首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Leaves from 12 legume species representing two subtribes were examined by various techniques for the presence of vegetative storage proteins (VSPs) similar to the 27, 29, and 94 kD VSPs of soybean. Polyacrylamide gel electrophoresis (PAGE) of leaf protein followed by western immunoblotting using antibody that recognizes soybean VSP94, a lipoxygenase, demonstrated that this protein is present in six of the nine species tested. Blotting with antibody to soybean VSP27/29, which are glycoproteins, gave labelling in seven species and glycoprotein affino-blots showed that glycosylated proteins ranging around 27 to 29 kD were present in all nine species examined. Immunocytochemical localization studies of eight species demonstrated that proteins antigenically similar to VSP94 and VSP27/29 are specifically accumulated in the vacuole of paraveinal mesophyll (PVM) cells. They were not detectable at significant levels in other mesophyll cells using this technique. Comparisons of protein compositions of isolated PVM and mesophyll protoplasts from seven species further confirmed the specialized nature of the PVM. VSP94 and proteins ranging from 25 to 35 kD molecular mass were the major proteins of PVM of all but one species while Rubisco was quite low in amount compared to mesophyll protoplasts. The results show that VSP synthesis and accumulation is a general feature of legume leaves containing a PVM layer and indicate that the PVM plays a specialized role in nitrogen metabolism and partitioning in these species.  相似文献   

2.
Paraveinal mesophyll (PVM) is a specialized soybean (Glycine max Merr.) leaf tissue which represents a significant biochemical compartment. Stereological measurements showed that PVM makes up 23% of the mesophyll volume in nodulated soybean. To get an indication of the extent of involvement of PVM in ureide metabolism, physical characteristics, distribution of allantoinase activity and ureide content were determined in isolated PVM protoplasts (PVMP) and mesophyll protoplasts (MP). PVMP were larger and contained less chlorophyll and protein than MP. PVMP had twice as much allantoinase activity per protoplast but only half as much allantoinase activity when expressed on a volume basis as compared to MP. Total leaf ureide concentration was high and nearly equally distributed between MP and PVMP. PVMP had a higher ureide content per protoplast, a higher concentration of allantoic acid and a lower ratio of allantoin to allantoic acid. These results suggest that both tissues have the capacity to assimilate allantoin in vivo. The data are discussed with reference to the relative access of the two mesophyll tissues to incoming ureides.  相似文献   

3.
Immunohistochemical staining was used to determine the cellular distribution of two glycosylated polypeptides (molecular weights of 27 and 29 kilodaltons) which are normally present at low levels in soybean (Glycine max var `Wye') leaves but which markedly accumulate after depodding. These polypeptides, which comprise a substantial portion of the total leaf soluble protein of depodded plants, were exclusively located in the vacuoles of paraveinal mesophyll and associated bundle sheath cells. These results support the unique role of the soybean leaf paraveinal mesophyll in the transport and spatial compartmentation of nitrogen reserves in relation to seed filling.  相似文献   

4.
Summary Microscopy techniques were used to identify the pathway of transport of soybean leaf vegetative storage proteins (VSP/ and VSP94) to the vacuoles of a specialized cell type, the paraveinal mesophyll (PVM), where they accumulate. PVM cells are enriched in endoplasmic reticulum and Golgi bodies relative to surrounding mesophyll cells. The margins of medial and trans Golgi cisternae had attached or closely associated noncoated vesicles with densely staining membranes and lumenal contents of the same appearance as material that accumulated in the vacuole. These vesicles appeared to be transported preferentially to the tonoplast, where fusion with the membrane released the granular contents into the vacuole. Cytochemical staining with phosphotungstic acid and silver methenamine supported this interpretation as both the Golgi vesicles and the tonoplast stained intensely with these reagents, unlike the tonoplast of mesophyll cells which do not accumulate VSP. Immunocytochemical localization for VSP/ labeled the Golgi bodies and associated vesicles, and vacuolar material in PVM cells, but not in mesophyll. Similar labeling was seen in PVM of another legume species previously found to accumulate antigenically similar VSPs. Immunolocalization for VSP94, a lipoxygenase, labeled the PVM cytosol and material in the PVM vacuole, but not the Golgi or vesicles. The results of this study demonstrate that the Golgi pathway is utilized for transport of VSP/ in the PVM, which follows the mechanism of deposition demonstrated for certain seed storage proteins. VSP94 appeared to follow a separate path for accumulation in PVM vacuoles.Abbreviations LOX lipoxygenase - PVM paraveinal mesophyll - RER rough endoplasmic reticulum - TEM transmission electron  相似文献   

5.
Nitrogen and carbohydrate assimilates were temporally and spatially compartmented among various cell types in soybean (Glycine max L., Merr.) leaves during seed filling. The paraveinal mesophyll (PVM), a unique cell layer found in soybean, was demonstrated to function in the synthesis, compartmentation and remobilization of nitrogen reserves prior to and during the seed-filling stages. At anthesis, the PVM vacuoles contain substantial protein which completely disappears by two weeks into the seed filling. Distinct changes in the PVM cytoplasm, tonoplast and organelles were correlated with the presence or absence of the vacuolar material. Microautoradiography following the accumulation of several radiolabeled sugars and amino acids demonstrated the glycoprotein nature of the vacuolar material. Incorporation of methionine, leucine, glucose, and glucosamine resulted in heavy labelling of the PVM vacuole, in contrast to galactose, proline, and mannose which resulted in a much reduced labelling pattern. In addition, starch is unequally compartmented and degraded among the various leaf cells during seed filling. At the end of the photoperiod at the flowering stage, the highest starch accumulation was in the second palisade layer followed by the spongy mesophyll and the first (uppermost) palisade layer. Starch in the first palisade layer was completely degraded during the dark whereas the starch in the second palisade and spongy mesophyll was not remobilized to any appreciable extent. By mid-podfilling (approximately five weeks postanthesis) starch was absent in the first palisade layer at the end of the photoperiod while the second palisade and spongy mesophyll layers contained substantial starch. Starch was remobilized from these latter cells during the remainder of seed filling when current photosynthetic production is low. Structural changes associated with cell senescence first appear in the upper palisade layer and then progress (excluding the PVM) to the second palisade and spongy mesophyll layer. The PVM and phloem appear to retain their structural integrity into the leaf yellowing stage. Reducing sink capacity by pod removal resulted in a continued accumulation of vacuolar protein, an increase in cytoplasmic volume, and fragmentation of the vacuole in the PVM. Pod removal also resulted in an increased amount of accumulated starch (which did not turn over) in all mesophyll layers, and an increase in cell size and cell-wall thickness.  相似文献   

6.
Soybean leaves contain three proteins (the vegetative storage proteins or VSPs) that respond to nitrogen status and are believed to be involved in the temporary storage of nitrogen. One of these proteins, with a molecular mass of 94 kD and termed vsp94, was microsequenced. Partial amino acid sequence indicated that vsp94 was highly homologous to the lipoxygenase protein family. Further evidence that vsp94 is a lipoxygenase was obtained by demonstrating that vsp94 cross-reacted with a lipoxygenase antibody. Also, a lipoxygenase cDNA coding region was able to detect changes in an mRNA that closely parallel changes in vsp94 protein levels resulting from alteration of nitrogen sinks. Extensive immunocytochemical data indicate that this vsp94/lipoxygenase is primarily expressed in the paraveinal mesophyll cells and is subcellularly localized in the vacuole. These observations are significant in that they suggest that plant lipoxygenases may be bifunctional proteins able to function enzymatically in the hydroperoxidation of lipids and also to serve a role in the temporary storage of nitrogen during vegetative growth.  相似文献   

7.
Sink removal and leaf senescence in soybean : cultivar effects   总被引:6,自引:3,他引:3       下载免费PDF全文
Three cultivars of soybean (Glycine max [L.] Merr. cvs Harper, McCall, and Maple Amber) were grown in the field and kept continuously deflowered throughout the normal seedfill period. For all cultivars, deflowering led to delayed leaf abscission and a slower rate of chlorophyll loss. Compared to control plants, photosynthesis and ribulose 1,5-bis-phosphate carboxylase/oxygenase (Rubisco) level declined slightly faster for deflowered Harper, but for both McCall and Maple Amber, leaves of deflowered plants maintained approximately 20% of maximum photosynthesis and Rubisco level 1 month after control plants had senesced. Deflowering led to decreased leaf N remobilization and increased starch accumulation for all cultivars, but cultivars differed in that for McCall and Maple Amber, N and starch concentrations slowly but steadily declined over time whereas for Harper, N and starch concentrations remained essentially constant over time. SDS-PAGE of leaf proteins indicated that for all cultivars, deflowering led to accumulation of four polypeptides (80, 54, 29, and 27 kilodaltons). Western analysis using antisera prepared against the 29 and 27 kilodalton polypeptides verified that these polypeptides were the glycoproteins previously reported to accumulate in vacuoles of paraveinal mesophyll cells of depodded soybean plants. The results indicated that depending on the cultivar, sink removal can lead to either slightly faster or markedly slower loss of photosynthesis and Rubisco. This difference, however, was not associated with the ability to synthesize leaf storage proteins. For any particular cultivar, declines in chlorophyll, photosynthesis, and Rubisco were initiated at approximately the same time for control and deflowered plants. Thus, even though cultivars differed in rate of decay of photosynthetic rate and Rubisco level in response to sink removal, the initiation of leaf senescence was not influenced by presence or absence of developing fruits.  相似文献   

8.
The distribution of amino acids and key enzymes involved innitrogen metabolism was determined in mesophyll cells (MC),mesophyll protoplasts (MP), and paraveinal mesophyll protoplasts(PVMP) isolated from fully expanded trifoliolate leaves of non-nodulatedsoybean. Qualitative and quantitative differences were foundin the distribution of amino acids, with MP containing the highestconcentrations. Activity of nitrate reductase, glycolate oxidase,glutamine synthetase and glutamate dehydrogenase was measuredin both tissue types and differences in activities between thetissue types were seen. PVMP had high glutamate dehydrogenaseactivity when compared to MP. Activities of glycolate oxidaseand glutamine synthetase were much higher in MP on a protoplastbasis while nitrate reductase activity was similar between thetwo protoplast types. These results, on the distribution ofmetabolites and associated enzymes, are discussed as to theirpossible significance to nitrogen metabolism in the soybeanleaf. Key words: Amino acids, glutamate dehydrogenase, Glycine max, nitrate reductase, nitrogen metabolism, paraveinal mesophyll, protoplasts  相似文献   

9.
Purification and characterization of a soybean leaf storage glycoprotein   总被引:33,自引:23,他引:10       下载免费PDF全文
Removing the pods from soybean (Glycine max [L.] Merr. cv Wye) plants induces a change in leaf function which is characterized by a change in the leaf soluble protein pattern. The synthesis of at least four polypeptides (~27, 29, 54, and 80 kilodaltons) is enhanced, and these polypeptides accumulate to levels comprising over 50% of the soluble protein. Heat girdling the petiole also causes the accumulation of these polypeptides, suggesting that the signal for changing leaf function may be associated with inhibition of phloem transport. The 27 and 29 kilodalton polypeptides are glycosylated and have been purified to greater than 90% by (NH4)2SO4 fractionation, concanavilin A affinity, and gel filtration chromatography. These peptides appear to comprise a single protein. Mouse antiserum has been prepared against this glycoprotein and has been used to check for cross-reactivity with seed proteins and to quantitate changes with leaf development. No cross-reactivity was observed with seed soluble proteins from several stages of development. Quantitation showed the highest content in podded plants at, and shortly following, flowering, with levels subsequently declining in conjunction with seed growth. In depodded plants, the level of glycoprotein continued to increase following flowering and accounted for 45% of the soluble leaf protein by 4 weeks after depodding.  相似文献   

10.
Well nodulated, field-grown soybeans (Glycine max [L.] Merr. var Williams) were depodded just prior to seed development and near mid pod-fill. Both treatments caused a considerable increase in leaf dry weight, suggesting continued photosynthate production following pod removal. Moreover, depodding had a marked effect on leaf soluble protein without affecting total proteolytic activity. Early depodding caused a 50% increase in leaf protein, and both early and late depodding caused the retention of protein for several weeks following the decline in control leaves. But despite this retention of protein, leaves of depodded plants showed no difference in the onset of the irreversible decline in photosynthesis. Therefore, although depodding delayed the loss of leaf chlorophyll and protein, it did not delay the onset of functional leaf senescence and in fact, actually appeared to enhance the rate of decline in photosynthesis. There was a good correlation between the irreversible decline in ribulose bisphosphate carboxylase (activity and amount) and that of photosynthesis. In contrast, the correlation did not seem as good between stomatal closure and the onset of the irreversible decline in photosynthesis. The reason total soluble protein remained high following depodding while carboxylase, which normally comprised 40% of the soluble protein, declined was because several polypeptides increased in amounts sufficient to offset the loss of carboxylase. This change in leaf protein composition indicates a change in leaf function; this is discussed in terms of other recent findings.  相似文献   

11.
Light quality effects on corn chloroplast development   总被引:5,自引:1,他引:4       下载免费PDF全文
Corn was grown under greenhouse and controlled light quality conditions incluing full spectrum, red (R), and far-red (FR) sources. Young leaf samples were analyzed for pigments, pigment-proteins, membrane polypeptides, and ultrastructure. Chloroplast development in full spectrum white light was similar to that found in R but different from that found in FR plus low R. Compared to greenhouse and R, FR plus low R (670-760) repressed the formation of photosystem I reaction center protein (CP1 + CP1a) and enhanced those of photosystem II (CPa) in both bundle sheath and mesophyll cells. Photosystem II polypeptides were present in both cell types, with the 46 and 34 kilodalton proteins predominant in mesophyll cells. Bundle sheath cells contained relatively more of the 51 kilodalton and less of the 46 kilodalton proteins. However, they also contained measurable amounts of ribulose bisphosphate carboxylase which may interfere with estimates of the 51 kilodalton protein.  相似文献   

12.
Locating active proton extrusion pumps in leaves   总被引:1,自引:0,他引:1  
Abstract Stabilized microscopic preparations of an apoplastic fluorescent tracer, sulphorhodamine G (SR), have previously shown it confined to leaf cell walls. SR has a pK of 3.2, is dissociated at normal wall pH, and therefore does not enter cells. In transpiring soybean leaves, the SR showed a major internal water pathway in the walls of the paraveinal mesophyll (PVM), which has been implicated in the temporary storage of protein. Also the SR penetrated the PVM and bundle sheath cells, staining organelles and vacuoles, but not other leaf cells. This implies that sufficient SR is undissociated in these walls to allow penetration, and that the pH of the PVM walls is lower than that of most other cells. It is proposed that proton extrusion pumps are revealed by the low wall pH, and that these pumps are probably involved in collecting ammo acids from the transpiration stream.  相似文献   

13.
The objectives of this work were to determine the effect of nodulation on dry matter, reduced-N, and phosphorus accumulation and partitioning in above-ground vegetative parts and pods of field-grown soybean (Glycine max [L.] Merr. cv Harosoy).

From comparison of nodulated and nonnodulated isolines, it was estimated that nodulated plants attained 81 and 71% of total-plant (above ground) N from uptake of soil N in 1981 and 1982, respectively. These data, along with visibly greener leaves of nodulated plants, led us to assume that nonnodulated plants were under a moderate N stress relative to nodulated plants. Nonnodulated plants accumulated less total-plant N and partitioned less dry matter and N to the pods, compared with nodulated plants. This occurred even though net photosynthesis, as estimated by rate and amount of dry matter accumulation, was the same for both nonnodulated and nodulated plants. Rate of dry matter and reduced-N accumulation in pods was less for nonnodulated than for nodulated plants while duration of podfill was similar for both isolines. From these data we concluded that moderate N stress affected partitioning of photosynthate rather than net photosynthesis, and that N played a role in translocation of photosynthate to the pods. Total plants (above-ground portion) and pods of both nodulated and nonnodulated plants accumulated similar amounts of phosphorus, which indicated that phosphorus and N accumulation were independent.

Remobilization of nitrogen and phosphorus from vegetation to pods preceded dry matter remobilization. It appeared that either more nitrogen accumulation prior to podfill, or continued nitrogen assimilation during podfill would increase nitrogen and dry matter partitioning to pods, but that increasing photosynthesis without concomitantly increasing nitrogen input may not necessarily result in enhanced seed production.

  相似文献   

14.
Vacuoles were isolated from primary leaves of barley (Hordeum vulgare L.) by mechanical breakage of protoplasts, and their polypeptide composition analyzed by two-dimensional gel electrophoresis. Vacuoplasts which consist of the vacuole, a portion of the plasmalemma and of the cytoplasma were prepared from protoplasts by ultracentrifugation. By comparing the vacuolar polypeptide pattern with polypeptide patterns of isolated chloroplasts and of vacuoplasts, vacuolar polypeptides could clearly be distinguished from polypeptides derived from cross-contaminating cell compartments. At least 14 polypeptides of apparent molecular mass between 12 and 76 kilodaltons and an isoelectric point between 4.5 and 7.6 could be attributed to the tonoplast fraction of the vacuole, and 35 polypeptides to the soluble fraction of the vacuole. Several lectins with different specificity were employed to characterize the degree and nature of glycosylation of vacuolar polypeptides. Concanavalin A bound to a large number of polypeptides. Three out of the 14 tonoplast polypeptides exhibited detectable carbohydrate moieties and almost two-thirds of the surveyed soluble polypeptides were glycosylated.Abbreviations IEF isoelectric focussing - kDa kilodalton - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

15.
16.
The maize response regulator genes ZmRR1 and ZmRR2 respond to cytokinin, and the translated products seem to be involved in nitrogen signal transduction mediated by cytokinin through the His-Asp phosphorelay. To elucidate the physiological function of the proteins, we examined the temporal and spatial distribution in maize leaves by immunochemical analysis and use of transgenic plants. ZmRR1 and ZmRR2 polypeptides could be distinctively detected by western blotting. The polypeptides accumulated in leaves within 5 h of the supply of nitrate to nitrogen-depleted maize, and the accumulation was transient. The extent of induction was larger in the leaf tip, which is rich in photosynthetically matured cells, than elsewhere. In leaves, the polypeptides accumulated mostly in mesophyll cells. Histochemical analyses of transgenic maize harboring a ZmRR1 promoter-beta-glucuronidase fusion gene also showed most of the expression to be in these cells. These results suggest that ZmRR1 and ZmRR2 are induced in mesophyll cells and function in nitrogen signal transduction mediated by cytokinin.  相似文献   

17.
Antibodies were raised against individual polypeptides of the oxygen-evolving photosystem II (PSII) complex from mesophyll chloroplasts of Vicia faba (Long Pod). These antibodies were used to probe immunologically for the presence of the main structural components of the PSII complex in guard cell chloroplasts, using both immunofluorescence microscopy and Western blotting. Immunofluorescence of epidermal peels with antibodies raised against the extrinsic 33 kilodalton polypeptide, as well as the 47 and the 44 kilodalton subunits and the light-harvesting chlorophyll a/b protein, resulted in intense fluorescence indicating the presence of these polypeptide components in guard cell chloroplasts. Results obtained with Western blot analysis showed that the relative amounts of the 33 kilodalton and light-harvesting complex protein polypeptides are between 60 and 80% of that found in mesophyll cells (on chlorophyll basis). These results provide evidence for the existence of structural components associated with PSII activity in guard cell similar to those of mesophyll chloroplasts.  相似文献   

18.
Soybean (Glycine max) plants accumulate a vacuolar glycoprotein in the parenchymal cells of leaves, petioles, stems, seed pods, and germinating cotyledons that acts in temporary nitrogen storage during vegetative growth. In situ immunolocalization of this vegetative storage protein (VSP) revealed that it accumulates in those parenchymal cells in close proximity to existing and developing vasculature, as well as in epidermal and cortical cells. The protein was more prevalent in younger, nitrogen-importing tissues before pod and seed development. Removal of actively growing seed pods greatly enhanced VSP accumulation, primarily in bundle sheath and paraveinal mesophyll cells. In situ hybridization of a VSP RNA probe to mRNA in leaf sections demonstrated that cell-specific mRNA accumulation corresponded with the pattern of protein localization. Treatment of leaf explants with 50 micromolar methyl jasmonate resulted in accumulation of VSP mRNA and protein in all cell types.  相似文献   

19.
20.
Vegetative lipoxygenases (VLXs) in soybean are hypothesized to function in nitrogen storage and partitioning. Isoform-specific antibodies for four of the five known VLX isoenzymes were used to investigate the influence of source-sink status on protein levels, as well as to analyze the tissue and subcellular localization of the different isoforms. VLXD responded most strongly to sink limitation, although the levels of VLXA, B and C increased as well. After sink limitation, VLXD and the vegetative storage protein, VSPalpha, accumulated in the vacuoles of bundle sheath and paraveinal mesophyll cells, while VLXA, B and C localized to the cytosol of these cells. All five known VLX isoenzymes were active with both linoleic and linolenic acid substrates after expression in Escherichia coli. The strong upregulation of VLXD levels after sink limitation as well as the localization of this isoform to the vacuoles of paraveinal mesophyll and bundle sheath cells (where VSPs are found) strongly suggest that VLXD should be considered as a major storage protein in soybean leaves. Furthermore, since VLXA, B and C also accumulate in sink-limited soybean leaves, are located in the cytosol of paraveinal mesophyll cells and are active at pH values typically found in this compartment, their activities may well contribute to lipid metabolism in this tissue. This multi-gene family is thus ideally poised to play a pivotal role in the balance of N deposition relative to lipid-based storage, defense or signaling, by modulating contributions to these processes in the transient storage cells of the paraveinal mesophyll.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号