共查询到20条相似文献,搜索用时 15 毫秒
1.
A structure-potency study examining the ability of dopamine (DA), its major metabolites and related amine and acetate congeners to inhibit NADH-linked mitochondrial O(2) consumption was carried out to elucidate mechanisms by which DA could induce mitochondrial dysfunction. In the amine studies, DA was the most potent inhibitor of respiration (IC(50) 7.0 mm) compared with 3-methoxytryramine (3-MT, IC(50) 19.6 mm), 3,4-dimethoxyphenylethylamine (IC(50) 28.6 mm), tyramine (IC(50) 40.3 mm) and phenylethylamine (IC(50) 58.7 mm). Addition of monoamine oxidase (MAO) inhibitors afforded nearly complete protection against inhibition by phenylethylamine, tyramine and 3,4-dimethoxyphenylethylamine, indicating that inhibition arose from MAO-mediated pathways. In contrast, the inhibitory effects of DA and 3-MT were only partially prevented by MAO blockade, suggesting that inhibition might also arise from two-electron catechol oxidation and quinone formation by DA and one-electron oxidation of the 4-hydroxyphenyl group of 3-MT. In the phenylacetate studies, 3,4-dihydroxyphenylacetic acid (DOPAC) was equipotent with DA in inhibiting respiration (IC(50) 7.4 mm), further implicating the catechol reaction as the cause of inhibition. All other carboxylate congeners; phenylacetic acid (IC(50) 13.0 mm), 4-hydroxyphenylacetic acid (IC(50) 12.1 mm), 4-hydroxy-3-methoxyphenylacetic acid (HVA, IC(50) 12.0 mm) and 3,4-dimethoxyphenylacetic acid (IC(50) 10.2 mm), were equipotent respiratory inhibitors and two- to fourfold more potent than their corresponding amine. These latter findings suggest that the phenylacetate ion can also contribute independently to mitochondrial inhibition. In summary, mitochondrial respiration can be inhibited by DA and its metabolites by four distinct MAO-dependent and independent mechanisms. 相似文献
2.
Dopamine oxidation products such as H2O2 and reactive quinones have been held responsible for various toxic actions of dopamine, which have implications in the aetiopathogenesis of Parkinson's disease. This study has shown that N-acetylcysteine (0.25-1 mm) is a potent scavenger of both H2O2 and toxic quinones derived from dopamine and it further prevents dopamine mediated inhibition of Na+,K+-ATPase activity and mitochondrial respiratory chain function. The quinone scavenging ability of N-acetylcysteine is presumably related to its protective effect against dopamine mediated inhibition of mitochondrial respiratory chain activity. However, both H2O2 scavenging and quinone scavenging properties of N-acetylcysteine probably account for its protective effect against Na+,K+-ATPase inhibition induced by dopamine. The results have important implications in the neuroprotective therapy of sporadic Parkinson's disease since inactivation of mitochondrial respiratory activity and Na+,K+-ATPase may trigger intracellular damage pathways leading to the death of nigral dopaminergic neurons. 相似文献
3.
Chamberlin ME 《American journal of physiology. Regulatory, integrative and comparative physiology》2007,292(2):R1016-R1022
The midgut of the tobacco hornworm (Manduca sexta) is a highly aerobic tissue that is destroyed by programmed cell death during larval-pupal metamorphosis. The death of the epithelium begins after commitment to pupation, and the oxygen consumption of isolated midgut mitochondria decreases soon after commitment. To assess the role of the electron transport chain in this decline in mitochondrial function, the maximal activities of complexes I-IV of the respiratory chain were measured in isolated midgut mitochondria. Whereas there were no developmental changes in the activity of complex I or III, activities of complexes II and IV [cytochrome c oxidase (COX)] were higher in mitochondria from precommitment than postcommitment larvae. This finding is consistent with a higher rate of succinate oxidation in mitochondria isolated from precommitment larvae and reveals that the metamorphic decline in mitochondrial respiration is due to the targeted destruction or inactivation of specific sites within the mitochondria, rather than the indiscriminate destruction of the organelles. The COX turnover number (e- x s(-1) x cytochrome aa3(-1)) was greater for the enzyme from precommitment than postcommitment larvae, indicating a change in the enzyme structure and/or its lipid environment during the early stages of metamorphosis. The turnover number of COX in the intact mitochondria (in organello COX) was also lower in postcommitment larvae. In addition to changes in the protein or membrane phospholipids, the metamorphic decline in this rate constant may be a result of the observed loss of endogenous cytochrome c. 相似文献
4.
Maria B. Bagh Arpan K. Maiti Sirsendu Jana Kalpita Banerjee Arun Roy 《Free radical research》2013,47(6):574-581
Dopamine oxidation products such as H2O2 and reactive quinones have been held responsible for various toxic actions of dopamine, which have implications in the aetiopathogenesis of Parkinson's disease. This study has shown that N-acetylcysteine (0.25–1 mm) is a potent scavenger of both H2O2 and toxic quinones derived from dopamine and it further prevents dopamine mediated inhibition of Na+,K+-ATPase activity and mitochondrial respiratory chain function. The quinone scavenging ability of N-acetylcysteine is presumably related to its protective effect against dopamine mediated inhibition of mitochondrial respiratory chain activity. However, both H2O2 scavenging and quinone scavenging properties of N-acetylcysteine probably account for its protective effect against Na+,K+-ATPase inhibition induced by dopamine. The results have important implications in the neuroprotective therapy of sporadic Parkinson's disease since inactivation of mitochondrial respiratory activity and Na+,K+-ATPase may trigger intracellular damage pathways leading to the death of nigral dopaminergic neurons. 相似文献
5.
6.
Jana S Sinha M Chanda D Roy T Banerjee K Munshi S Patro BS Chakrabarti S 《Biochimica et biophysica acta》2011,1812(6):663-673
The study has demonstrated that dopamine induces membrane depolarization and a loss of phosphorylation capacity in dose-dependent manner in isolated rat brain mitochondria during extended in vitro incubation and the phenomena are not prevented by oxyradical scavengers or metal chelators. Dopamine effects on brain mitochondria are, however, markedly prevented by reduced glutathione and N-acetyl cysteine and promoted by tyrosinase present in the incubation medium. The results imply that quinone oxidation products of dopamine are involved in mitochondrial damage under this condition. When PC12 cells are exposed to dopamine in varying concentrations (100-400μM) for up to 24h, a pronounced impairment of mitochondrial bio-energetic functions at several levels is observed along with a significant (nearly 40%) loss of cell viability with features of apoptotic nuclear changes and increased activities of caspase 3 and caspase 9 and all these effects of dopamine are remarkably prevented by N-acetyl cysteine. N-acetyl cysteine also blocks nearly completely the dopamine induced increase in reactive oxygen species production and the formation of quinoprotein adducts in mitochondrial fraction within PC12 cells and also the accumulation of quinone products in the culture medium. Clorgyline, an inhibitor of MAO-A, markedly decreases the formation of reactive oxygen species in PC12 cells upon dopamine exposure but has only mild protective actions against quinoprotein adduct formation, mitochondrial dysfunctions, cell death and caspase activation induced by dopamine. The results have indicated that quinone oxidation products and not reactive oxygen species are primarily involved in cytotoxic effects of dopamine and the mitochondrial impairment plays a central role in the latter process. The data have clear implications in the pathogenesis of Parkinson's disease. 相似文献
7.
Sirsendu JanaMaitrayee Sinha Dalia ChandaTapasi Roy Kalpita BanerjeeSoumyabrata Munshi Birija S. PatroSasanka Chakrabarti 《生物化学与生物物理学报:疾病的分子基础》2011,1812(6):663-673
The study has demonstrated that dopamine induces membrane depolarization and a loss of phosphorylation capacity in dose-dependent manner in isolated rat brain mitochondria during extended in vitro incubation and the phenomena are not prevented by oxyradical scavengers or metal chelators. Dopamine effects on brain mitochondria are, however, markedly prevented by reduced glutathione and N-acetyl cysteine and promoted by tyrosinase present in the incubation medium. The results imply that quinone oxidation products of dopamine are involved in mitochondrial damage under this condition. When PC12 cells are exposed to dopamine in varying concentrations (100-400 μM) for up to 24 h, a pronounced impairment of mitochondrial bio-energetic functions at several levels is observed along with a significant (nearly 40%) loss of cell viability with features of apoptotic nuclear changes and increased activities of caspase 3 and caspase 9 and all these effects of dopamine are remarkably prevented by N-acetyl cysteine. N-acetyl cysteine also blocks nearly completely the dopamine induced increase in reactive oxygen species production and the formation of quinoprotein adducts in mitochondrial fraction within PC12 cells and also the accumulation of quinone products in the culture medium. Clorgyline, an inhibitor of MAO-A, markedly decreases the formation of reactive oxygen species in PC12 cells upon dopamine exposure but has only mild protective actions against quinoprotein adduct formation, mitochondrial dysfunctions, cell death and caspase activation induced by dopamine. The results have indicated that quinone oxidation products and not reactive oxygen species are primarily involved in cytotoxic effects of dopamine and the mitochondrial impairment plays a central role in the latter process. The data have clear implications in the pathogenesis of Parkinson's disease. 相似文献
8.
The accumulation of oxidatively modified proteins has been shown to be a characteristic feature of many neurodegenerative disorders and its regulation requires efficient proteolytic processing. One component of the mitochondrial proteolytic system is Lon, an ATP-dependent protease that has been shown to degrade oxidatively modified aconitase in vitro and may thus play a role in defending against the accumulation of oxidized matrix proteins in mitochondria. Using an assay system that allowed us to distinguish between basal and ATP-stimulated Lon protease activity, we have shown in isolated non-synaptic rat brain mitochondria that Lon protease is highly susceptible to oxidative inactivation by peroxynitrite (ONOO(-)). This susceptibility was more pronounced with regard to ATP-stimulated activity, which was inhibited by 75% in the presence of a bolus addition of 1mM ONOO(-), whereas basal unstimulated activity was inhibited by 45%. Treatment of mitochondria with a range of peroxynitrite concentrations (10-1000muM) revealed that a decline in Lon protease activity preceded electron transport chain (ETC) dysfunction (complex I, II-III and IV) and that ATP-stimulated activity was approximately fivefold more sensitive than basal Lon protease activity. Furthermore, supplementation of mitochondrial matrix extracts with reduced glutathione, following ONOO(-) exposure, resulted in partial restoration of basal and ATP-stimulated activity, thus suggesting possible redox regulation of this enzyme complex. Taken together these findings suggest that Lon protease may be particularly vulnerable to inactivation in conditions associated with GSH depletion and elevated oxidative stress. 相似文献
9.
The pathogenesis underlying the selective degeneration of nigral dopaminergic neurons in Parkinson's disease is not fully understood but several lines of evidence implicate the role of oxidative stress and mitochondrial dysfunction. Depletion in levels of the thiol reducing agent glutathione (GSH + GSSG) is the earliest reported biochemical event to occur in the Parkinsonian substantia nigra prior to selective loss of complex I (CI) activity associated with the disease believed to contribute to subsequent dopaminergic cell death. Recent studies from our laboratory have demonstrated that acute reduction in both cellular and mitochondrial glutathione levels results in increased oxidative stress and a decrease in mitochondrial function linked to a selective decrease in CI activity through an NO-mediated mechanism (Jha, N.; Jurma, O.; Lalli, G.; Liu, Y.; Pettus, E. H.; Greenamyre, J. T.; Liu, R. M.; Forman, H. J.; Andersen, J. K. Glutathione depletion in PC12 results in selective inhibition of mitochondrial complex I activity. Implications for Parkinson's disease J. Biol. Chem. 275: 26096-26101; 2000. Hsu, M.; Srinivas, B.; Kumar, J.; Subramanian, R.; Andersen, J. Glutathione depletion resulting in selective mitochondrial complex I inhibition in dopaminergic cells is via an NO-mediated pathway not involving peroxynitrite: implications for Parkinson's disease J. Neurochem. 92: 1091-1103.2005.). However, the effect of prolonged glutathione depletion on dopaminergic cells is not known. In this present study, using low concentrations of buthionine-S-sulfoximine, a chemical inhibitor of the de novo glutathione synthesizing enzyme glutamate cysteine ligase, we developed a chronic model in which glutathione depletion in dopaminergic N27 cells for a 7-day period was found to lead to inhibition of CI activity via a peroxynitrite-mediated event which is reversible by the thiol reducing agent, dithiothreitol, and coincides with increased S-nitrosation of mitochondrial proteins. 相似文献
10.
Loss of dopamine (DA) homeostasis may be a contributing factor to cell damage in Parkinson's disease (PD). Past studies showing deleterious effects of DA on mitochondrial function, however, have been inconsistent raising questions about mitochondria as a downstream target for DA. Issues such as the dopamine species i.e., reduced or oxidized, time of exposure and the effect of major metabolites such as 3,4-dihydrophenylacetic acid (DOPAC) may contribute to the disparate findings. The present study used isolated, lysed rat brain mitochondria to characterize the effects of oxidized or reduced DA and DOPAC on complex activities of the electron transport chain (ETC). Time of exposure and quantitation of reduced or oxidized catachols for DA and DOPAC were monitored for all experiments. Reduced DA and DOPAC with or without a 30min preincubation had no affect on NADH oxidase activity which monitors the activities of complexes I, III and IV. Complex II activity was inhibited by reduced DA (≥500μM), but not by reduced DOPAC and was significantly attenuated by SOD suggesting reactive oxygen species involvement. In contrast, fully oxidized DA and DOPAC dose dependently inhibited NADH oxidase, complex I and complex III activities with IC(50s) in the 50-200μM range. No preincubation was required for inhibition with the catechols when they were fully oxidized. Oxidized DA inhibited complex I only when exposure occurred during stimulated electron flow, suggesting covalent binding of quinones to proteins within active sites of the complex. In intact, well coupled mitochondria, extramitochondrial DA was shown to access the mitochondrial matrix in a dose, time and energy-dependent fashion. The findings suggest that many of the reported inconsistencies with regards to the effects of DA and DOPAC on ETC function can be attributed to the oxidized state of the catechol at the time of exposure. In addition, the findings provide possible downstream targets for DA that could contribute to the vulnerability of dopaminergic neurons in PD. 相似文献
11.
Effects of dopamine on the membrane permeability transition, thioredoxin reductase activity, production of free radicals and oxidation of sulfhydryl groups in brain mitochondria and the Ca2+ uptake by Na+-Ca2+ exchange and sulfhydryl oxidation in brain synaptosomes were examined. The brain mitochondrial swelling and the fall of transmembrane potential were altered by pretreatment of dopamine in a dose dependent manner. Depressive effect of dopamine on mitochondrial swelling was reversed by 10 g/ml catalase, and 10 mM DMSO. The activities of thioredoxin reductase in intact or disrupted mitochondria were decreased by dopamine (1-100 M), 25 M Zn2+ and 50 M Mn2+. Dopamine-inhibited enzyme activity was reversed by 10 g/ml SOD and 10 g/ml catalase. Pretreatment of dopamine decreased Ca2+ transport in synaptosomes, which was restored by 10 g/ml SOD and 10 mM DMSO. Dopamine (1-100 M) in the medium containing mitochondria produced superoxide anion and hydrogen peroxide, while its effect on nitrite production was very weak. The oxidation of sulfhydryl groups in mitochondria and synaptosomes were enhanced by dopamine with increasing incubation times. Results suggest that dopamine could modulate membrane permeability in mitochondria and calcium transport at nerve terminals, which may be ascribed to the action of free radicals and the loss of reduced sulfhydryl groups. 相似文献
12.
The mitochondrion is the organelle responsible for generation of most usable energy in a cell. It also plays an important role in a series of physiological processes such as apoptosis and proliferation. Although previous studies have demonstrated that nicotine modulates the morphology and function of mitochondria, the mechanism(s) underlying these effects is largely unknown. In this study, using a microarray consisting of 4793 clones derived from a mouse dopamine cDNA library, we profiled the gene expression patterns for six brain regions (amygdala, hippocampus, nucleus accumbens, prefrontal cortex, striatum and ventral tegmental area) of female Sprague-Dawley rats subjected to nicotine treatment for 7 days through osmotic minipump infusion. We identified a number of genes and pathways, including components of the electron transport system of mitochondria, such as cytochrome c oxidase subunit I (Mt-co1), Mt-co2, Mt-co3, cytochrome b (Mt-cyb), mitochondrial NADH dehydrogenase 4 (Mt-nd4), and Mt-nd6, that were significantly modulated by nicotine in multiple brain regions. Bioinformatics analysis provided evidence that Gene Ontology categories related to the electron transport system were overrepresented in each brain region. Finally, the results from the microarray analysis were verified by quantitative RT-PCR for four representative genes. Together, our findings imply that mitochondria are involved in neuronal adaptation to chronic nicotine exposure. 相似文献
13.
电子传递链亦称呼吸链,由位于线粒体内膜的I、II、III、IV 4种复合物组成,负责电子传递和产生质子梯度。电子主要从复合物I进入电子传递链,经复合物III传递至复合物IV。电子传递系统的组装是一个十分复杂的过程,目前已知主要有约69个结构亚基以及至少16个组装因子参与了人类复合物I、III、IV的组装,这些蛋白质由核基因组与线粒体基因组共同编码。对线粒体电子传递系统的蛋白质组成及其结构已研究得较为清楚,但对它们的组装了解得还比较初步。许多人类线粒体疾病是由于电子传递系统的功能障碍引起的,其中又有许多是由于该系统中一个或多个部件的错误组装引起的。研究这些缺陷不仅能够加深对线粒体疾病发病机理的了解,也有助于揭示线粒体功能的调控机制。将着重对电子传递系统复合物的组装及其与人类疾病关系的研究进展进行综述。 相似文献
14.
Correction by nicotinamide and nicotinoyl-GABA of dopamine metabolism in rat brain in experimental Parkinson's disease 总被引:2,自引:0,他引:2
Kuchmerovs'ka TM Donchenko HV Fomenko HI Chichkovs'ka HV Pakirbaieva LV Klymenko AN 《Ukrainski? biokhimicheski? zhurnal》2001,73(6):108-112
It was established, that serotonin and dopamine content and dopamine uptake by brain nerve endings under experimental parkinsonism are decreased. Nicotinamide nicotinoyl-GABA administration leads to normalization these parameters. It was shown that NAm was more effective on serotonin content while nicotinoyl-GABA on dopamine one. Dopamine uptake was impaired at experimental parkinsonism and partially was normalized by incubation with NAD (10(-6) M). Thus, NAm, nicotinoyl-GABA and NAD are involved in the regulation of brain neurotransmission under experimental parkinsonism and can be useful in treatment of Parkinson's disease. 相似文献
15.
Qun Chen Guotian Yin Sarah Stewart Edward J. Lesnefsky 《Biochemical and biophysical research communications》2010,397(4):656-316
Ischemia damages the mitochondrial electron transport chain (ETC), mediated in part by damage generated by the mitochondria themselves. Mitochondrial damage resulting from ischemia, in turn, leads to cardiac injury during reperfusion. The goal of the present study was to localize the segment of the ETC that produces the ischemic mitochondrial damage. We tested if blockade of the proximal ETC at complex I differed from blockade distal in the chain at cytochrome oxidase. Isolated rabbit hearts were perfused for 15 min followed by 30 min stop-flow ischemia at 37 °C. Amobarbital (2.5 mM) or azide (5 mM) was used to block proximal (complex I) or distal (cytochrome oxidase) sites in the ETC. Time control hearts were buffer-perfused for 45 min. Subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM) were isolated. Ischemia decreased cytochrome c content in SSM but not in IFM compared to time control. Blockade of electron transport at complex I preserved the cytochrome c content in SSM. In contrast, blockade of electron transport at cytochrome oxidase with azide did not retain cytochrome c in SSM during ischemia. Since blockade of electron transport at complex III also prevented cytochrome c loss during ischemia, the specific site that elicits mitochondrial damage during ischemia is likely located in the segment between complex III and cytochrome oxidase. 相似文献
16.
Luis A. Gómez Juan D. Chavez Tory M. Hagen 《Archives of biochemistry and biophysics》2009,490(1):30-35
Accumulation of mitochondrial electron transport chain (ETC) defects is a recognized hallmark of the age-associated decline in cardiac bioenergetics; however, the molecular events involved are only poorly understood. In the present work, we hypothesized that age-related ETC deterioration stemmed partly from disassociation of large solid-state macromolecular assemblies termed “supercomplexes”. Mitochondrial proteins from young and old rat hearts were separated by blue native-PAGE, protein bands analyzed by LC-MALDI-MS/MS, and protein levels quantified by densitometry. Results showed that supercomplexes comprised of various stoichiometries of complexes I, III and IV were observed, and declined significantly (p < 0.05, n = 4) with age. Supercomplexes displaying the highest molecular masses were the most severely affected. Considering that certain diseases (e.g. Barth Syndrome) display similar supercomplex destabilization as our results for aging, the deterioration in ETC supercomplexes may be an important underlying factor for both impaired mitochondrial function and loss of cardiac bioenergetics with age. 相似文献
17.
低氧大鼠脑线粒体体外转录活性的研究 总被引:4,自引:0,他引:4
目的:探讨低氧对大鼠脑线粒体DNA表达的影响及其与能量生成的关系。方法:雄性Wistar大鼠随机分为3组:急性低氧组(AH)、慢性低氧组(CH)和对照组,其中急、慢性低氧组动物分别连续暴露于模拟海拔4000m高原3d(AH)和40d(CH)。分离脑线粒体,分别测定线粒体体外转录活性、F0F1-ATP酶活性以及ATP对线粒体体外转录的影响。结果:急性低氧大鼠脑线粒体体外转录活性及F0F1-ATP酶活性显著降低,慢性低氧时有所回升,两者呈线性相关。ATP对大鼠脑线粒体体外转录活性呈双相效应。结论:低氧时脑线粒体转录活性改变可能参与低氧抑制线粒体能量代谢的机制,ATP可能通过反馈作用对线粒体转录进行微调。 相似文献
18.
Mitochondrial dysfunction and oxidative stress are considered central in dopaminergic neurodegeneration in Parkinson's disease (PD). Oxidative stress occurs when the endogenous antioxidant systems are overcome by the generation of reactive oxygen species (ROS). A plausible source of oxidative stress, which could account for the selective degeneration of dopaminergic neurons, is the redox chemistry of dopamine (DA) and leads to the formation of ROS and reactive dopamine-quinones (DAQs). Superoxide dismutase 2 (SOD2) is a mitochondrial enzyme that converts superoxide radicals to molecular oxygen and hydrogen peroxide, providing a first line of defense against ROS. We investigated the possible interplay between DA and SOD2 in the pathogenesis of PD using enzymatic essays, site-specific mutagenesis, and optical and high-field-cw-EPR spectroscopies. Using radioactive DA, we demonstrated that SOD2 is a target of DAQs. Exposure to micromolar DAQ concentrations induces a loss of up to 50% of SOD2 enzymatic activity in a dose-dependent manner, which is correlated to the concomitant formation of protein aggregates, while the coordination geometry of the active site appears unaffected by DAQ modifications. Our findings support a model in which DAQ-mediated SOD2 inactivation increases mitochondrial ROS production, suggesting a link between oxidative stress and mitochondrial dysfunction. 相似文献
19.
Parkinson's disease (PD) is a neurodegenerative disorder associated with a selective loss of dopaminergic neurons in the substantia nigra. While the underlying cause of PD is not clearly understood, oxidative stress and mitochondrial dysfunction are thought to play a role. We have previously suggested tetrahydrobiopterin (BH4), an obligatory cofactor for the dopamine synthesis enzyme tyrosine hydroxylase and present selectively in monoaminergic neurons in the brain, as an endogenous molecule that contributes to the dopaminergic neurodegeneration. In the present study, we show that BH4 leads to inhibition of activities of complexes I and IV of the electron transport chain (ETC) and reduction of mitochondrial membrane potential. BH4 appears to be different from rotenone and MPP(+), the synthetic compounds used to generate Parkinson models, in its effect on complex IV. BH4 also induces the release of mitochondrial cytochrome c. Pretreatment with the sulfhydryl antioxidant N-acetylcysteine or the quinone reductase inducer dimethyl fumarate prevents the ETC inhibition and cytochrome c release following BH4 exposure, suggesting the involvement of quinone products. Together with our previous observation that BH4 leads to generation of oxidative stress and selective dopaminergic neurodegeneration both in vitro and in vivo via inducing apoptosis, the mitochondrial involvement in BH4 toxicity further suggests possible relevance of this endogenous molecule to pathogenesis of PD. 相似文献
20.
Sen T Sen N Jana S Khan FH Chatterjee U Chakrabarti S 《Neurochemistry international》2007,50(5):719-725
A noticeable loss of cardiolipin, a significant accumulation of fluorescent products of lipid peroxidation and an increased ability to produce reactive oxygen species in vitro are characteristics of aged rat brain mitochondria, as has been demonstrated in this study. In contrast mitochondrial electron transport chain activity is not significantly compromised except a marginal decline in complex IV activity in aged rat brain. On the other hand, a striking loss of mitochondrial membrane potential occurs in brain mitochondria during aging, which may be attributed to peroxidative membrane damage in this condition. Such mitochondrial dysfunctions as reported here may lead to uncoupling of oxidative phosphorylation, ATP depletion and activation of apoptotic cascade in aged rat brain. 相似文献