首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
Smad7 is overexpressed in 50% of human pancreatic cancers. COLO-357 pancreatic cancer cells engineered to overexpress Smad7 are resistant to the actions of transforming growth factor-beta1 (TGF-beta1) with respect to growth inhibition and cisplatin-induced apoptosis but not with respect to modulation of gene expression. To delineate the mechanisms underlying these divergent consequences of Smad7 overexpression, we studied the effects of Smad7 on TGF-beta1-dependent signaling pathways and cell cycle regulating proteins. TGF-beta1 induced the phosphorylation of MAPK, p38 MAPK, and AKT2 irrespective of the levels of Smad7, and inhibitors of these pathways did not alter TGF-beta1 actions on cell growth. By contrast, Smad7 overexpression interfered with TGF-beta1-mediated attenuation of cyclin A and B levels, inhibition of cdc2 dephosphorylation and CDK2 inactivation, up-regulation of p27, and the maintenance of the retinoblastoma protein (RB) in a hypophosphorylated state. Smad7 also suppressed TGF-beta1-mediated inhibition of E2F activity but did not alter TGF-beta1-mediated phosphorylation of Smad2, the nuclear translocation of Smad2/3/4, or DNA binding of the Smad2/3/4 complex. Although Smad7 did not associate with the type I TGF-beta receptor (TbetaRI), SB-431542, an inhibitor of the kinase activity of this receptor, blocked TGF-beta1-mediated effects on Smad-2 phosphorylation. These findings point toward a novel paradigm whereby Smad7 acts to functionally inactivate RB and de-repress E2F without blocking the activation of TbetaRI and the nuclear translocation of Smad2/3, thereby allowing for TGF-beta1 to exert effects in a cancer cell that is resistant to TGF-beta1-mediated growth inhibition.  相似文献   

3.
4.
5.
6.
Triple negative breast cancer (TNBC) is a highly aggressive breast cancer subtype that lacks effective targeted therapies. Although TNBC is not defined by specific therapeutic targets, a subset of patients have tumors that overexpress cyclins. High cyclin D/E expression catalyzes CDK4/2 activity. In turn, CDK4/2 can non-canonically phosphorylate Smad3, a key TGFβ signaling intermediate, and this phosphorylation has been associated with the shift from tumor-suppressive to oncogenic TGFβ pathway action in breast oncogenesis. Additionally, CDK-mediated Smad3 phosphorylation facilitates an interaction between Smad3 and Pin1, a cis-trans isomerase that is also overexpressed in aggressive breast cancers. Treatment with CYC065, a CDK2/9 inhibitor, decreased non-canonical Smad3 phosphorylation and inhibited the Pin1-Smad3 interaction. We hypothesized that the interaction of Pin1 and Smad3, facilitated by CDK-mediated Smad3 phosphorylation, promotes TNBC cell aggressiveness. Inhibition of the Pin1-Smad3 interaction in TNBC cell lines, through depletion of Pin1 or CYC065 treatment, resulted in decreased cell migration/invasion and impeded the EMT program. Inhibition of CDK-mediated phosphorylation of Smad3 by mutagenesis also decreased cell migration, underscoring the importance of non-canonical CDK2 phosphorylation of Smad3 to enable cell motility. Pin1 depletion restored Smad3 protein levels and tumor-suppressive activity, suggesting that the Pin1-Smad3 interaction has a negative impact on canonical Smad3 action. Collectively, the data show that the Pin1-Smad3 interaction, facilitated by CDK-mediated Smad3 phosphorylation, is associated with oncogenic TGFβ signaling and breast cancer progression. Inhibition of this interaction with CYC065 treatment may provide an important therapeutic option for TNBC patients.  相似文献   

7.
Smad3, a component of the TGFβ signaling pathway, contributes to G1 arrest in breast cancer cells. Overexpression of the cell cycle mitogen, cyclin E, is associated with poor prognosis in breast cancer, and cyclin E/CDK2 mediated phosphorylation of Smad3 has been linked with inhibition of Smad3 activity. We hypothesized that the biological aggressiveness of cyclin E overexpressing breast cancer cells would be associated with CDK2 phosphorylation and inhibition of the tumor suppressant action of Smad3. Expression constructs containing empty vector, wild type (WT) Smad3, or Smad3 with CDK phosphorylation site mutations were co-transfected with a Smad3-responsive reporter construct into parental, vector control (A1), or cyclin E overexpressing (EL1) MCF7 cells. Smad3 function was evaluated by luciferase reporter assay and mRNA analysis. The impact of a Cdk2 inhibitor and cdk2 siRNA on Smad3 activity was also assessed. Cells expressing Smad3 containing mutations of the CDK phosphorylation sites had higher p15 and p21 and lower c-myc mRNA levels, as well as higher Smad3-responsive reporter activity, compared with controls or cells expressing WT Smad3. Transfection of cdk2 siRNA resulted in a significant increase in Smad3-responsive reporter activity compared with control siRNA; reporter activity was also increased after the treatment with a Cdk2 inhibitor. Thus, cyclin E-mediated inhibition of Smad3 is regulated by CDK2 phosphorylation of the Smad3 protein in MCF7 cells. Inhibition of CDK2 may lead to restoration of Smad3 tumor suppressor activity in breast cancer cells, and may represent a potential treatment approach for cyclin E overexpressing breast cancers.  相似文献   

8.
Smad3, a component of the TGFβ signaling pathway, contributes to G1 arrest in breast cancer cells. Overexpression of the cell cycle mitogen, cyclin E, is associated with poor prognosis in breast cancer, and cyclin E/CDK2 mediated phosphorylation of Smad3 has been linked with inhibition of Smad3 activity. We hypothesized that the biological aggressiveness of cyclin E overexpressing breast cancer cells would be associated with CDK2 phosphorylation and inhibition of the tumor suppressant action of Smad3. Expression constructs containing empty vector, wild-type (WT) Smad3 or Smad3 with CDK phosphorylation site mutations were co-transfected with a Smad3-responsive reporter construct into parental, vector control (A1) or cyclin E overexpressing (EL1) MCF7 cells. Smad3 function was evaluated by luciferase reporter assay and mRNA analysis. The impact of a Cdk2 inhibitor and cdk2 siRNA on Smad3 activity was also assessed. Cells expressing Smad3 containing mutations of the CDK phosphorylation sites had higher p15 and p21 and lower c-myc mRNA levels, as well as higher Smad3-responsive reporter activity, compared with controls or cells expressing WT Smad3. Transfection of cdk2 siRNA resulted in a significant increase in Smad3-responsive reporter activity compared with control siRNA; reporter activity was also increased after the treatment with a Cdk2 inhibitor. Thus, cyclin E-mediated inhibition of Smad3 is regulated by CDK2 phosphorylation of the Smad3 protein in MCF7 cells. Inhibition of CDK2 may lead to restoration of Smad3 tumor suppressor activity in breast cancer cells, and may represent a potential treatment approach for cyclin E overexpressing breast cancers.Key words: Smad3, breast cancer, cyclin E, CDK2, TGFβ  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号