首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbonic anhydrase, a zinc enzyme catalyzing the interconversion of carbon dioxide and bicarbonate, is nearly ubiquitous in the tissues of highly evolved eukaryotes. Here we report on the first known plant-type (beta-class) carbonic anhydrase in the archaea. The Methanobacterium thermoautotrophicum DeltaH cab gene was hyperexpressed in Escherichia coli, and the heterologously produced protein was purified 13-fold to apparent homogeneity. The enzyme, designated Cab, is thermostable at temperatures up to 75 degrees C. No esterase activity was detected with p-phenylacetate as the substrate. The enzyme is an apparent tetramer containing approximately one zinc per subunit, as determined by plasma emission spectroscopy. Cab has a CO(2) hydration activity with a k(cat) of 1.7 x 10(4) s(-1) and K(m) for CO(2) of 2.9 mM at pH 8.5 and 25 degrees C. Western blot analysis indicates that Cab (beta class) is expressed in M. thermoautotrophicum; moreover, a protein cross-reacting to antiserum raised against the gamma carbonic anhydrase from Methanosarcina thermophila was detected. These results show that beta-class carbonic anhydrases extend not only into the Archaea domain but also into the thermophilic prokaryotes.  相似文献   

2.
Since 1933, carbonic anhydrase research has focused on enzymes from mammals (alpha class) and plants (beta class); however, two additional classes (gamma and delta) were discovered recently. Cam, from the procaryote Methanosarcina thermophila, is the prototype of the gamma class and the first carbonic anhydrase to be characterized from either an anaerobic organism or the Archaea domain. All of the enzymes characterized from the four classes have been purified aerobically and are reported to contain a catalytic zinc. Herein, we report the anaerobic reconstitution of apo-Cam with Fe2+, which yielded Cam with an effective kcat that exceeded that for the Zn2+-reconstituted enzyme. M?ssbauer spectroscopy showed that the Fe2+-reconstituted enzyme contained high spin Fe2+ that, when oxidized to Fe3+, inactivated the enzyme. Reconstitution with Fe3+ was unsuccessful. Reconstitution with Cu2+, Mn2+, Ni2+, or Cd2+ yielded enzymes with effective kcat values that were 10% or less than the value for the Zn2+-reconstituted Cam. Cam produced in Escherichia coli and purified anaerobically contained iron with effective kcat and kcat/Km values exceeding the values for Zn2+-reconstituted Cam. The results identify a previously unrecognized biological function for iron.  相似文献   

3.
Iverson TM  Alber BE  Kisker C  Ferry JG  Rees DC 《Biochemistry》2000,39(31):9222-9231
The prototype of the gamma-class of carbonic anhydrase has been characterized from the methanogenic archaeon Methanosarcina thermophila. Previously reported kinetic studies of the gamma-class carbonic anhydrase are consistent with this enzyme having a reaction mechanism similar to that of the mammalian alpha-class carbonic anhydrase. However, the overall folds of these two enzymes are dissimilar, and apart from the zinc-coordinating histidines, the active site residues bear little resemblance to one another. The crystal structures of zinc-containing and cobalt-substituted gamma-class carbonic anhydrases from M. thermophila are reported here between 1.46 and 1.95 A resolution in the unbound form and cocrystallized with either SO(4)(2)(-) or HCO(3)(-). Relative to the tetrahedral coordination geometry seen at the active site in the alpha-class of carbonic anhydrases, the active site of the gamma-class enzyme contains additional metal-bound water ligands, so the overall coordination geometry is trigonal bipyramidal for the zinc-containing enzyme and octahedral for the cobalt-substituted enzyme. Ligands bound to the active site all make contacts with the side chain of Glu 62 in manners that suggest the side chain is likely protonated. In the uncomplexed zinc-containing enzyme, the side chains of Glu 62 and Glu 84 appear to share a proton; additionally, Glu 84 exhibits multiple conformations. This suggests that Glu 84 may act as a proton shuttle, which is an important aspect of the reaction mechanism of alpha-class carbonic anhydrases. A hydrophobic pocket on the surface of the enzyme may participate in the trapping of CO(2) at the active site. On the basis of the coordination geometry at the active site, ligand binding modes, the behavior of the side chains of Glu 62 and Glu 84, and analogies to the well-characterized alpha-class of carbonic anhydrases, a more-defined reaction mechanism is proposed for the gamma-class of carbonic anhydrases.  相似文献   

4.
Cyanase catalyzes the reaction of cyanate with bicarbonate to give 2CO2. The cynS gene encoding cyanase, together with the cynT gene for carbonic anhydrase, is part of the cyn operon, the expression of which is induced in Escherichia coli by cyanate. The physiological role of carbonic anhydrase is to prevent depletion of cellular bicarbonate during cyanate decomposition due to loss of CO2 (M.B. Guilloton, A.F. Lamblin, E. I. Kozliak, M. Gerami-Nejad, C. Tu, D. Silverman, P.M. Anderson, and J.A. Fuchs, J. Bacteriol. 175:1443-1451, 1993). A delta cynT mutant strain was extremely sensitive to inhibition of growth by cyanate and did not catalyze decomposition of cyanate (even though an active cyanase was expressed) when grown at a low pCO2 (in air) but had a Cyn+ phenotype at a high pCO2. Here the expression of these two enzymes in this unusual system for cyanate degradation was characterized in more detail. Both enzymes were found to be located in the cytosol and to be present at approximately equal levels in the presence of cyanate. A delta cynT mutant strain could be complemented with high levels of expressed human carbonic anhydrase II; however, the mutant defect was not completely abolished, perhaps because the E. coli carbonic anhydrase is significantly less susceptible to inhibition by cyanate than mammalian carbonic anhydrases. The induced E. coli carbonic anhydrase appears to be particularly adapted to its function in cyanate degradation. Active cyanase remained in cells grown in the presence of either low or high pCO2 after the inducer cyanate was depleted; in contrast, carbonic anhydrase protein was degraded very rapidly (minutes) at a high pCO2 but much more slowly (hours) at a low pCO2. A physiological significance of these observations is suggested by the observation that expression of carbonic anhydrase at a high pCO2 decreased the growth rate.  相似文献   

5.
Rabbit muscle carbonic anhydrase III, a recently discovered third isoenzyme (possibly muscle specific) of carbonic anhydrase (carbonate hydro-lyase, EC 4.2.1.1) (Register, A.M., Koester, M.K. and Noltmann, E.A. (1978) J. Biol. Chem. 253, 4143--4152) has been subjected to isoelectric focusing. When monomer samples, shown to be homogeneous by both ion-exchange and molecular sieve chromatography, were analyzed by this technique, three subspecies were produced, which were similar in amino acid composition and specific CO2 hydratase activity. In addition to having either monomer or dimer status, the subspecies differed in the extent of oxidation of their sulhydryl groups and in their isoelectric pH values (9.3, 8.8, and 8.4, respectively). Also, the presence of dithiothreitol will affect their relative concentrations. These subforms are therefore designated as pseudoisoenzymes and are considered to be neither genetically nor functionally separate enzyme species.  相似文献   

6.
1. Carbonic anhydrase (carbonate hydro-lyase, EC 4.2.1.1) has been purified from erythrocytes of hagfish (Myxine glutinosa). A single form with low specific CO2 hydration activity was isolated. The purified carbonic anhydrase appeared homogeneous judging from polyacrylamide gel electrophoresis and gel filtration experiments. The protein has a molecular weight of about 29 000, corresponding to about 260 amino acid residues. This molecular weight is in accordance with other vertebrate carbonic anhydrases with the exception of the elasmobranch enzymes, which have Mr 36 000--39 000. 2. The molecular weight obtained for hagfish carbonic anhydrase indicates that a carbonic anhydrase with Mr approx. 29 000 is the ancestral type of the vertebrate enzyme rather than, as in sharks, a heavier carbonic anhydrase molecule. 3. The circular dichroism spectrum may indicate a somewhat different structural arrangement of aromatic amino acid residues in this enzyme than in the mammalian carbonic anhydrases. 4. The enzyme is strongly inhibited by acetazolamide and also to a lesser extent by monovalent anions. 5. Zn2+, which is essential for activity, appears, contrary to other characterized carbonic anhydrases, less strongly bound in the active site of the enzyme.  相似文献   

7.
Plasma membranes were isolated from green leaves of maize ( Zea mays ), spinach ( Spinacia oleracea ), Setaria viridis and wheat ( Triticum aestivum cv. Omase) by aqueous two-phase partitioning. Carbonic anhydrase activity was detected in these membranes. The activity was inhibited by specific inhibitors for carbonic anhydrase, acetazolamide and ethoxyzolamide. The carbonic anhydrase activity was markedly enhanced by the addition of Triton X-100 to the plasma membranes. The highest activity was obtained in the presence of 0.015% detergent. The activity was scarcely affected when the plasma membrane vesicles were treated with proteinase K, but largely inactivated by the protease after treating the membranes with Triton X-100. These results indicate that carbonic anhydrase faces the cytoplasmic side of the membrane since plasma membranes purified by aqueous two-phase partitioning are tightly sealed vesicles of right side-out orientation (apoplastic side-out). With leaves of C4 plants, 20 to 60% of the total carbonic anhydrase activity was found in the microsomal fraction. By contrast, only 1 to 3% of the activity was found in the microsomal fraction from leaves of C3 plants. Western blot analysis showed that a polypeptide in the spinach plasma membrane cross-reacted with an antiserum raised against spinach chloroplast carbonic anhydrase, and that the molecular mass of the plasma membrane enzyme was higher than that of the chloroplast carbonic anhydrase (28 and 26 kDa, respectively). This indicates the presence of different molecular species of carbonic anhydrase in the chloroplast and the plasma membrane.  相似文献   

8.
Membrane-associated carbonic anhydrase purified from bovine lung   总被引:18,自引:0,他引:18  
We found carbonic anhydrase activity associated with particulate fractions of homogenates of rat, rabbit, human, and bovine lungs. These membrane-associated carbonic anhydrases were remarkably stable in solutions containing sodium dodecyl sulfate (SDS). The bovine enzyme was dissolved with SDS and purified by affinity chromatography and gel filtration. The purified enzyme contains glucosamine, galactose, and sialic acid; it is at least 20% carbohydrate. The apparent molecular weight by SDS-polyacrylamide gel electrophoresis (52,000) may be higher than the actual molecular weight due to the presence of carbohydrate. The enzyme contains cystine, an amino acid that is absent in bovine erythrocyte carbonic anhydrase. Dithiothreitol greatly accelerated the rate of inactivation of the membrane-associated enzyme in SDS, so disulfide bonds appear to stabilize this enzyme. The specific CO2-hydrating activity was about half that of the erythrocyte enzyme. Acetazolamide inhibits the membrane-associated enzyme (Ki = 10 nM) nearly as well as the erythrocyte enzyme (Ki = 3 nM). Antibody to bovine erythrocyte carbonic anhydrase did not inhibit the membrane-associated enzyme. Other investigators have accumulated a good deal of evidence for carbonic anhydrase on the luminal surface of pulmonary capillaries. The enzyme described here appears to be a new isozyme whose properties are consistent with such a localization.  相似文献   

9.
A cDNA clone 1,156 base pairs in length was selected by screening a lambda gt11 library with antibodies directed against spinach chloroplast carbonic anhydrase (carbonate dehydratase, EC 4.2.1.1). Sequence analysis revealed an open reading frame of 957 base pairs encoding a polypeptide containing 319 amino acids with a molecular weight of 34,569. This polypeptide is of sufficient size to represent the precursor of spinach chloroplast carbonic anhydrase. The polypeptide contains a sequence of 19 amino acids identical to the sequence of a cyanogen bromide fragment from spinach carbonic anhydrase. In addition, Escherichia coli was transformed with a plasmid that expresses spinach carbonic anhydrase. Lysates prepared from transformed E. coli contain acetazolamide-inhibitable carbonic anhydrase activity. The amino acid sequence of spinach carbonic anhydrase is distinct from those reported for the mammalian isozymes.  相似文献   

10.
Here we report the existence, purification and characterisation of carbonic anhydrase in Plasmodium falciparum. The infected red cells contained carbonic anhydrase approximately 2 times higher than those of normal red cells. The three developmental forms of the asexual stages, ring, trophozoite and schizont were isolated from their host red cells and found to have stage-dependent activity of the carbonic anhydrase. The enzyme was purified to homogeneity from the crude extract of P. falciparum using multiple steps of fast liquid chromatographic techniques. It had a Mr of 32 kDa and was active in a monomeric form. The human red cell enzyme was also purified for comparison with the parasite enzyme. The parasite enzyme activity was sensitive to well-known sulfonamide-based inhibitors of both bacterial and mammalian enzymes, sulfanilamide and acetazolamide. The kinetic properties and the amino terminal sequences of the purified enzymes from the parasite and host red cell were found to be different, indicating that the purified protein most likely exhibited the P. falciparum carbonic anhydrase activity. In addition, the enzyme inhibitors had antimalarial effect against in vitro growth of P. falciparum. Moreover, the vital contribution of the carbonic anhydrase to the parasite survival makes the enzyme an attractive target for therapeutic evaluation.  相似文献   

11.
The gene encoding L-rhamnose isomerase (L-RhI) from Pseudomonas stutzeri was cloned into Escherichia coli and sequenced. A sequence analysis of the DNA responsible for the L-RhI gene revealed an open reading frame of 1,290 bp coding for a protein of 430 amino acid residues with a predicted molecular mass of 46,946 Da. A comparison of the deduced amino acid sequence with sequences in relevant databases indicated that no significant homology has previously been identified. An amino acid sequence alignment, however, suggested that the residues involved in the active site of L-RhI from E. coli are conserved in that from P. stutzeri. The L-RhI gene was then overexpressed in E. coli cells under the control of the T5 promoter. The recombinant clone, E. coli JM109, produced significant levels of L-RhI activity, with a specific activity of 140 U/mg and a volumetric yield of 20,000 U of soluble enzyme per liter of medium. This reflected a 20-fold increase in the volumetric yield compared to the value for the intrinsic yield. The recombinant L-RhI protein was purified to apparent homogeneity on the basis of three-step chromatography. The purified recombinant enzyme showed a single band with an estimated molecular weight of 42,000 in a sodium dodecyl sulfate-polyacrylamide gel. The overall enzymatic properties of the purified recombinant L-RhI protein were the same as those of the authentic one, as the optimal activity was measured at 60 degrees C within a broad pH range from 5.0 to 11.0, with an optimum at pH 9.0.  相似文献   

12.
The genes for the acetate-activating enzymes, acetate kinase and phosphotransacetylase (ack and pta), from Methanosarcina thermophila TM-1 were cloned and sequenced. Both genes are present in only one copy per genome, with the pta gene adjacent to and upstream of the ack gene. Consensus archaeal promoter sequences are found upstream of the pta coding region. The pta and ack genes encode predicted polypeptides with molecular masses of 35,198 and 44,482 Da, respectively. A hydropathy plot of the deduced phosphotransacetylase sequence indicates that it is a hydrophobic polypeptides; however, no membrane-spanning domains are evident. Comparison of the amino acid sequences deduced from the M. thermophila and Escherichia coli ack genes indicate similar subunit molecular weights and 44% identity (60% similarity). The comparison also revealed the presence of several conserved arginine, cysteine, and glutamic acid residues. Arginine, cysteine, and glutamic acid residues have previously been implicated at or near the active site of the E. coli acetate kinase. The pta and ack genes were hyperexpressed in E. coli, and the overproduced enzymes were purified to homogeneity with specific activities higher than those of the enzymes previously purified from M. thermophila. The overproduced phosphotransacetylase and acetate kinase migrated at molecular masses of 37,000 and 42,000 Da, respectively. The activity of the acetate kinase is optimal at 65 degrees C and is protected from thermal inactivation by ATP. Diethylpyrocarbonate and phenylglyoxal inhibited acetate kinase activity in a manner consistent with the presence of histidine and arginine residues at or near the active site; however, the thiol-directed reagents 5,5'-dithiobis (2-nitrobenzoic acid) and N-ethylmaleimide were ineffective.  相似文献   

13.
A 60-kDa, salt-inducible, internally duplicated alpha-type carbonic anhydrase (Dca) is associated with the plasma membrane of the extremely salt-tolerant, unicellular, green alga Dunaliella salina. Unlike other carbonic anhydrases, Dca remains active over a very broad range of salinities (0-4M NaCl), thus representing a novel type of extremely halotolerant enzyme. To elucidate the structural principles of halotolerance, structure-function investigations of Dca have been initiated. Such studies require considerable amounts of the enzyme, and hence, large-scale algal cultivation. Furthermore, the purified enzyme is often contaminated with other, co-purifying algal carbonic anhydrases. Expression in heterologous systems offers a means to produce, and subsequently purify, sufficiently large amounts of Dca required for activity and structural studies. Attempts to over-express Dca in the Escherichia coli BL21(DE3)pLysS strain, after optimizing various expression parameters, produced soluble, but weakly active protein, composed of fully reduced and variably -S-S- cross-linked chains (each of the Dca repeats contains a pair of cysteine residues, presumably forming a disulfide bond). However, when the E. coli Origami B(DE3)pLysS strain was used as a host, a functionally active enzyme with proper disulfide bonds was formed in good yield. Affinity-purified recombinant Dca resembled the native enzyme from D. salina in activity and salt tolerance. Hence, this expression system offers a means of pursuing detailed studies of this extraordinary protein using biochemical, biophysical, and crystallographic approaches.  相似文献   

14.
The cell extract protein content of acetate- and methanol-grown Methanosarcina thermophila TM-1 was examined by two-dimensional polyacrylamide gel electrophoresis. More than 100 mutually exclusive spots were present in acetate- and methanol-grown cells. Spots corresponding to acetate kinase, phosphotransacetylase, and the five subunits of the carbon monoxide dehydrogenase complex were identified in acetate-grown cells. Activities of formylmethanofuran dehydrogenase, formylmethanofuran:tetrahydromethanopterin formyltransferase, 5,10-methenyltetrahydromethanopterin cyclohydrolase, methylene tetrahydromethanopterin:coenzyme F420 oxidoreductase, formate dehydrogenase, and carbonic anhydrase were examined in acetate- and methanol-grown Methanosarcina thermophila. Levels of formyltransferase in either acetate- or methanol-grown Methanosarcina thermophila were approximately half the levels detected in H2-CO2-grown Methanobacterium thermoautotrophicum. All other enzyme activities were significantly lower in acetate- and methanol-grown Methanosarcina thermophila.  相似文献   

15.
Procedures for isolating carbonic anhydrase (EC 4.2.1.1) enzymes from the erythrocytes and the mucosae of the gastrointestinal tract of guinea pigs are described. From a haemolysate, haemoglobin was removed by the addition of ammonium sulphate, and also by two other methods, namely by gel filtration or by adsorption on DEAE-Sephadex. The crude enzyme thus obtained was resolved into the different isoenzymes by chromatography with DEAE-cellulose. From particle-free supernatants of homogenates of some gastrointestinal tissues, carbonic anhydrases were purified by ammonium sulphate fractionation, gel filtration, and ion-exchange chromatography with DEAE-cellulose. The major isoenzymes from blood, stomach, proximal colonic mucosa and caecal mucosa were homogeneous during ion-exchange chromatography, acrylamide-gel electrophoresis, and centrifugal examination. From these tissues, carbonic anhydrase was isolated as two major isoenzymes. They resemble the pairs of isoenzymes discovered in the bloods of other species. The carbon dioxide hydratase activity of one isoenzyme (;high activity' carbonic anhydrase) was 40 times that of the other isoenzyme (;low activity' carbonic anhydrase), as measured at a single substrate concentration. Two other minor components of the enzyme are also found in guinea-pig erythrocytes. All of the enzymes isolated had molecular weights of nearly 30000 (sedimentation equilibrium). ;High activity' carbonic anhydrases from blood and gastrointestinal tissues were indistinguishable according to some chemical, physical and kinetic measurements; similarly ;low activity' carbonic anhydrases from those tissues were indistinguishable. ;High activity' carbonic anhydrase was markedly different from the ;low activity' carbonic anhydrase with respect to its amino acid composition, chromatographic behaviour and isoelectric pH value. Marked differences were also found in the tissue concentrations of the major isoenzymes. It is suggested that the characteristic and selective distribution of the different forms of carbonic anhydrase in the guinea-pig tissues is related to the specific and different physiological functions of the enzymes.  相似文献   

16.
In order to explore the structure--function relationship of the Escherichia coli asparagine synthetase A it was necessary to devise a system for overexpression of the gene and purification of the gene product. The E. coli asparagine synthetase A structural gene was fused to the 3' end of the human carbonic anhydrase II structural gene and overexpressed in E. coli. The gene product, a 66 kDa fusion protein, which exhibited asparagine synthetase activity, was purified in a single step by affinity chromatography and used as the antigen for the production of monoclonal antibodies. The monoclonal antibodies were screened by ELISA. Colonies were chosen which were positive for purified fusion protein and negative for purified human carbonic anhydrase II. The E. coli asparagine synthetase A gene was then overexpressed and the gene product was used without purification for the final screen. The antibodies selected were used for immunoaffinity chromatography to purify the recombinant overexpressed E. coli asparagine synthetase A. Thus, a procedure is now available so that asparagine synthetase A can be purified to homogeneity in a single step.  相似文献   

17.
Phenylalanine dehydrogenase produced by Bacillus badius IAM 11059 was purified from the crude extract of B. badius to homogeneity, as judged by disc gel electrophoresis. The enzyme has an isoelectric point of 3.5 and a relative molecular mass, Mr, of 310,000-360,000. The enzyme is composed of identical subunits with an Mr 41,000-42,000. The substrate specificity of the enzyme in the oxidative deamination reaction was high for L-phenylalanine, but rather low in the reductive amination reaction, with phenylpyruvate, p-hydroxyphenylpyruvate, and 2-oxohexanoate. The gene for the enzyme was cloned into Escherichia coli with plasmid pBR322 as a vector. The enzyme was expressed in high level in E. coli. The enzyme produced by E. coli transformant was purified to homogeneity and shown to be identical to that of B. badius IAM 11,059 with respect to the specific activity, Mr, subunit structure and amino acid composition.  相似文献   

18.
Measurable levels of activity of NAD+ kinases of actinomycetes Micrococcus luteus and Corynebacterium ammoniagenes were observed after substituting inorganic tripolyphosphate for ATP, whereas the enzyme from the eubacterium Escherichia coli was not active with this substrate. Gradient PAGE found two molecular isoforms of NAD+ kinase in C. ammoniagenes and E. coli; four forms were found in M. luteus. All isoforms of this enzyme found in C. ammoniagenes and M. luteus displayed a NADP-synthesizing activity in the presence of either ATP or tripolyphosphate. Because of its capability of utilizing inorganic tripolyphosphate, M. luteus is the most promising NADP producer organism.  相似文献   

19.
The purification, immobilization, and characterization of carbonic anhydrase (CA) secreted by Bacillus subtilis VSG-4 isolated from tropical soil have been investigated in this work. Carbonic anhydrase was purified using ammonium sulfate precipitation, Sephadex-G-75 column chromatography, and DEAE-cellulose chromatography, achieving a 24.6-fold purification. The apparent molecular mass of purified CA obtained by SDS-PAGE was found to be 37 kD. The purified CA was entrapped within a chitosan-alginate polyelectrolyte complex (C-A PEC) hydrogel for potential use as an immobilized enzyme. The optimum pH and temperature for both free and immobilized enzymes were 8.2 and 37°C, respectively. The immobilized enzyme had a much higher storage stability than the free enzyme. Certain metal ions, namely, Co(2+), Cu(2+), and Fe(3+), increased the enzyme activity, whereas CA activity was inhibited by Pb(2+), Hg(2+), ethylenediamine tetraacetic acid (EDTA), 5,5'-dithiobis-(2-nitrobenzoic acid (DTNB), and acetazolamide. Free and immobilized CAs were tested further for the targeted application of the carbonation reaction to convert CO(2) to CaCO(3). The maximum CO(2) sequestration potential was achieved with immobilized CA (480?mg CaCO(3)/mg protein). These properties suggest that immobilized VSG-4 carbonic anhydrase has the potential to be used for biomimetic CO(2) sequestration.  相似文献   

20.
Cyanase is an inducible enzyme in Escherichia coli that catalyzes the reaction of cyanate with bicarbonate to give two CO2 molecules. The gene for cyanase is part of the cyn operon, which includes cynT and cynS, encoding carbonic anhydrase and cyanase, respectively. Carbonic anhydrase functions to prevent depletion of cellular bicarbonate during cyanate decomposition (the product CO2 can diffuse out of the cell faster than noncatalyzed hydration back to bicarbonate). Addition of cyanate to the culture medium of a delta cynT mutant strain of E. coli (having a nonfunctional carbonic anhydrase) results in depletion of cellular bicarbonate, which leads to inhibition of growth and an inability to catalyze cyanate degradation. These effects can be overcome by aeration with a higher partial CO2 pressure (M. B. Guilloton, A. F. Lamblin, E. I. Kozliak, M. Gerami-Nejad, C. Tu, D. Silverman, P. M. Anderson, and J. A. Fuchs, J. Bacteriol. 175:1443-1451, 1993). The question considered here is why depletion of bicarbonate/CO2 due to the action of cyanase on cyanate in a delta cynT strain has such an inhibitory effect. Growth of wild-type E. coli in minimal medium under conditions of limited CO2 was severely inhibited, and this inhibition could be overcome by adding certain Krebs cycle intermediates, indicating that one consequence of limiting CO2 is inhibition of carboxylation reactions. However, supplementation of the growth medium with metabolites whose syntheses are known to depend on a carboxylation reaction was not effective in overcoming inhibition related to the bicarbonate deficiency induced in the delta cynT strain by addition of cyanate. Similar results were obtained with a deltacyn strain (since cyanase is absent, this strain does not develop a bicarbonate deficiency when cyanate is added); however, as with the deltacynT strain, a higher partial CO(2) pressure in the aerating gas or expression of carbonic anhydrase activity (which contributes to a higher intercellular concentration of bicarbonate/CO(2)) significantly reduced inhibition of growth. There appears to be competition between cyanate and bicarbonate/CO(2) at some unknown but very important site such that cyanate binding inhibits growth. These results suggest that bicarbonate/CO(2) plays a significant role in the growth of E. coli other than simply as a substrate for carboxylation reactions and that strains with mutations in the cyn operon provide a unique model system for studying aspects of the metabolism of bicarbonate/CO(2) and its regulation in bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号