首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Expansion of the polyglutamine (polyQ) region in the protein ataxin-3 is associated with spinocerebellar ataxia type 3, an inherited neurodegenerative disorder that belongs to the family of polyQ diseases. Increasing evidence indicates that protein aggregation and fibre formation play an important role in these pathologies. In a previous study, we determined the domain architecture of ataxin-3, suggesting that it comprises a globular domain, named Josephin, and a more flexible C-terminal region, that includes the polyQ tract. Here, we have characterised for the first time the biophysical properties of the isolated Josephin motif, showing that it is an autonomously folded unit and that it has no significant interactions with the C-terminal region. Study of its thermodynamic stability indicates that Josephin has an intrinsic tendency to aggregate and forms temperature-induced fibrils similar to those described for expanded ataxin-3. We show that, under destabilising conditions, the behaviours of the isolated Josephin domain and ataxin-3 are extremely similar. Our data therefore strongly suggest that the stability and aggregation properties of non-expanded ataxin-3 are determined by those of the Josephin domain, which is sufficient to reproduce the behaviour of the full-length protein. Our data support a mechanism in which the thermodynamic stability of ataxin-3 is governed by the properties of the Josephin domain, but the presence of an expanded polyQ tract increases dramatically the protein's tendency to aggregate.  相似文献   

2.
Insoluble aggregates of polyglutamine-containing proteins are usually conjugated with ubiquitin in neurons of individuals with polyglutamine diseases. We now show that ataxin-3, in which the abnormal expansion of a polyglutamine tract is responsible for spinocerebellar ataxia type 3 (SCA3), undergoes ubiquitylation and degradation by the proteasome. Mammalian E4B (UFD2a), a ubiquitin chain assembly factor (E4), copurified with the polyubiquitylation activity for ataxin-3. E4B interacted with, and thereby mediated polyubiquitylation of, ataxin-3. Expression of E4B promoted degradation of a pathological form of ataxin-3. In contrast, a dominant-negative mutant of E4B inhibited degradation of this form of ataxin-3, resulting in the formation of intracellular aggregates. In a Drosophila model of SCA3, expression of E4B suppressed the neurodegeneration induced by an ataxin-3 mutant. These observations suggest that E4 is a rate-limiting factor in the degradation of pathological forms of ataxin-3, and that targeted expression of E4B is a potential gene therapy for SCA3.  相似文献   

3.
Wang H  Jia N  Fei E  Wang Z  Liu C  Zhang T  Fan J  Wu M  Chen L  Nukina N  Zhou J  Wang G 《Journal of neurochemistry》2007,101(6):1651-1661
Machado-Joseph disease (MJD) is an autosomal dominant neurodegenerative disorder caused by an expansion of the polyglutamine tract near the C-terminus of the MJD-1 gene product, ataxin-3. Ataxin-3 is degraded by the proteasome. However, the precise mechanism of ataxin-3 degradation remains to be elucidated. In this study, we show direct links between ataxin-3 and the proteasome. p45, an ATPase subunit of the 19S proteasome, interacts with ataxin-3 in vitro and stimulates the degradation of ataxin-3 in an in vitro reconstituted degradation assay system. The effect of p45 on ataxin-3 degradation is blocked by MG132, a proteasome inhibitor. In N2a or 293 cells, overexpression of p45 strikingly enhances the clearance of both normal and expanded ataxin-3, but not alpha synuclein or SOD1, implying a functional specificity of p45 in this proteolytic process. The N-terminus of ataxin-3, which serves as a recognition site by p45, is necessary for the proteolytic process of ataxin-3. We also show that other three ATPases of the 19S proteasome, MSS1, p48, and p56 have no effect on ataxin-3 degradation. These data provide evidence that p45 plays an important role in regulating ataxin-3 degradation by the proteasome.  相似文献   

4.
The polyglutamine diseases are a family of nine proteins where intracellular protein misfolding and amyloid-like fibril formation are intrinsically coupled to disease. Previously, we identified a complex two-step mechanism of fibril formation of pathologically expanded ataxin-3, the causative protein of spinocerebellar ataxia type-3 (Machado-Joseph disease). Strikingly, ataxin-3 lacking a polyglutamine tract also formed fibrils, although this occurred only via a single-step that was homologous to the first step of expanded ataxin-3 fibril formation. Here, we present the first kinetic analysis of a disease-associated polyglutamine repeat protein. We show that ataxin-3 forms amyloid-like fibrils by a nucleation-dependent polymerization mechanism. We kinetically model the nucleating event in ataxin-3 fibrillogenesis to the formation of a monomeric thermodynamic nucleus. Fibril elongation then proceeds by a mechanism of monomer addition. The presence of an expanded polyglutamine tract leads subsequently to rapid inter-fibril association and formation of large, highly stable amyloid-like fibrils. These results enhance our general understanding of polyglutamine fibrillogenesis and highlights the role of non-poly(Q) domains in modulating the kinetics of misfolding in this family.  相似文献   

5.
Ataxin-3 is a member of the polyglutamine family of proteins, which are associated with at least nine different neurodegenerative diseases. In the disease state, expansion of the polyglutamine tract leads to dysfunction and death of neurons, as well as formation of proteinaceous aggregates known as nuclear inclusions. Intriguingly, both expanded and non-expanded forms of ataxin-3 are observed within these nuclear inclusions. Ataxin-3 is the smallest of the polyglutamine disease proteins and in its expanded form causes the neurodegenerative disorder Machado-Joseph disease. Using a non-pathological variant containing 28 residues in its polyglutamine tract, we have probed the folding and misfolding pathways of ataxin-3. We describe here the first equilibrium folding pathway delineated for any polyglutamine protein and show that ataxin-3 folds reversibly via a single intermediate species. We have also explored further the misfolding potential of the protein and found that partial destabilization of ataxin-3 by chemical denaturation leads to the formation of fibrillar aggregates by the non-pathological variant. These results provide an insight into the possible mechanisms by which polyglutamine expansion may affect the stability and conformation of the protein. The implications of this are considered in the wider context of the development and pathogenesis of polyglutamine diseases.  相似文献   

6.
Machado-Joseph disease/Spinocerebellar ataxia type 3 is an autosomal dominant neurodegenerative disease caused by polyglutamine-expanded ataxin-3. In this study, COS7-MJD26-GFP and COS7-MJD78-GFP cells, which were stably transfected with GFP-tagged full-length MJD gene with either 26 or 78 glutamine repeat, were used to demonstrate that both protein and mRNA levels of bcl-2 are decreased in the presence of expanded ataxin-3. However, the promoter activity in COS7-MJD78-GFP cells is much higher than that in COS7-MJD26-GFP, suggesting that the decrease of bcl-2 expression may be due to defects in mRNA stability. Therefore, 5,6-dichloro-benzimidazole 1-β-d-ribofuranoside, an adenosine analogue to inhibit mRNA synthesis, was used to estimate the bcl-2 mRNA degradation rate. Our results demonstrated that bcl-2 mRNA decay in COS7-MJD78-GFP cells is about 3.5-fold faster than that in COS7-MJD26-GFP. Our study provides evidence, for the first time, that dysfunction of mRNA stability resulted from the presence of mutant ataxin-3.  相似文献   

7.
Spinocerebellar ataxia type 2 (SCA2) is a hereditary neurodegenerative disorder caused by a trinucleotide expansion in the SCA2 gene, encoding a polyglutamine stretch in the gene product ataxin-2 (ATX2), whose cellular function is unknown. However, ATX2 interacts with A2BP1, a protein containing an RNA-recognition motif, and the existence of an interaction motif for the C-terminal domain of the poly(A)-binding protein (PABC) as well as an Lsm (Like Sm) domain in ATX2 suggest that ATX2 like its yeast homolog Pbp1 might be involved in RNA metabolism. Here, we show that, similar to Pbp1, ATX2 suppresses the petite (pet-) phenotype of Deltamrs2 yeast strains lacking mitochondrial group II introns. This finding points to a close functional relationship between the two homologs. To gain insight into potential functions of ATX2, we also generated a comprehensive protein interaction network for Pbp1 from publicly available databases, which implicates Pbp1 in diverse RNA-processing pathways. The functional relationship of ATX2 and Pbp1 is further corroborated by the experimental confirmation of the predicted interaction of ATX2 with the cytoplasmic poly(A)-binding protein 1 (PABP) using yeast-2-hybrid analysis as well as co-immunoprecipitation experiments. Immunofluorescence studies revealed that ATX2 and PABP co-localize in mammalian cells, remarkably, even under conditions in which PABP accumulates in distinct cytoplasmic foci representing sites of mRNA triage.  相似文献   

8.
Spinocerebellar ataxia type 1 (SCA1) is an inherited neurodegenerative disorder. The mutation causing SCA1 is an expansion in the polyglutamine tract of the ATXN1 protein. Previous work demonstrated that phosphorylation of mutant ATXN1 at serine 776 (S776), a putative Akt phosphorylation site, is critical for pathogenesis. To examine this pathway further, we utilized a cell-transfection system that allowed the targeting of Akt to either the cytoplasm or the nucleus. In contrast to HeLa cells, we found that Akt targeted to the cytoplasm increased the degradation of ATXN1 in Chinese hamster ovary cells. However, Akt targeted to the cytoplasm failed to destabilize ATXN1 if Hsp70/Hsc70 was present. Thus, Hsp70/Hsc70 can regulate ATXN1 levels in concert with phosphorylation of ATXN1 at S776.  相似文献   

9.
SUMO-1共价修饰ataxin-3   总被引:3,自引:0,他引:3  
为了探讨ataxin-3的正常生理功能以及脊髓小脑型共济失调Ⅲ型/马查多-约瑟夫病的发病机理,采用酵母双杂交技术,选择polyQ扩展突变型ataxin-3全长构建诱饵质粒,筛选成人脑cDNA文库,寻找与之相互作用的蛋白质,筛选到互作蛋白smallubiquitin-likemodifier1(SUMO-1).进一步运用免疫共沉淀技术证实,SUMO-1在哺乳动物细胞中共价修饰野生型和polyQ扩展突变型ataxin-3.免疫荧光共定位实验发现,polyQ扩展突变型ataxin-3形成的核内蛋白聚合体与SUMO-1共定位.研究提示,ataxin-3的正常生理功能可能受SUMO-1的调节,SUMO-1可能参与了脊髓小脑型共济失调Ⅲ型/马查多-约瑟夫病的发病机制.  相似文献   

10.
Expansions of polyglutamine (polyQ) tracts in different proteins cause 9 neurodegenerative conditions, such as Huntington disease and various ataxias. However, many normal mammalian proteins contain shorter polyQ tracts. As these are frequently conserved in multiple species, it is likely that some of these polyQ tracts have important but unknown biological functions. Here we review our recent study showing that the polyQ domain of the deubiquitinase ATXN3/ataxin-3 enables its interaction with BECN1/beclin 1, a key macroautophagy/autophagy initiator. ATXN3 regulates autophagy by deubiquitinating BECN1 and protecting it from proteasomal degradation. Interestingly, expanded polyQ tracts in other polyglutamine disease proteins compete with the shorter ATXN3 polyQ stretch and interfere with the ATXN3-BECN1 interaction. This competition results in decreased BECN1 levels and impaired starvation-induced autophagy, which phenocopies the loss of autophagic function mediated by ATXN3. Our findings describe a new autophagy-protective mechanism that may be altered in multiple neurodegenerative diseases.  相似文献   

11.
12.
Spinocerebellar ataxia type 2 (SCA2) and type 3 (SCA3) are two common autosomal-dominant inherited ataxia syndromes, both of which are related to the unstable expansion of trinucleotide CAG repeats in the coding region of the related ATXN2 and ATXN3 genes, respectively. The poly-glutamine (poly-Q) tract encoded by the CAG repeats has long been recognized as an important factor in disease pathogenesis and progress. In this study, using the I-TASSER method for 3D structure prediction, we investigated the effect of poly-Q tract enlargement on the structure and folding of ataxin-2 and ataxin-3 proteins. Our results show good agreement with the known experimental structures of the Josephin and UIM domains providing credence to the simulation results presented here, which show that the enlargement of the poly-Q region not only affects the local structure of these regions but also affects the structures of functional domains as well as the whole protein. The changes observed in the predicted models of the UIM domains in ataxin-3 when the poly-Q track is enlarged provide new insights on possible pathogenic mechanisms.  相似文献   

13.
14.
15.
Machado-Joseph disease (MJD)/spinocerebellar ataxia type 3 (SCA3) is an autosomal dominant spinocerebellar degeneration characterized by a wide range of clinical manifestations. The molecular mechanisms underlying the selective neuronal death typical of MJD/SCA3 are unknown. In this study, human SK-N-SH neuroblastoma cells stably transfected with full-length MJD with 78 CAG repeats were assayed for the dynamic expression of Hsp27, known as a suppressor of poly-Q mediated cell death, in the presence of mutant ataxin-3 in different passages of cultured cells. A dramatic decrease of Hsp27 expression was observed in the earlier passage of cultured SK-N-SH-MJD78 cells, however, the later passage of cells showed a significant increase of Hsp27 to almost the same level of the parental cells. Furthermore, immunohistochemical analysis of MJD transgenic mice and post-mortem human brain tissues showed increased expression of Hsp27 compared to normal control brain, suggesting an up-regulation of Hsp27 in the end stage of MJD. However, mutant cells of earlier passages were more susceptible to serum deprivation than mutant cells of later passages, indicating weak tolerance toward stress in cells with reduced Hsp27. While heat shock was used to assess the stress response, cells expressing mutant ataxin-3 displayed normal response upon heat shock stimuli when compared to the parental cells. Taken together, we proposed that during the early disease stage, the reduction of Hsp27 synthesis mitigated the ability of neuron cells to cope with cytotoxicity induced by mutant ataxin-3, triggering the cell death process during the disease progress. In the late stage of disease, after prolonged stressful conditions of polyglutamine cytotoxicity, the increased level of Hsp27 may reflect a dynamic process of the survived cells to unfold and remove mutant ataxin-3. However, this increased Hsp27 still cannot reverse the global dysfunction of cellular proteins due to accumulation of cytotoxic effects.  相似文献   

16.
Ataxin-3 belongs to the family of polyglutamine proteins, which are associated with nine different neurodegenerative disorders. Relatively little is known about the structural and functional properties of ataxin-3, and only recently have these aspects of the protein begun to be explored. We have performed a preliminary investigation into the conserved N-terminal domain of ataxin-3, termed Josephin. We show that Josephin is a monomeric domain which folds into a globular conformation and possesses ubiquitin protease activity. In addition, we demonstrate that the presence of the polyglutamine region of the protein does not alter the structure of the protein. However, its presence destabilizes the Josephin domain. The implications of these data in the pathogenesis of polyglutamine repeat proteins are discussed.  相似文献   

17.
Previously, we reported that small ubiquitin-like modifier-1 (SUMO-1) promotes the degradation of a polyglutamine (polyQ) protein ataxin-3 and proposed that proteasomes mediate the proteolysis. Here, we present evidence that autophagy is also responsible for SUMO-induced degradation of this polyQ protein. The autophagy inhibitor 3-MA increased the steady-state level of ataxin-3 and stabilized SUMO-modified ataxin-3 more prominently than the proteasome inhibitor MG132. Interestingly, SUMO-1 overexpression enhanced the co-localization of ataxin-3 and autophagy marker LC3 without increasing LC3 puncta formation suggesting that SUMO-1 is involved in the substrate recruitment rather than the induction of autophagy. To assess the importance of a putative SUMO-interacting motif (SIM) in ataxin-3 for SUMO-induced degradation, we constructed a SIM mutant of ataxin-3. Substitution of putative SIM (V165G) facilitated the degradation of polyQ-expanded ataxin-3, which is more resistant to SUMO-induced degradation than the normal ataxin-3. These results together indicate that SUMO-1 promotes the degradation of ataxin-3 via autophagy and the putative SIM of ataxin-3 plays a role in this process.  相似文献   

18.
Spinocerebellar Ataxia Type 3 (SCA3) is one of nine polyglutamine (polyQ) diseases that are all characterized by progressive neuronal dysfunction and the presence of neuronal inclusions containing aggregated polyQ protein, suggesting that protein misfolding is a key part of this disease. Ataxin-3, the causative protein of SCA3, contains a globular, structured N-terminal domain (the Josephin domain) and a flexible polyQ-containing C-terminal tail, the repeat-length of which modulates pathogenicity. It has been suggested that the fibrillogenesis pathway of ataxin-3 begins with a non-polyQ-dependent step mediated by Josephin domain interactions, followed by a polyQ-dependent step. To test the involvement of the Josephin domain in ataxin-3 fibrillogenesis, we have created both pathogenic and nonpathogenic length ataxin-3 variants with a stabilized Josephin domain, and have both stabilized and destabilized the isolated Josephin domain. We show that changing the thermodynamic stability of the Josephin domain modulates ataxin-3 fibrillogenesis. These data support the hypothesis that the first stage of ataxin-3 fibrillogenesis is caused by interactions involving the non-polyQ containing Josephin domain and that the thermodynamic stability of this domain is linked to the aggregation propensity of ataxin-3.  相似文献   

19.
Machado-Joseph disease (MJD) is an autosomal dominant spinocerebellar degeneration characterized by a wide range of clinical manifestations. An unstable CAG trinucleotide repeat expansion in MJD gene on long arm of chromosome 14 has been identified as the pathologic mutation of MJD and apoptosis was previously shown to be responsible for the neuronal cell death of the disease. In this study, we utilized human neuronal SK-N-SH cells stably transfected with HA-tagged full-length MJD with 78 polyglutamine repeats to examine the effects of polyglutamine expansion on neuronal cell survival in the early stage of disease. Various pro-apoptotic agents were used to assess the tolerance of the mutant cells and to compare the differences between cells with and without mutant ataxin-3. Concentration- and time-dependent experiments showed that the increase in staurosporine-induced cell death was more pronounced and accelerated in cells containing expanded ataxin-3 via MTS assays. Interestingly, under basal conditions, Western blot and immunocytochemical analyses showed a significant decrease of Bcl-2 protein expression and an increase of cytochrome c in cells containing expanded ataxin-3 when compared with those of the parental cells. The same reduction of Bcl-2 was further confirmed in fibroblast cells with mutant ataxin-3. In addition, exogenous expression of Bcl-2 desensitized SK-N-SH-MJD78 cells to poly-Q toxicity. These results indicated that mitochondrial-mediated cell death plays a role in the pathogenesis of MJD. In our cellular model, full-length expanded ataxin-3 that leads to neurodegenerative disorders significantly impaired the expression of Bcl-2 protein, which may be, at least in part, responsible for the weak tolerance to polyglutamine toxicity at the early stage of disease and ultimately resulted in an increase of stress-induced cell death upon apoptotic stress.  相似文献   

20.
Polyglutamine (polyQ) expansions cause neurodegeneration that is associated with protein misfolding and influenced by functional properties of the host protein. The polyQ disease protein, ataxin-3, has predicted ubiquitin-specific protease and ubiquitin-binding domains, which suggest that ataxin-3 functions in ubiquitin-dependent protein surveillance. Here we investigate direct links between the ubiquitin-proteasome pathway and ataxin-3. In neural cells we show that, through its ubiquitin interaction motifs (UIMs), normal or expanded ataxin-3 binds a broad range of ubiquitinated proteins that accumulate when the proteasome is inhibited. The expression of a catalytically inactive ataxin-3 (normal or expanded) causes ubiquitinated proteins to accumulate in cells, even in the absence of proteasome inhibitor. This accumulation of ubiquitinated proteins occurs primarily in the cell nucleus in transfected cells and requires intact UIMs in ataxin-3. We further show that both normal and expanded ataxin-3 can undergo oligoubiquitination. Although this post-translational modification occurs in a UIM-dependent manner, it becomes independent of UIMs when the catalytic cysteine residue of ataxin-3 is mutated, suggesting that ataxin-3 ubiquitination is itself regulated in trans by its own de-ubiquitinating activity. Finally, pulse-chase labeling reveals that ataxin-3 is degraded by the proteasome, with expanded ataxin-3 being as efficiently degraded as normal ataxin-3. Mutating the UIMs does not alter degradation, suggesting that UIM-mediated oligoubiquitination of ataxin-3 modulates ataxin-3 function rather than stability. The function of ataxin-3 as a de-ubiquitinating enzyme, its post-translational modification by ubiquitin, and its degradation via the proteasome link this polyQ protein to ubiquitin-dependent pathways already implicated in disease pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号