首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bone morphogenetic proteins (BMPs) are factors that promote osteoblastic cell differentiation and osteogenesis. It is unknown whether BMPs may act on human osteoblastic cells by increasing immature cell growth and/or differentiation. We investigated the short- and long-term effects of recombinant human (rh)BMP-2 on cell growth and osteoblast phenotype in a new model of human neonatal pre-osteoblastic calvaria cells (HNC). In short-term culture, rhBMP-2 (20-100 ng/ml) inhibited DNA synthesis and increased alkaline phosphatase (ALP) activity without affecting osteocalcin (OC) production. When cultured for 3 weeks in the presence of ascorbic acid and inorganic phosphate to induce cell differentiation, HNC cells initially proliferated, type 1 collagen mRNA and protein levels rose, and then decreased, whereas OC mRNA and protein levels, and calcium accumulation into the extracellular matrix increased at 2 to 3 weeks. A transient treatment with rhBMP-2 (50 ng/ml) for 1 to 7 days which affected immature HNC cells, decreased cell growth, increased ALP activity and mRNA, and induced cells to express ALP, osteopontin, and OC at 7 days, as shown by immunocytochemistry. At 2 to 3 weeks, matrix mineralization was markedly increased despite cessation of treatment, and although OC and Col 1 mRNA and protein levels were not changed. A continuous treatment with rhBMP-2 for 3 weeks which affected immature and mature cells reduced cell growth, increased ALP activity and mRNA at 1 week and increased OC mRNA and protein levels and calcium content in the matrix at 3 weeks, indicating complete osteoblast differentiation. These results indicate that the differentiating effects of BMP-2 on human neonatal calvaria are dependent on duration of exposure. Although long-term exposure led to complete differentiation of OC-synthesizing osteoblasts, the primary effect of rhBMP-2 was to promote osteoblast marker expression in immature cells, which was sufficient to induce optimal matrix mineralization independently of cell growth and type 1 collagen expression.  相似文献   

2.
The in vitro effect of recombinant human bone morphogenetic protein-2 (rhBMP-2) on osteogenic and myogenic differentiation was examined in two clonal cell lines of rat osteoblast-like cells at different differentiation stages, ROB-C26 (C26) and ROB-C20 (C20). The C26 is a potential osteoblast precursor cell line that is also capable of differentiating into muscle cells and adipocytes; the C20 is a more differentiated osteoblastic cell line. Proliferation was stimulated by rhBMP-2 in C26 cells, but inhibited in C20 cells. rhBMP-2 greatly increased alkaline phosphate (ALP) activity in C26 cells, but not in C20 cells. The steady-state level of ALP mRNA was also increased by rhBMP-2 in C26 cells, but not in C20 cells. Production of 3',5'-cAMP in response to parathyroid hormone (PTH) was dose-dependently enhanced by adding rhBMP-2 in both C26 and C20 cells, though the stimulatory effect was much greater in the former. There was neither basal expression of osteocalcin mRNA nor its protein synthesis in C26 cells, but they were strikingly induced by rhBMP-2 in the presence of 1 alpha,25-dihydroxyvitamin D3. rhBMP-2 induced no appreciable changes in procollagen mRNA levels of type I and type III in the two cell lines. Differentiation of C26 cells into myotubes was greatly inhibited by adding rhBMP-2. The inhibitory effect of rhBMP-2 on myogenic differentiation was also observed in clonal rat skeletal myoblasts (L6). Like BMP-2, TGF-beta 1 inhibited myogenic differentiation. However, unlike BMP-2, TGF-beta 1 decreased ALP activity in both C26 and C20 cells. TGF-beta 1 induced neither PTH responsiveness nor osteocalcin production in C26 cells, but it increased PTH responsiveness in C20 cells. These results clearly indicate that rhBMP-2 is involved, at least in vitro, not only in inducing differentiation of osteoblast precursor cells into more mature osteoblast-like cells, but also in inhibiting myogenic differentiation.  相似文献   

3.
为了证实JNK激酶在骨形态发生蛋白9(bone morphogenetic proteins 9,BMP9) 诱导间充质干细胞C3H10T1/2成骨分化中的作用,利用重组腺病毒将BMP9导入间充质干细胞C3H10T1/2. 通过碱性磷酸酶(ALP)活性测定、钙盐沉积实验、荧光素酶报告基因检测、Western印迹和组织化学染色等方法,检测BMP9是否可经JNK激酶途径调控间充质干细胞C3H10T1/2向成骨分化.动物实验验证在RNA沉默JNK蛋白激酶后,对BMP9诱导间充质干细胞C3H10T1/2向成骨分化的影响.结果发现,BMP9可以增强JNK 激酶的磷酸化;利用JNK抑制剂SP600125抑制JNK激酶活性后,BMP9诱导的间充质干细胞C3H10T1/2的早期成骨指标ALP活性和晚期指标钙盐沉积均受到抑制,而且经典SMAD信号的活化也相应受到抑制;RNA干扰沉默JNK基因表达后,同样也可抑制BMP9 诱导的C3H10T1/2细胞的ALP活性和裸鼠皮下异位成骨.因此表明,BMP9可活化JNK激酶途径从而诱导间充质干细胞C3H10T1/2向成骨分化.  相似文献   

4.
The osteogenic potential of biomimetic tyrosine-derived polycarbonate (TyrPC) scaffolds containing either an ethyl ester or a methyl ester group combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) was assessed using the preosteoblast cell line MC3T3-E1. Each composition of TyrPC was fabricated into 3D porous scaffolds with a bimodal pore distribution of micropores <20 μm and macropores between 200 and 400 μm. Scanning electron microscopy (SEM) characterization suggested MC3T3-E1 cell attachment on the TyrPC scaffold surface. Moreover, the 3D TyrPC-containing ethyl ester side chains supported osteogenic lineage progression, alkaline phosphatase (ALP), and osteocalcin (OCN) expression as well as an increase in calcium content compared with the scaffolds containing the methyl ester group. The release profiles of rhBMP-2 from the 3D TyrPC scaffolds by 15 days suggested a biphasic rhBMP-2 release. There was no significant difference in bioactivity between rhBMP-2 releasate from the scaffolds and exogenous rhBMP-2. Lastly, the TyrPC containing rhBMP-2 promoted more ALP activity and mineralization of MC3T3-E1 cells compared with TyrPC without rhBMP-2. Consequently, the data strongly suggest that TyrPC scaffolds will provide a highly useful platform for bone tissue engineering.  相似文献   

5.
We isolated a single-cell-derived cell line from a spinal hamartoma, which occurred in a newborn boy and was associated with a rudimentary limb. The maternal cells (HHC-7) differentiated into osteoblasts, chondrocytes, adipocytes, and skeletal muscles when they were cultured in differentiation-inducing media specific to each mesenchymal cell. We isolated a single-cell-derived clonal cell line (Clone K) after transfection with SV40 T antigen. These cells expressed CD73 and CD117, while being negative for expression of CD45. Clone K cells cultured in an osteogenic differentiation medium increased ALP activity and expressed mRNAs for Runx2 and osteocalcin. Treatment with rhBMP-2 induced Clone K cells to differentiate into both osteoblasts and chondrocytes. These cells expressed mRNAs for Sox9 and aggrecan in addition to osteogenic markers. Culture in an adipogenic differentiation medium induced Clone K cells to differentiate into adipocytes, which expressed mRNAs for PPAR2 and a2P. Clone K cells cultured in a serum-depleted medium generated desmin-positive cells and expressed MyoD1 mRNA. Clone K cells exhibited numerous -smooth muscle actin-positive cells; however, treatment with rhBMP-2 decreased their number. Clone K cells, transplanted with a carrier containing rhBMP-2 into the muscles of SCID mice, generated ectopic endochondral bone formation. In these tissues, several osteoblasts and chondrocytes expressed SV40 T antigen, indicating their Clone K cell origin. Thus, Clone K cells are useful tools for analyzing the characteristics of human multipotential mesenchymal progenitors. This work was supported by Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (A.Y. and T.T.) and Grant-in Aid for Scientific Research on Priority Areas from The Ministry of Education, Culture, Sports, Science and Technology of Japan (A.Y.).  相似文献   

6.
The roles of Sonic hedgehog (Shh) and Bone morphogenetic protein-2 (Bmp-2) in osteoblast differentiation were investigated using in vitro cell systems. Recombinant amino-terminal portion of SHH (rSHH-N) dose dependently stimulated ALP activity in C3H10T1/2 and MC3T3-E1 cells. rSHH-N induced expression of Osteocalcin mRNA in C3H10T1/2 cells. A soluble form of the receptor for type IA BMP receptor antagonized rSHH-N-induced ALP activity in C3H10T1/2 and MC3T3-E1 cells, indicating that BMPs are involved in SHH-induced osteoblast differentiation. Simultaneous supplement with rSHH-N and BMP-2 synergistically induced ALP activity and expression of Osteocalcin mRNA in C3H10T1/2 cells. Pretreatment with rSHH-N for 6 h enhanced the response to BMP-2 by increasing ALP activity in C3H10T1/2 and MC3T3-E1 cells. Stimulatory effects of rSHH-N and additive effects with rSHH-N and BMP-2 on ALP activity were also observed in mouse primary osteoblastic cells. Transplantation of BMP-2 (1 microg) into muscle of mice induced formation of ectopic bone, whereas transplantation of r-SHH-N (1-5 microg) failed to generate it. These results indicate that Shh plays important roles in osteoblast differentiation by cooperating with BMP.  相似文献   

7.
目的:探讨miR-21与BMP9之间的关系,明确miR-21在BMP9诱导间充质干细胞成骨分化中的作用。方法:(1)Ad-BMP9感染C3H10T1/2细胞,Real-time-PCR检测miR-21表达。RT-PCR检测ALP的表达。(2)MiR-21转染C3H10T1/2细胞,Real-time-PCR检测miR-21和BMP9表达。(3)MiR-21和BMP9-CM处理C3H10 T1/2细胞,ALP活性和染色实验检测C3H10 T1/2细胞早期成骨能力。茜素红S染色实验检测钙盐沉积情况。(4)MiR-21和BMP9-CM处理C3H10 T1/2细胞,Real-time-PCR检测成骨分化相关因子ALP,OCN的表达。(5)MiR-21和BMP9-CM处理C3H10T1/2细胞,Western blot检测p-Smad1/5蛋白水平的表达。结果:(1)BMP9暂时降低miR-21的表达。MiR-21也可以暂时降低BMP9的表达。(2)MiR-21可以协同BMP9增强ALP和钙盐沉积。(3)MiR-21协同BMP9增加了p-Smad1/5蛋白水平的表达。结论:MiR-21与BMP9存在相互关系,两者可以互相调节表达。MiR-21可以协同BMP9促进间充质干细胞C3H10T1/2细胞成骨分化,这一过程与增强BMP9/Smad信号的激活程度有关。  相似文献   

8.
目的:研究和确认RUNX2在骨形态发生蛋白9(BMP9)诱导的间充质干细胞C3H10T1/2成骨分化中的作用。方法:通过Western blot、RT-PCR、荧光素酶活性分析检测BMP9对RUNX2表达的影响;分别在过表达RUNX2和RNA干扰抑制RUNX2表达的情况下,利用碱性磷酸酶(ALP)活性测定和染色、钙盐沉积实验,免疫细胞化学和裸鼠皮下异位成骨实验分析RUNX2对于BMP9诱导的间充质干细胞成骨分化的影响。结果:BMP9可以促进RUNX2的表达;RUNX2体外可促进BMP9诱导的C3H10T1/2的ALP活性和钙盐沉积,却抑制了OCN表达,RUNX2还可促进BMP9诱导的裸鼠皮下异位成骨;而在降低RUNX2表达后,BMP9诱导的C3H10T1/2细胞的ALP活性、钙盐沉积、OCN表达和裸鼠皮下异位成骨均受到抑制。结论:RUNX2可以促进BMP9诱导的间充质干细胞C3H10T1/2细胞成骨分化。  相似文献   

9.
10.
孤儿核受体SHP(small heterodimer partner)是核受体超家族中的一员,具有LXXLL模体及配体结合域,但无经典的DNA结合域.它可与多种转录因子结合,调节细胞的增殖、分化和代谢等生物学过程.但目前关于SHP在BMP9诱导成骨分化中的确切作用却尚不清楚.本研究证明,SHP参与BMP9诱导的C3H10T1/2细胞成骨分化. RT-PCR结合Western印迹方法检测蛋白揭示,异位表达BMP9上调了SHP在C3H10T1/2细胞中的表达. 小干扰RNA敲减SHP基因在C3H10T1/2细胞的表达下调了成骨相关基因Runx2、Id1、Id2及CTGF的表达,而过表达BMP9则可上调这些基因的表达.碱性磷酸酶(ALP)活性测定/染色及茜素红染色显示,敲减核受体SHP基因可抑制BMP9的成骨分化作用,而过表达BMP9可部分消除SHP 敲减导致的成骨抑制作用.上述结果提示,核受体SHP为BMP9诱导的C3H10T1/2细胞成骨分化所必需. 究竟BMP9如何上调SHP基因表达,以及SHP究竟通过何种机制上调BMP9下游成骨分化相关基因的表达尚待进一步研究.  相似文献   

11.
Heterotopic ossification is a pathological condition in which bone forms outside the skeletal system. It can also occur in skin, which is the case in some genetic disorders. In addition to precursor cells and the appropriate tissue environment, heterotopic ossification requires inductive signals such as bone morphogenetic proteins (BMP). BMPs are growth and differentiation factors that have the ability to induce cartilage and bone formation in ectopic sites. The objective of this study is to explore the effect of the BMP-4 homodimer and BMP-2/7 heterodimer on the osteogenic differentiation of primary mouse skin fibroblasts and hair follicle dermal papilla (DP) cells. Osteogenic differentiation was induced by osteogenic induction medium (OS) containing 10 nM dexamethasone. The effect of BMP-4 and BMP-2/7 was studied using alkaline phosphatase (ALP) and calcium assays after 1.5, 3 and 5 weeks of differentiation. Fibroblasts and DP cells were able to differentiate into osteoblast-like matrix mineralizing cells. The first visible sign of differentiation was the change of morphology from rounded to more spindle-shaped cells. BMP-4 and BMP-2/7 exposure elevated ALP activity and calcium production significantly more than OS alone. The osteogenic response to BMP-4 and BMP-2/7 was similar in fibroblasts, whereas, in DP cells, BMP-2/7 was more potent than BMP-4. OS alone could not induce osteogenic differentiation in DP cells. Clear and consistent results show that dermal fibroblasts and stem cells from the dermal papilla were capable of osteogenic differentiation. The BMP-2/7 heterodimer was significantly more effective on hair follicular dermal stem cell differentiation.  相似文献   

12.
p38蛋白激酶参与BMP9诱导的C3H10T1/2细胞成骨分化   总被引:1,自引:0,他引:1  
目的:初步分析丝裂原活化蛋白激酶p38在BMP9诱导间充质干细胞C3H10T1/2成骨分化过程中的作用.方法:利用BMP9重组腺病毒感染C3H10T1/2细胞,Western blot检测p38激酶总蛋白表达水平和磷酸化水平.p38的特异性抑制剂SB203580抑制p38活性或RNA干扰抑制p38表达后,分析ALP活性...  相似文献   

13.
构建真核表达载体pCDNA3.1( )-hBMP-2,与质粒pSV2-dhfr共转染CHO-dhfr-细胞,以含有700μg/mLG418的IMDM进行选择性培养,筛选抗性克隆,并用MTX扩增,提高rhBMP-2的表达量。收集的rhBMP-2蛋白进行Westernblot检测,还原蛋白样品电泳产生一条大小约为18kD的特异性条带,非还原蛋白样品电泳产生一条大小约为30kD的特异性条带,提示表达的rhBMP-2是经过糖基化修饰的,且以同源二聚体形式分泌表达。单细胞分离培养得到14株rCHO(hBMP-2)单克隆细胞株,ELISA法检测rhBMP-2表达水平,最高可达7.83μg/24h/106cells。活性分析结果表明,表达的rhBMP-2具有很强的生物学活性。  相似文献   

14.
Osteoprogenitor cells in the human bone marrow stroma can be induced to differentiate into osteoblasts under stimulation with hormonal and local factors. We previously showed that human bone marrow stromal (HBMS) cells respond to dexamethasone and vitamin D by expressing several osteoblastic markers. In this study, we investigated the effects and interactions of local factors (BMP-2 and TGF-β2) on HBMS cell proliferation and differentiation in short-term and long-term cultures. We found that rhTGF-β2 increased DNA content and stimulated type I collagen synthesis, but inhibited ALP activity and mRNA levels, osteocalcin production, and mineralization of the matrix formed by HBMS cells. In contrast, rhBMP-2 increased ALP activity and mRNA levels, osteocalcin levels and calcium deposition in the extracellular matrix without affecting type I collagen synthesis and mRNA levels, showing that rhBMP-2 and rhTGF-β2 regulate differentially HBMS cells. Co-treatment with rhBMP-2 and rhTGF-β2 led to intermediate effects on HBMS cell proliferation and differentiation markers. rhTGF-β2 attenuated the stimulatory effect of rhBMP-2 on osteocalcin levels, and ALP activity and mRNA levels, whereas rhBMP-2 reduced the rhTGF-β2-enhanced DNA synthesis and type I collagen synthesis. We also investigated the effects of sequential treatments with rhBMP-2 and rhTGF-β2 on HBMS cell differentiation in long-term culture. A transient (9 days) treatment with rhBMP-2 abolished the rhTGF-β2 response of HBMS cells on ALP activity. In contrast, a transient (10 days) treatment with rhTGF-β2 did not influence the subsequent rhBMP-2 action on HBMS cell differentiation. The data show that TGF-β2 acts by increasing HBMS cell proliferation and type I collagen synthesis whereas BMP-2 acts by promoting HBMS cell differentiation. These observations suggest that TGF-β2 and BMP-2 may act in a sequential manner at different stages to promote human bone marrow stromal cell differentiation towards the osteoblast phenotype. J. Cell. Biochem. 68:411–426, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
16.
This study examines the capability of NIH3T3 fibroblasts to express osteoblastic markers following stimulation with a number of hormones and growth factors in vitro. Of the agents tested, 1alpha,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) dose-dependently induced alkaline phosphatase (ALP) activity in NIH3T3 cells, and this effect was enhanced by the addition of dexamethasone (Dex), which when administered alone caused no detectable ALP expression. The combined use of 1,25(OH)(2)D(3) and Dex also stimulated the synthesis of osteocalcin, and osteopontin. Furthermore, cells treated with the both hormones, in the presence of beta-glycerophosphate and l-ascorbic acid, formed mineralized plaques, indicating an osteoblast (OB) phenotype. By contrast, the differentiation induced by 1,25(OH)(2)D(3) or 1,25(OH)(2)D(3) plus Dex was significantly antagonized by transforming growth factor-beta1 and all trans-retinoic acid. These data indicate that NIH3T3 cells have the potential to adopt an OB-like phenotype and may prove to be a convenient model for studying the early events of osteogenic differentiation and the specific interactions of 1,25(OH)(2)D(3) with glucocorticoids in controlling this process in vitro.  相似文献   

17.
骨形态发生蛋白9(bone morphogenetic protein 9,BMP9)具有很强的诱导间充质干细胞定向成骨分化的能力.但对于其所涉及的相关分子机理了解并不深入.利用BMP9重组腺病毒感染间充质干细胞,Western blot检测ERK1/2激酶的磷酸化,ERK1/2的特异性抑制剂PD98059阻断ERK1/2活性,或以RNA干扰抑制ERK1/2表达,通过体外细胞实验和体内动物实验,初步分析和揭示ERK1/2对于BMP9诱导的间充质干细胞成骨分化的调控作用及其可能机制.结果发现:BMP9可以促进ERK1/2激酶的磷酸化,ERK1/2抑制剂PD98059可增强由BMP9诱导的碱性磷酸酶(alkaline phosphatase,ALP)活性、骨桥蛋白(osteopontin,OPN)表达和钙盐沉积,并促进由BMP9诱导的Runx2基因的表达和转录活性,以及Smad经典途径的活化;而RNA干扰导致ERK1/2基因沉默同样也可进一步促进BMP9诱导的ALP活性和钙盐沉积,并促进BMP9诱导的间充质干细胞在裸鼠皮下异位成骨.因此,BMP9可以促进ERK1/2蛋白激酶的活化,而阻断ERK1/2蛋白激酶可进一步增强BMP9诱导的成骨分化,ERK1/2极可能对于BMP9诱导的间充质干细胞成骨分化起着负向调控作用.  相似文献   

18.
目的:观察sonic hedgehog(Shh)信号通路在骨形态发生蛋白9(BMP9)诱导的小鼠间充质干细胞(MSCs)C3H10T1/2和C2C12成骨分化中的作用,并初步探讨其作用机制。方法:Shh信号通路抑制剂Cyclopamine和激活剂Purmorphamine以及过表达Shh腺病毒分别作用于BMP9处理的C3H10T1/2和C2C12细胞,碱性磷酸酶(ALP)检测早期成骨指标ALP,茜素红S染色检测晚期成骨指标钙盐沉积,RT-PCR检测Shh信号相关基因以及成骨关键转录因子的表达,Western blot检测Shh的表达,荧光素酶报告基因检测Smad1/5/8的转录调控活性。结果:BMP9促进Shh信号相关基因的表达,激活Shh信号可增强BMP9诱导的C3H10T1/2和C2C12细胞早晚期成骨分化并促进了BMP9诱导的Smad荧光素酶活性,抑制Shh信号后作用相反。结论:激活Shh信号通路可促进BMP9诱导的小鼠MSCs成骨分化,抑制其活性后作用相反。  相似文献   

19.
20.
目的:观察巨噬细胞炎性蛋白-3α(MIP-3α)对大鼠脂肪干细胞(Adipose derived stem cells,ASCs)向成牙本质样细胞体外分化作用的影响。方法:分离、培养并鉴定大鼠ASCs;以MIP-3α联合成骨诱导因子(地塞米松,β-甘油磷酸钠,以及抗坏血酸)诱导第3代大鼠ASCs向成牙本质样细胞定向分化。诱导培养1、4、7d后,分别测定碱性磷酸酶(alkaline phosphatese,ALP)活性,并用RT-PCR及Western Blot检测成牙本质细胞的标志基因dspp及标志物牙本质涎蛋白(DSP)。结果:与单独加入成骨诱导因子相比,MIP-3α与成骨诱导因子联合应用能使ALP活性、dspp的mRNA表达以及DSP升高。结论:本研究显示MIP-3α与成骨诱导因子联合应用可以增强成牙本质细胞相关基因以及蛋白的表达,为牙齿再生种子细胞的寻找开辟了一条新思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号