 4 Desialylation of Jcs erythrocytes or Jcs stroma with sialidase does not affect the J activity thus confirming previous findings. On the other hand, the J activity of desialylated Jcs stroma is much more susceptible to periodate.
  • 5 It is concluded that membrane-bound sialic acid shields the membrane-bound J antigen from being attacked by periodate.
  相似文献   

15.
Hemoglobin (Hb)‐based oxygen carriers (HBOCs) have been used as blood substitutes in surgery medicine and oxygen therapeutics for ischemic stroke. As a potent HBOC, the PEGylated Hb has received much attention for its oxygen delivery and plasma expanding ability. Two PEGylated Hbs, Euro‐Hb, and MP4 have been developed for clinical trials, using human adult hemoglobin (HbA) as the original substrate. However, HbA was obtained from outdated human blood and its quantity available from this source may not be sufficient for mass production of PEGylated HbA. In contrast, bovine Hb (bHb) has no quantity constraints for its ample resource. Thus, bHb is of potential to function as an alternative substrate to obtain a PEGylated bHb (bHb‐PEG). bHb‐PEG was prepared under the same reaction condition as HbA‐PEG, using maleimide chemistry. The structural, functional, solution and physiological properties of bHb‐PEG were determined and compared with those of HbA‐PEG. bHb‐PEG showed higher hydrodynamic volume, colloidal osmotic pressure, viscosity and P50 than HbA‐PEG. The high P50 of bHb can partially compensate the PEGylation‐induced perturbation in the R to T state transition of HbA. bHb‐PEG was non‐vasoactive and could efficiently recover the mean arterial pressure of mice suffering from hemorrhagic shock. Thus, bHb‐PEG is expected to function as a potent HBOC for its high oxygen delivery and strong plasma expanding ability. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:252–260, 2017  相似文献   

16.
    
The altered oxygen binding curves for various abnormal hemoglobins were analyzed according to a two-state allosteric model. Of three allosteric parameters computed for abnormal hemoglobins, KR was nearly constant, but KT and L varied with the correlation of log c=–0.4 log L, where c is KR/KT. This correlation indicates that the abnormal allosteric oxygen binding of hemoglobin is due to altered molecular properties of the deoxy-T state but not that of the deoxy-R state. To clarify the molecular basis of this idea, resonance Raman spectra in the low-frequency region of abnormal hemoglobins were measured under different solvent conditions. Varied frequencies of iron-histidine stretching Raman lines was found to correlate with varied oxygen affinities (KT) of deoxy-T states. The strength of the iron-histidine bond of deoxy-T states was changed, depending upon the magnitude of the strain imposed on hemes by globin, and this bond presumably comprises an important part of the regulation mechanisms for hemoglobin oxygen binding and structure changes.This article was presented during the proceedings of the International Conference on Macromolecular Structure and Function, held at the National Defence Medical College, Tokorozawa, Japan, December 1985.  相似文献   

17.
Hemoglobin Brigham (β Pro100 to Leu) was first reported in a patient with familial erythrocytosis. Erythrocytes of an affected individual from the same family contain both HbA and Hb Brigham and exhibit elevated O(2) affinity compared with normal cells (P(50) = 23 mm Hg vs. 31 mmHg at pH 7.4 at 37°C). O(2) affinities measured for hemolysates were sensitive to changes in pH or chloride concentrations, indicating little change in the Bohr and Chloride effects. Hb Brigham was separated from normal HbA by nondenaturing cation exchange liquid chromatography, and the amino acid substitution was verified by mass spectrometry. The properties of Hb Brigham isolated from the patient's blood were then compared with those of recombinant Hb Brigham expressed in Escherichia coli. Kinetic experiments suggest that the rate constants for ligand binding and release in the high (R) and low (T) affinity quaternary states of Hb Brigham are similar to those of native hemoglobin. However, the Brigham mutation decreases the T to R equilibrium constant (L) which accelerates the switch to the R state during ligand binding to deoxy-Hb, increasing the rate of association by approximately twofold, and decelerates the switch during ligand dissociation from HbO(2) , decreasing the rate approximately twofold. These kinetic data help explain the high O(2) affinity characteristics of Hb Brigham and provide further evidence for the importance of the contribution of Pro100 to intersubunit contacts and stabilization of the T quaternary structure.  相似文献   

18.
Copper-specific damage in human erythrocytes exposed to oxidative stress   总被引:1,自引:0,他引:1  
Ascorbate and complexes of Cu(II) and Fe(III) are capable of generating significant levels of oxygen free radicals. Exposure of erythrocytes to such oxidative stress leads to increased levels of methemoglobin and extensive changes in cell morphology. Cu(II) per mole is much more effective than Fe(III). However, isolated hemoglobin is oxidized more rapidly and completely by Fe(III)- than by Cu(II)-complexes. Both Fe(III) and Cu(II) are capable of inhibiting a number of the key enzymes of erythrocyte metabolism. The mechanism for the enhanced activity of Cu(II) has not been previously established. Using intact erythrocytes and hemolysates we demonstrate that Cu(II)-, but not Fe(III)-complexes in the presence of ascorbate block NADH-methemoglobin reductase. Complexes of Cu(II) alone are not inhibitory. The relative inability of Fe(III)-complexes and ascorbate to cause methemoglobin accumulation is not owing to Fe(III) association with the membrane, or its failure to enter the erythrocytes. The toxicity of Cu(II) and ascorbate appears to be a result of site-specific oxidative damage of erythrocyte NADH-methemoglobin reductase and the enzyme's subsequent inability to reduce the oxidized hemoglobin.  相似文献   

19.
The crystal structure of human deoxy hemoglobin (Hb) complexed with a potent allosteric effector (2-[4-[[(3,5-dimethylanilino)carbonyl]methyl]phenoxy]-2-methylpropionic acid) = RSR-13) is reported at 1.85 A resolution. Analysis of the hemoglobin:effector complex indicates that two of these molecules bind to the central water cavity of deoxy Hb in a symmetrical fashion, and that each constrains the protein by engaging in hydrogen bonding and hydrophobic interactions with three of its four subunits. Interestingly, we also find that water-mediated interactions between the bound effectors and the protein make significant contributions to the overall binding. Physiologically, the interaction of RSR-13 with Hb results in increased oxygen delivery to peripheral tissues. Thus, this compound has potential therapeutic application in the treatment of hypoxia, ischemia, and trauma-related blood loss. Currently, RSR-13 is in phase III clinical trials as a radiosensitizing agent in the treatment of brain tumors. A detailed structural analysis of this compound complexed with deoxy Hb has important implications for the rational design of future analogs.  相似文献   

20.
    
Mice (Mus musculus) are nocturnal small animals belonging to the rodent family that live in burrows, an environment in which significantly high CO2 levels prevail. It is expected that mouse hemoglobin (Hb) plays an important role in their adaptation to living in such a high-CO2 environment, while many other species cannot. In the present study, mouse Hb was purified and crystallized at a physiological pH of 7 in the orthorhombic space group P212121; the crystals diffracted to 2.8 Å resolution. The primary amino-acid sequence and crystal structure of mouse Hb were compared with those of mammalian Hbs in order to investigate the structure–function relationship of mouse Hb. Differences were observed from guinea pig Hb in terms of amino-acid sequence and from cat Hb in overall structure (in terms of r.m.s.d.). The difference in r.m.s.d. from cat Hb may be due to the existence of the molecule in a conformation other than the R-state. Analysis of tertiary- and quaternary-structural features, the α1β2 interface region and the heme environment without any ligands in all four heme groups showed that mouse methemoglobin is in an intermediate state between the R-state and the T-state that is much closer to the R-state conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号